Difference between revisions of "Measurements in circles"
KOER admin (talk | contribs) m (Text replacement - "</mm>" to "") |
|||
(20 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | [[File:Measurements in circles.mm|flash]] | |
− | ==Concept # Measurements in circles == | + | ==Concept # Measurements in circles: 1. Radius and Diameter == |
===Learning objectives=== | ===Learning objectives=== | ||
− | # | + | # Ability to measure radius, diameter, circumference, chord length and angles subtended at the centre and on the circumference of the circle. |
− | # | + | # Radius, diameter and chord lengths are linear measurements. |
− | # | + | # Relate the size of the circle with radius. |
# They realise that to draw a circle knowing the measure of radius or diameter is essential. | # They realise that to draw a circle knowing the measure of radius or diameter is essential. | ||
# There can be infinite radii in a circle. | # There can be infinite radii in a circle. | ||
Line 11: | Line 11: | ||
# Chords of different lengths can be drawn in a circle. | # Chords of different lengths can be drawn in a circle. | ||
# Chord length can be measured using a scale and its units is cm. | # Chord length can be measured using a scale and its units is cm. | ||
− | # | + | # The length of the chord increases as it moves closer to the diameter. |
# The longest chord in the circle is its diameter. | # The longest chord in the circle is its diameter. | ||
# Distance of chord from the centre is its perpendicular distance from the centre. | # Distance of chord from the centre is its perpendicular distance from the centre. | ||
Line 23: | Line 23: | ||
{| style="height:10px; float:right; align:center;" | {| style="height:10px; float:right; align:center;" | ||
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | |<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | ||
− | ''[http:// | + | ''[http://karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div> |
|} | |} | ||
*Estimated Time: 15 mins | *Estimated Time: 15 mins | ||
Line 30: | Line 30: | ||
#students' geometry box | #students' geometry box | ||
*Prerequisites/Instructions, if any: | *Prerequisites/Instructions, if any: | ||
− | # | + | # Circle and its basic parts should have been done. |
− | |||
*Multimedia resources: Laptop | *Multimedia resources: Laptop | ||
