Fun with triangles and quadrilaterals
 - Make your own shapes!

Instruction manual:

Activity-1
1.) Observe the figure below.

You see 5 shapes put together to form a larger shape.

2) Now let us make each of these figures with our own dimensions and see if we can put it back together. Before we cut out, see if there is any connection between the sides of each of these figures.
3) Let us see how the sides of each shape are related.

- First, let us look at the two small triangles - orange ($\triangle A B C$) and pink ($\triangle D E F D$ 。

In each of the orange ($\triangle A B C$) and pink ($\triangle D E F)$ triangle, two sides are equal.Such triangles have a special name - do you remember?

In $A B$ and $A C$ are equal and in $\triangle D E F_{0}$ $D E$ and $D F$ are equal. Also in the two triangles $\triangle A B C$ and $\triangle D E F \backsim A B=D E, B C=E F$ and $A C=D F$. The orange ($\triangle A B C$) and pink ($\triangle D E F$) triangles are exactly the same size - can you make out?

Try and cut them out in such a manner that you can keep one on top of the other.

- Second, let us look at the square $P \mathbb{R} S$.

What is the side of the square $P Q R S$ equal to? Can you guess? See the sides $\mathbb{P}_{D} \mathbb{Q}_{R} \mathbb{R}^{2} S$ and $S P_{0}$ Can you see any connection with the sides of the triangle?

All sides of a square are equal. In $\triangle D E F$ and square $P Q R S_{0}$

From above we have also seen that orange ($\triangle P Q R$) and pink ($\triangle D E F$) triangles are same.
Hence,
PS \because 回

- Third, let us look at the yellow triangle ($\triangle G G l)$ - is there anything special about this triangle?
In this triangle - are all sides equal?
-- are two sides equal?or
-- Nothing equal?
If equal, which sides are equal?

Compare this with the pink and yellow triangle.

The smaller side of the yellow triangle ($\triangle G \backsim$) must be equal to the larger side of the pink triangle. $(\triangle D E F)$.

Also since orange ($\triangle P Q R$) and pink ($\triangle D E F)$ triangles are same.

- Now you are ready to look at the last figure - which is a parallelogram $\llcorner\mathbb{N} \bigcirc$. What is special about this figure? Can you guess?

Cut the parallelogram $\triangle M N O$ matching one side with the orange triangle ($\triangle A B C$) and one side with the yellow triangle ($\triangle G G U)$
That is, in $\triangle A B C$ ลn yparallelogram Linyile

LO = 國圆 LME (D)

(In parallelogram opposite sides are equal that is, $L M=O N$ and $L O=M N$)

\rightarrow Now that you have cut them out - put them back together to make the shape you saw.

3) Try and put the shape below together, follow the above example.

(i)

(ii)

4) If you stick your shapes on cardboard, you have your own Tangram shapes!

Activity-2 (Using 7-shapes)

1.) Observe the figure below.

You see 7 shapes put together to form a larger shape.

2) Now let us make each of these figures with our own dimensions and see if we can put it back together. Before we cut out, see if there is any connection between the sides of each of these figures.
3) Let us see how the sides of each shape are related.

- First, let us look at the two small triangles - orange ($\triangle A B C$) and pink ($\triangle D E F)_{\text {。 }}$

In each of the orange ($\triangle A B C$) and pink ($\triangle D E F$) triangle, two sides are equal.Such triangles have a special name - do you remember?

In $A B$ and $A C$ are equal and in \qquad \triangle and $\triangle D$) and pink ($\triangle D E F$) triangles are exactly $A C=D F$. The orange ($\triangle A B C$) the same size - can you make out?

Try and cut them out in such a manner that you can keep one on top of the other.

- Second, let us look at the square $P \mathbb{R} S$.

What is the side of the square $P Q R S$ equal to? Can you guess? See the sides $\mathbb{Q}_{0} \mathbb{Q}_{\mathrm{R}} \mathrm{R}_{0} \mathbb{R}$ and $\mathbb{S} P_{\square}$ Can you see any connection with the sides of the triangle?

All sides of a
square are equal.
In $\triangle D E F$ and square PQRS,

QRED圆㢂

From above we have also seen that orange ($\triangle P Q R$) and pink
($\triangle D E F$) triangles are same.
Hence,

C ลn you malke the triengle now? y you make the triangle nowpg

- Third, let us look at the yellow triangle ($\triangle G H I)$ - is there anything special about this triangle?
In this triangle - are all sides equal?
-- are two sides equal?or
-- Nothing equal?
If equal, which sides are equal?

Compare the longer side of yellow triangle, with sides of parallelogram LMNO and square $\mathbb{P Q R S}$

What do you see?
 makes side GI of yellow triangle GHI.

Also, the smaller side of the yellow triangle ($\triangle G-H)$ must be equal to the larger side of the pink triangle. ($\triangle D E F$).

Also since orange ($\triangle P Q R$) and pink ($\triangle D E F)$ triangles are same.

- Now you are ready to look at this figure - which is a parallelogram $\llcorner\mathbb{M} \mathbb{N} O$. What is special about this figure? Can you guess?

Cut the parallelogram $\triangle M \mathbb{N} \bigcirc$ matching one side with the orange triangle ($\triangle A B C$) and one side with the yellow triangle ($\triangle G G I)$
That is, in $\triangle A B C$ an yparallelograme Lixaiog le now? d

In $\triangle G H 0$ an yparatlelograim LiMilegle now'

(In parallelogram opposite sides are equal that is, $L M=O N$ and $L O=M N$)

- Now you are ready to look at last figures - which is are the large triangles- red ($\triangle X Y \mathbb{Z}$) and green ($\triangle U V W$) triangles.

In this triangle - are all sides equal?
-- are two sides equal?or
-- Nothing equal?
If equal, which sides are equal?

The red ($\triangle X Y \mathbb{Z}$) and green ($\triangle U V M$) triangles are exactly the same size - can you make out?

Also see, how are sides of green and red triangle related to other shapes????
 $\angle M N O$ and orange triangle ($\triangle A B C$)makes side UV of green triangle ($\triangle \cup V V)$.

And we see, $Y \mathbb{Z}=[$ Ond $\angle M N O$ and square $P Q R S m a k e s$ side $Y \mathbb{Z}$ of red triangle ($\triangle X Y Z$).

Try and cut them out in such a manner that you can keep red and green triangles one on top of the other.
\rightarrow Now that you have cut them out - put them back together to make the shape you sau. (the larger square)
3) Try and put the shape below together, follow the above example.
(i)

(ii)

4) If you stick your shapes on cardboard, you have your own Tangram shapes!