− | *Website interactives/ links/ / Geogebra Applets | + | *Website interactives/ links/ / Geogebra Applets : This file was done by ITfC-Edu-Team. |
<ggb_applet width="1280" height="572" version="4.0" ggbBase64="UEsDBBQACAAIAOtdXUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ4WUfTTTCxjHR1utzU9DenGZJcr1HpJxvUzTbFRY3pa7hMzLMWG7tca92pXXZLmUd8Uy4lpu8nYiOeswc/NSxDYtzFs7XqIiu7ju/eue2z3nfs/5fp/zPH88f3z/+KR7nsEBMC0YCAQC8G5Y7+3ZvW0ydOd2hlHOd4BAkFA8FnPuqmi+5Lybtt+BpERhxbuTFzKylTAIQnhElXm9p5HpUJAAWNc3hUeOpjomj/RkHInuwBp4G/tmWX+bGH7oUUSh3g2WQXAuAbAGvyIAYR8Gq0ZPeVX8pOibrhXTY6yY0gRdFStmmGSoYGUePeO0PxMMKvfmm4KcESCw0tfxj4UNzi8YT1diYUMpOJlM0IEEYToP6O5H09xkn6NLtVDdjiLxDlaxg5D484w/Ig+Vq3EU29jk+vCh8gyNxwvZkIgKu4eHN+PHFwF2PKsYrTGiAgDXb9aI60Oub6yvk1NsCkg1vtP+falh6y3o2wJBm3yP7r5RiQpHHuXAzY/yWL99WI9O18NlL7RRMvQjo6M17woNykrdn/JrqqpGmBaurmrZ1418Mf1isfHQ0FDcp/d5QaSAgILaujrSwfaGhtciufyyWo9Q+GvIWG/sLD0JxejTtVoNZQiObj7RpO5kgVBQEMs5bGRsbOoICoqt4PGyi5JQiPSsLMDY8gHTmX2zf6zE6Zmcz0826ObMlSmB8Zp7NgPYMQtbhqUCx+qExWiGPIs4HKvg7VieL3MSDJ5aSPZxQGbTaDS3xMREi+jY2GMjXQNS6bOt69/Zc2uLVInO7HyfHG7R8otFqaBLo8z9TQlvaqGnNs/RafGXPcZnA7rE9menXkpXpx5XC4fpfmFU/4hRDpeLk1CbrI8fh7wiEAgmSpFRUavpXkTi4W1h8BmZmZdSB4RQdfjvs9wuc0GvKDCXFxHDl1VPMSfa6RiqY3PeE+nYe5PA1y9drj1X03+x1lTajQv53rLRQoeLnMxirK9fqPDVNBE/wNsmM9T4x9qPCie0HCjzk34f22LNB4wCJs1nTOfiIJ1PoRPNsv7e4qUTPyqzbK9JaY3V0BW9NGLDGNtTcJGIIOaE043FiGlXBC6BsVo41Nx4A8B4FOkTgSvAiqqqKuGKH8XClJR/wvopHKpeD+MMGCla+qMUuIbcHqyPOySCSr2zrSBSgwVv92Jk1Zu08nhn2tu0gpPKffUonWeJl3iReckoEiFizXbsj6U2v5SUnaFTA+poAJNz0n61OPE000rBSEIVHKmOoaWywrOZZoC7Ejg9oC1Oghv3ROjcKQ9pAsWR2RwX3tbucnjFiOs3c3YdXujLSTdBEJM0jUruxvKgvVkcaG8diroaUZ1wH4O8hhS9fajabv7AHNl0p0/Z0A2T4FjWfMFhYS3e6aD8rFQq+9C9tPSIRievbQHZg2VqreHaKLfhGn/8T1RtkUjEqa/3sjMnq1TOdcaOwzsPXuyduHyf2ZYCmUTwYS3vOVUesPLJ32hhwa3NjMnWQKQWGyeEyyzB+Fte0tzAog10BWu2F1vSDmevsAw/cnaw+M4KfV8bXQoWUdJeEy9RWj6F0Pl80W5h0DTtltYPkmklsGCfnSz084cEEmQAvVBwQACH5sTR1lLnWyZtwAPjH1sRYGcyLNiy/kw44QnKqMwMfNsdfgLEsnVRGJ7LSbaMV2ZV0UiW6EI2BJqTme+h03RaHYd4nKRtsGtvLqqSxAFW8w+9o7BmnRqB/R4VPn/9w8CCLQ4FzUteIa9olH9SbAx+md71XN6Q2w/NI999rW+SlKCuv/fv/mn3xo0X2814bYEUHXml9wjZBnqP/RWM/hNP/2bU/50Nr25CYEaqFl/uDiduYxeEdz2DrXMJYv0JUEsHCB1AVCFvBQAAnQUAAFBLAwQUAAgACADrXV1DAAAAAAAAAAAAAAAAEgAAAGdlb2dlYnJhX21hY3JvLnhtbN1YS1PbMBA+t79Co3sUP+IQGEynMLxmSukUDr0qsnDU2pJrKYTw67uSbLAJlL5ok/pgy6v17vr7Vruyd9/clAW65rUWSqY4JAFGXDKVCZmneG6uBhP8Zu/1bs5Vzqc1RVeqLqlJ8chqohstdqR6T0uuK8r4BZvxkr5TjBpnbmZMtTMcLhYL0hogqs6HeW7Ijc4wAudSp7gZ7IC53kOL2KlHQRAOP5298+YHQmpDJeMYQWAlZbVCrMxsEClmXJpaCTBtlCoek53worIeBVPySBTcjvVMLU7lJczu0zrFpp6Dcaaq5QGt7JvoRtb6O5XV3CAapPgtRjRM8T5cohQf4GGrcj43rc6xk4I7DUaYtYeMMN4znZuZqu0oo8ZKQJMXvISQkVlWIKmUkAajgk55Yf3tvX61a+NFavqZM9NG28y7m6HVgekDVagagXWgKnfnqTvToppRGAGFTrWgS16ja1rY2UYC1s5UxntSKkXpmEXacAAxBOQqzjM38tHCoAJzLnuuaKGbYJhSdabRTYpjkowxWqY4IeMRRrc+55ySe9MLcds4jbtSsyy6sewOG5CegWt/0+EaBGTLwRWTMHpxuA42Ha6oQSsikz+TXEyVJZUZkq6SfFDFMlfSoSS+VwMAoPv1X8FToddhXofCJU7x1HtrfDzCjffWou/tOACF5D5qMxPsi+QaKlTUohT4wYnIMm5rug+ox6oHrzXcgfKP8/p06mme27u7KNhq8v29MPtJlITb3cMXrMGIRGOfVAkJkiRqrP0CF/yr9I9oe06xKKtCMGHuUqewOX4qDfRl7jqG9rF2IPjCeXUJps/lZU2ltn3Z67SL9MeRp+uCfECiSdA9oqQpfqOeOPCLexAGZBT+PzxM14WHAdRPB3xAJklvKWw74BMShlvdiWSDOOiX9DOR+R7Yr+nTlSp++Fyx7jbSw+eYfNFO2t1thbEjEmrXSzTEJ9CjK+gd/Qx6R2uCnvsacruJ7ckLgPeRLh/gduR3CW9X4Mu+D18NllpssjUqIuN+8Wj3Zolvo9BQt8eTTsEPN7aKrFJ52G4KH1LJf5xKvi5Uhu7jw+6BYjKJ/VKArXYcjzeWsTvDD3jLPG98hbfjn6lgx//yQ6rDm/3a3krC8MEKnJA4GMf3m1zH6BaJo6C7YH+r1A27/zvsvfsrYgftn6C9b1BLBwhz5lWOdQMAAHwSAABQSwMEFAAIAAgA611dQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK4FAFBLBwjWN725GQAAABcAAABQSwMEFAAIAAgA611dQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzdWVtv2zgWfu78CkIP+9TYvOrScTpIUgy2QKcdIN3FYgf7QEu0wokseSTacYr58XMOKdlybpM000V2jdgUyUOe+8dDZfbDdlmRjWk729THEZvQiJg6bwpbl8fR2i2O0uiHt9/NStOUZt5qsmjapXbHkURKWxxHJmFMJkwfZXquj2Re6COdmuTImCzJ0qIwMU8jQradfVM3H/XSdCudm/P8wiz1hybXzjO+cG71Zjq9urqaDKwmTVtOy3I+2XZFREDMujuO+oc3sN3BoivhyTmlbPqvnz6E7Y9s3Tld5yYiqMLavv3u1ezK1kVzRa5s4S5AYZ6CHhfGlhegVMJlRKZItQKLrEzu7MZ0sHbU9Uq75SryZLrG+VfhiVQ7fSJS2I0tTHsc0QlTCRWMq4g0rTW162lYz2s67DLbWHMVtsMnzwkEck1TzTXuRH7/nXDKKXmNDQsNhyaOwxQNY1SEhodGhkYFGhmWy0AqA40MNFJEZGM7O6/McbTQVQems/WiBbft+p27royXpx/Ya81eg06d/QLEgoJdg61hnNLX+I3hK3FieqgkG3F17fpBpmF+xHPgyGicPJ4lfwZLMbDklN3myNU9SsYP2DaweMi0OzXVyLDAyv/57y2Ogj+B4/12fTzDWP5XVJxNh0SZ9blBuguk7R3pzLLDbBEZURkGPSMKMiNOIMYVYRk0CSeQC4QpIhV0WUpibBMiEpiQRJCUIB0TxKeGSuFHJn6zmCjYDEcTyEjCgJEkShDmM0oSyCPisxIylAugUIooWITsGcctRExkDD2REgkyYkImDAgFLIQ+sOdEMCJwMUsIj0mM+zGJiR6nKDpsyUlMScxwQ8hpyOeQy0CfEoHaxF46+AxIY+vV2h3YKl8Ww6NrVjunADXA0h70AkwdYOKrWaXnpoJz4hxdSshGV5gantGiqR0ZvMnDWNnq1YXNu3PjHKzqyK96oz9oZ7Y/AnU38Pa0eVN3P7eNO2uq9bLuCMmbiu5kbio2euY7qaEjRhNyPKFGE/HoObmTbwMzZN0Z4N+03UCui+I9UuwhAiz5qa6uT1ujL1eNvU+Nj3pjSx/lpzdidVXp69O1cxj/+5F3Bn4AXvCMXcH6gWKnTt2dOwPuYizyrvJn28ys88oWVtf/hPRA/ugAsjvqPD4OR52i8SBj0xbn1x0kDdn+27QN8JVqIjnnIs1YissAua7DlOBqkvFY4KGfKYaY1uUa011kEykl5QmViRA8lXDcXd8zFzibzS4U9NbsrVq2iCWjzvvutKn2Q97QZ3rl1q2vUgCOW1TqpC4r44PRYwmUAPnlvNmehygUYa/P1yvo0SDBvPQOJoBGXIG8Zd/OQ+tpULQdFfU01FPQIaxtsZtnGfcUvp2H1lNBngTRelXZoCajAxvbeQylUR8gAz5ilmFBsa6t+zB0nM0v96rigo/r5dzsYxUJ3tlQ/oS67pAN+4ZsZtMbkTi7NG1tqj4lwOXrZt0FwBhlS2Fyu4RumOgNp9Gp/wCZwmhhytb09LrydWIwq5+l45C+Ney3+rFtlu/rzWeImBsCzKaDlLMub+0KI5PM4Xi6NPvYK2yn4XQrxuswHcEaOeY3GMShtQAs1u6iaX0lCBgHLSZoZZZQ/xHng9DH8c7yJ76gRBOTZv4rwOzuSA7zvjOgSmE9M48/PfEiTMLaO6PVx7WuVhcaK9LeIoAypj2wkWf2U1PctBw4JnAMsAOxsDImhFFQhgXk8gl5gIDgio5skSmWIx7VODx8GQWlNwSm6cEZEkZveBFCK9jwT6x5+mhrvliD8b3BxF9ir7xZLnVdkNqXY2e2zSsT7csCTTEIiWZovWCatRsm8rBZv8Ut40NI2nxn3PxPjH94Qt4Ry+V9rmFKeOco9vW+2UOxg3LkEq5enb8OuP5k8A9/t3Bz9TVpOKpsaeoNyAbVANxlaX9TvqaBP/kyjGzBekd+6Jr1Q1/YyHUQFa3dkpOB/mSgOuH+gcMxufvgmXUiehYn0u+MMXECxcyRT6Mg3G910KcLSI1Fml3Y/GH/n5sSxx8bAPrhAOj63QYX6+eGQHE7BOB6Os5P7H1tDOyzDJ2VZONPLHzWsUl2+El9Eh7JiWRjJ1H1jLC64Tm7XFU2t25n/Qrx4X3t4MQ1/ny5fWpeGrPCouZT/bnVdYfvZwLNAHH3h8DPHjIPAyC/5fmzhz1/iLtnX4W7/t1I2bcvAXsxz+j4w3xMSMg5prJMxBRqX5mm6hsA811eCWD9yxncQf9zy0HvnuKgd/83DqJZQjMq4JqieJrF3kEUHRSDlFmqhFKpyr6Bg+5GzrOAnO9uuWf+NOScPxc573DfcLkJyMko/yuQU3iATOF2yLJEZZQHFyCgAoeMZnGSxDJhVGH2IHSyCRexUkxymmZJIsX/EHKa7aoFwdDYQ6aYrQPFYOI4+ttv68Z9f0JCnpJmQUq7MTVpdWHhpoOxA7ehpQFxJoHW738YCbhhdLj7o0PhLm9jkfTMWmlht6Y4NEr/cqczrV3sX4T4OzaNBnf0XoJ7Yes8nhF/1vIJuB7jhUr/q3zEqInIWEozxYX/leOcvb/gnzdNZXS9s0bhrQWyrs1NiZ9zD6CPtt6nxaIzDhWVQw2hHs4lvfLZ68fOUcYQL0/T27xAvdPsaXoPyfE0zRcvSHOVBM0pf7TmZ6BZ68EiD3exJylfvjzluUgerzyovF4uTGvw/3M3NJ+OX6n495v9/wTf/gFQSwcIdux7CPgHAACwHAAAUEsBAhQAFAAIAAgA611dQx1AVCFvBQAAnQUAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADrXV1Dc+ZVjnUDAAB8EgAAEgAAAAAAAAAAAAAAAACzBQAAZ2VvZ2VicmFfbWFjcm8ueG1sUEsBAhQAFAAIAAgA611dQ9Y3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAaAkAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADrXV1Ddux7CPgHAACwHAAADAAAAAAAAAAAAAAAAADFCQAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQAAgEAAPcRAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" /> | <ggb_applet width="1280" height="572" version="4.0" ggbBase64="UEsDBBQACAAIAOtdXUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ4WUfTTTCxjHR1utzU9DenGZJcr1HpJxvUzTbFRY3pa7hMzLMWG7tca92pXXZLmUd8Uy4lpu8nYiOeswc/NSxDYtzFs7XqIiu7ju/eue2z3nfs/5fp/zPH88f3z/+KR7nsEBMC0YCAQC8G5Y7+3ZvW0ydOd2hlHOd4BAkFA8FnPuqmi+5Lybtt+BpERhxbuTFzKylTAIQnhElXm9p5HpUJAAWNc3hUeOpjomj/RkHInuwBp4G/tmWX+bGH7oUUSh3g2WQXAuAbAGvyIAYR8Gq0ZPeVX8pOibrhXTY6yY0gRdFStmmGSoYGUePeO0PxMMKvfmm4KcESCw0tfxj4UNzi8YT1diYUMpOJlM0IEEYToP6O5H09xkn6NLtVDdjiLxDlaxg5D484w/Ig+Vq3EU29jk+vCh8gyNxwvZkIgKu4eHN+PHFwF2PKsYrTGiAgDXb9aI60Oub6yvk1NsCkg1vtP+falh6y3o2wJBm3yP7r5RiQpHHuXAzY/yWL99WI9O18NlL7RRMvQjo6M17woNykrdn/JrqqpGmBaurmrZ1418Mf1isfHQ0FDcp/d5QaSAgILaujrSwfaGhtciufyyWo9Q+GvIWG/sLD0JxejTtVoNZQiObj7RpO5kgVBQEMs5bGRsbOoICoqt4PGyi5JQiPSsLMDY8gHTmX2zf6zE6Zmcz0826ObMlSmB8Zp7NgPYMQtbhqUCx+qExWiGPIs4HKvg7VieL3MSDJ5aSPZxQGbTaDS3xMREi+jY2GMjXQNS6bOt69/Zc2uLVInO7HyfHG7R8otFqaBLo8z9TQlvaqGnNs/RafGXPcZnA7rE9menXkpXpx5XC4fpfmFU/4hRDpeLk1CbrI8fh7wiEAgmSpFRUavpXkTi4W1h8BmZmZdSB4RQdfjvs9wuc0GvKDCXFxHDl1VPMSfa6RiqY3PeE+nYe5PA1y9drj1X03+x1lTajQv53rLRQoeLnMxirK9fqPDVNBE/wNsmM9T4x9qPCie0HCjzk34f22LNB4wCJs1nTOfiIJ1PoRPNsv7e4qUTPyqzbK9JaY3V0BW9NGLDGNtTcJGIIOaE043FiGlXBC6BsVo41Nx4A8B4FOkTgSvAiqqqKuGKH8XClJR/wvopHKpeD+MMGCla+qMUuIbcHqyPOySCSr2zrSBSgwVv92Jk1Zu08nhn2tu0gpPKffUonWeJl3iReckoEiFizXbsj6U2v5SUnaFTA+poAJNz0n61OPE000rBSEIVHKmOoaWywrOZZoC7Ejg9oC1Oghv3ROjcKQ9pAsWR2RwX3tbucnjFiOs3c3YdXujLSTdBEJM0jUruxvKgvVkcaG8diroaUZ1wH4O8hhS9fajabv7AHNl0p0/Z0A2T4FjWfMFhYS3e6aD8rFQq+9C9tPSIRievbQHZg2VqreHaKLfhGn/8T1RtkUjEqa/3sjMnq1TOdcaOwzsPXuyduHyf2ZYCmUTwYS3vOVUesPLJ32hhwa3NjMnWQKQWGyeEyyzB+Fte0tzAog10BWu2F1vSDmevsAw/cnaw+M4KfV8bXQoWUdJeEy9RWj6F0Pl80W5h0DTtltYPkmklsGCfnSz084cEEmQAvVBwQACH5sTR1lLnWyZtwAPjH1sRYGcyLNiy/kw44QnKqMwMfNsdfgLEsnVRGJ7LSbaMV2ZV0UiW6EI2BJqTme+h03RaHYd4nKRtsGtvLqqSxAFW8w+9o7BmnRqB/R4VPn/9w8CCLQ4FzUteIa9olH9SbAx+md71XN6Q2w/NI999rW+SlKCuv/fv/mn3xo0X2814bYEUHXml9wjZBnqP/RWM/hNP/2bU/50Nr25CYEaqFl/uDiduYxeEdz2DrXMJYv0JUEsHCB1AVCFvBQAAnQUAAFBLAwQUAAgACADrXV1DAAAAAAAAAAAAAAAAEgAAAGdlb2dlYnJhX21hY3JvLnhtbN1YS1PbMBA+t79Co3sUP+IQGEynMLxmSukUDr0qsnDU2pJrKYTw67uSbLAJlL5ok/pgy6v17vr7Vruyd9/clAW65rUWSqY4JAFGXDKVCZmneG6uBhP8Zu/1bs5Vzqc1RVeqLqlJ8chqohstdqR6T0uuK8r4BZvxkr5TjBpnbmZMtTMcLhYL0hogqs6HeW7Ijc4wAudSp7gZ7IC53kOL2KlHQRAOP5298+YHQmpDJeMYQWAlZbVCrMxsEClmXJpaCTBtlCoek53worIeBVPySBTcjvVMLU7lJczu0zrFpp6Dcaaq5QGt7JvoRtb6O5XV3CAapPgtRjRM8T5cohQf4GGrcj43rc6xk4I7DUaYtYeMMN4znZuZqu0oo8ZKQJMXvISQkVlWIKmUkAajgk55Yf3tvX61a+NFavqZM9NG28y7m6HVgekDVagagXWgKnfnqTvToppRGAGFTrWgS16ja1rY2UYC1s5UxntSKkXpmEXacAAxBOQqzjM38tHCoAJzLnuuaKGbYJhSdabRTYpjkowxWqY4IeMRRrc+55ySe9MLcds4jbtSsyy6sewOG5CegWt/0+EaBGTLwRWTMHpxuA42Ha6oQSsikz+TXEyVJZUZkq6SfFDFMlfSoSS+VwMAoPv1X8FToddhXofCJU7x1HtrfDzCjffWou/tOACF5D5qMxPsi+QaKlTUohT4wYnIMm5rug+ox6oHrzXcgfKP8/p06mme27u7KNhq8v29MPtJlITb3cMXrMGIRGOfVAkJkiRqrP0CF/yr9I9oe06xKKtCMGHuUqewOX4qDfRl7jqG9rF2IPjCeXUJps/lZU2ltn3Z67SL9MeRp+uCfECiSdA9oqQpfqOeOPCLexAGZBT+PzxM14WHAdRPB3xAJklvKWw74BMShlvdiWSDOOiX9DOR+R7Yr+nTlSp++Fyx7jbSw+eYfNFO2t1thbEjEmrXSzTEJ9CjK+gd/Qx6R2uCnvsacruJ7ckLgPeRLh/gduR3CW9X4Mu+D18NllpssjUqIuN+8Wj3Zolvo9BQt8eTTsEPN7aKrFJ52G4KH1LJf5xKvi5Uhu7jw+6BYjKJ/VKArXYcjzeWsTvDD3jLPG98hbfjn6lgx//yQ6rDm/3a3krC8MEKnJA4GMf3m1zH6BaJo6C7YH+r1A27/zvsvfsrYgftn6C9b1BLBwhz5lWOdQMAAHwSAABQSwMEFAAIAAgA611dQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK4FAFBLBwjWN725GQAAABcAAABQSwMEFAAIAAgA611dQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzdWVtv2zgWfu78CkIP+9TYvOrScTpIUgy2QKcdIN3FYgf7QEu0wokseSTacYr58XMOKdlybpM000V2jdgUyUOe+8dDZfbDdlmRjWk729THEZvQiJg6bwpbl8fR2i2O0uiHt9/NStOUZt5qsmjapXbHkURKWxxHJmFMJkwfZXquj2Re6COdmuTImCzJ0qIwMU8jQradfVM3H/XSdCudm/P8wiz1hybXzjO+cG71Zjq9urqaDKwmTVtOy3I+2XZFREDMujuO+oc3sN3BoivhyTmlbPqvnz6E7Y9s3Tld5yYiqMLavv3u1ezK1kVzRa5s4S5AYZ6CHhfGlhegVMJlRKZItQKLrEzu7MZ0sHbU9Uq75SryZLrG+VfhiVQ7fSJS2I0tTHsc0QlTCRWMq4g0rTW162lYz2s67DLbWHMVtsMnzwkEck1TzTXuRH7/nXDKKXmNDQsNhyaOwxQNY1SEhodGhkYFGhmWy0AqA40MNFJEZGM7O6/McbTQVQems/WiBbft+p27royXpx/Ya81eg06d/QLEgoJdg61hnNLX+I3hK3FieqgkG3F17fpBpmF+xHPgyGicPJ4lfwZLMbDklN3myNU9SsYP2DaweMi0OzXVyLDAyv/57y2Ogj+B4/12fTzDWP5XVJxNh0SZ9blBuguk7R3pzLLDbBEZURkGPSMKMiNOIMYVYRk0CSeQC4QpIhV0WUpibBMiEpiQRJCUIB0TxKeGSuFHJn6zmCjYDEcTyEjCgJEkShDmM0oSyCPisxIylAugUIooWITsGcctRExkDD2REgkyYkImDAgFLIQ+sOdEMCJwMUsIj0mM+zGJiR6nKDpsyUlMScxwQ8hpyOeQy0CfEoHaxF46+AxIY+vV2h3YKl8Ww6NrVjunADXA0h70AkwdYOKrWaXnpoJz4hxdSshGV5gantGiqR0ZvMnDWNnq1YXNu3PjHKzqyK96oz9oZ7Y/AnU38Pa0eVN3P7eNO2uq9bLuCMmbiu5kbio2euY7qaEjRhNyPKFGE/HoObmTbwMzZN0Z4N+03UCui+I9UuwhAiz5qa6uT1ujL1eNvU+Nj3pjSx/lpzdidVXp69O1cxj/+5F3Bn4AXvCMXcH6gWKnTt2dOwPuYizyrvJn28ys88oWVtf/hPRA/ugAsjvqPD4OR52i8SBj0xbn1x0kDdn+27QN8JVqIjnnIs1YissAua7DlOBqkvFY4KGfKYaY1uUa011kEykl5QmViRA8lXDcXd8zFzibzS4U9NbsrVq2iCWjzvvutKn2Q97QZ3rl1q2vUgCOW1TqpC4r44PRYwmUAPnlvNmehygUYa/P1yvo0SDBvPQOJoBGXIG8Zd/OQ+tpULQdFfU01FPQIaxtsZtnGfcUvp2H1lNBngTRelXZoCajAxvbeQylUR8gAz5ilmFBsa6t+zB0nM0v96rigo/r5dzsYxUJ3tlQ/oS67pAN+4ZsZtMbkTi7NG1tqj4lwOXrZt0FwBhlS2Fyu4RumOgNp9Gp/wCZwmhhytb09LrydWIwq5+l45C+Ney3+rFtlu/rzWeImBsCzKaDlLMub+0KI5PM4Xi6NPvYK2yn4XQrxuswHcEaOeY3GMShtQAs1u6iaX0lCBgHLSZoZZZQ/xHng9DH8c7yJ76gRBOTZv4rwOzuSA7zvjOgSmE9M48/PfEiTMLaO6PVx7WuVhcaK9LeIoAypj2wkWf2U1PctBw4JnAMsAOxsDImhFFQhgXk8gl5gIDgio5skSmWIx7VODx8GQWlNwSm6cEZEkZveBFCK9jwT6x5+mhrvliD8b3BxF9ir7xZLnVdkNqXY2e2zSsT7csCTTEIiWZovWCatRsm8rBZv8Ut40NI2nxn3PxPjH94Qt4Ry+V9rmFKeOco9vW+2UOxg3LkEq5enb8OuP5k8A9/t3Bz9TVpOKpsaeoNyAbVANxlaX9TvqaBP/kyjGzBekd+6Jr1Q1/YyHUQFa3dkpOB/mSgOuH+gcMxufvgmXUiehYn0u+MMXECxcyRT6Mg3G910KcLSI1Fml3Y/GH/n5sSxx8bAPrhAOj63QYX6+eGQHE7BOB6Os5P7H1tDOyzDJ2VZONPLHzWsUl2+El9Eh7JiWRjJ1H1jLC64Tm7XFU2t25n/Qrx4X3t4MQ1/ny5fWpeGrPCouZT/bnVdYfvZwLNAHH3h8DPHjIPAyC/5fmzhz1/iLtnX4W7/t1I2bcvAXsxz+j4w3xMSMg5prJMxBRqX5mm6hsA811eCWD9yxncQf9zy0HvnuKgd/83DqJZQjMq4JqieJrF3kEUHRSDlFmqhFKpyr6Bg+5GzrOAnO9uuWf+NOScPxc573DfcLkJyMko/yuQU3iATOF2yLJEZZQHFyCgAoeMZnGSxDJhVGH2IHSyCRexUkxymmZJIsX/EHKa7aoFwdDYQ6aYrQPFYOI4+ttv68Z9f0JCnpJmQUq7MTVpdWHhpoOxA7ehpQFxJoHW738YCbhhdLj7o0PhLm9jkfTMWmlht6Y4NEr/cqczrV3sX4T4OzaNBnf0XoJ7Yes8nhF/1vIJuB7jhUr/q3zEqInIWEozxYX/leOcvb/gnzdNZXS9s0bhrQWyrs1NiZ9zD6CPtt6nxaIzDhWVQw2hHs4lvfLZ68fOUcYQL0/T27xAvdPsaXoPyfE0zRcvSHOVBM0pf7TmZ6BZ68EiD3exJylfvjzluUgerzyovF4uTGvw/3M3NJ+OX6n495v9/wTf/gFQSwcIdux7CPgHAACwHAAAUEsBAhQAFAAIAAgA611dQx1AVCFvBQAAnQUAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADrXV1Dc+ZVjnUDAAB8EgAAEgAAAAAAAAAAAAAAAACzBQAAZ2VvZ2VicmFfbWFjcm8ueG1sUEsBAhQAFAAIAAgA611dQ9Y3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAaAkAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADrXV1Ddux7CPgHAACwHAAADAAAAAAAAAAAAAAAAADFCQAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQAAgEAAPcRAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" /> | ||
*Process: | *Process: | ||
Line 42: | Line 41: | ||
# Given diameter, radius = D/2. | # Given diameter, radius = D/2. | ||
# Also the other way i.e. If a circle is given, then its radius can be measured by using scale which is the linear distance between centre of the circle and any point on the circumference. | # Also the other way i.e. If a circle is given, then its radius can be measured by using scale which is the linear distance between centre of the circle and any point on the circumference. | ||
− | #To | + | # To measure diameter, measure the length of that chord which passes through the centre of the circle. |
Then she can project the digital tool 'geogebra.' and further clarify concepts. | Then she can project the digital tool 'geogebra.' and further clarify concepts. | ||
− | |||
*Developmental Questions: | *Developmental Questions: | ||
# Name the centre of the circle. | # Name the centre of the circle. | ||
Line 65: | Line 63: | ||
{| style="height:10px; float:right; align:center;" | {| style="height:10px; float:right; align:center;" | ||
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | |<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | ||
− | ''[http:// | + | ''[http://karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div> |
|} | |} | ||
*Estimated Time : 10 minutes | *Estimated Time : 10 minutes | ||
Line 71: | Line 69: | ||
Laptop, geogebra file, projector and a pointer. | Laptop, geogebra file, projector and a pointer. | ||
*Prerequisites/Instructions, if any: | *Prerequisites/Instructions, if any: | ||
− | |||
− | |||
*Multimedia resources: | *Multimedia resources: | ||
Laptop, geogebra file, projector and a pointer. | Laptop, geogebra file, projector and a pointer. | ||
Line 78: | Line 74: | ||
<ggb_applet width="1278" height="571" version="4.0" ggbBase64="UEsDBBQACAAIADGFc0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ+sM8HPn5ZLiYmBg4PX0cAkC0ieAOIWDDUgebqvnZmBgZfd0cQypuPV2znnv6EiR48yteZs1d7yKF5jpKl522bU1ccENx11yGjtOC4g3GXGIbkk4apRZ+NDJa4NkwcNDrdziQUu59FqyCiU4Ty3p4ZZcsuTKyRuBKyzSn1U/ZE2++ux49cnunzUPFtYuqfy49/fJnc/vFecfYXjgpHSHiYGF0UEAmWg8Vv1BUM626UBr0Jy/f3/8mCHdosDxSLZBoaDt4EFHJdamA65btmyJqK7ezcvLG1p65tw5JQ4GhRPiS4o0u/NcdDfJFR4Pz39gtV3AcVaH9P57G8zn3xOR+n/2ft6u+9abZN99OPc64+wWJY4mk/kKr/+vEe9UWLd/7zu+93+e19vf3rr9ugCL46xu8Z3irrE6/g3VN6vfWdxd25WaxNGkwMDBBEQNCo0LI18sXarqvfxyvM88Xn7+3Z9Xr159R4MlU66vr+/OmcL6+v3CiYWFF8vKys5NdX/+/NmznISEA3vj1i/dwuy4Tufy5cvrFq5fuzZUJDcsLGzN8uXHO5k4ilIrfn05YZqzf5f358+f3/3ddFPHXNxRanJzM3P1v5ozrr0bN250+CS+vlvM5Pbt29v27MnZvXu3TQTLx/aKPdfz7v46OM/Gk61q7sqVmtLy8vxfpJSVla/dvZs7n+/TUf7fV6ImHD7sLGfVNMUv/73/tw8P+9dZX7l+Pf1kyqWinTEK14PyhJaodLoc2rVrl878/xECizdvviwmJsY1yWVxoLWl5cODyh6Z91+l77arrq5et1o10mRLdHf2r6Py7+u23/lt//b9frtPBYJLrKZ0xH/LXXfH0Xm7UGpS0qFv37/X7t5WJCRUzsKpm/VHKlZLVHVv1hWpX1+TW1bfec3cdEXkbE1+Xl7YlQ3paWl3WhYs6nI7oOVqyf9ZhUPI6soKUc5VqdnZp11FTwZ15jgFtkgCzRFdGXLqeiXT1CUZfK69sRM9/+uJ9mYJugqohGi85ONyFXIVETXQOjTlUupn5VmMTT+u7ZWSleX9Y9WldCpQZfGi06l3NThZOYS4rkRonxXXcmXtj8v8U3n1gJTXshA5R6dGqcy9F2y6nsWKhKq0ioeq9BaJTzx/2UBwybkmFaF/+54/Pv70v7wrT+eid3Fqkzf29b2v/amz6uisOXO2pJ+c3y3/jXV2OHOTSOHvb8zxbaFTT9tUmUR9rV757PW5uWXZuX/PTd/vf2hlxMfpX04f2hmhEzbByT50OitHkd7FF+Zl399tD30fePvatW/7c77fzQidsatuvXh85K+nS2pPvL14SHDJxqIJbn9igImwRs9hgoH5kcuLIxoUSl2zDb1mPlynqhUVcpJTwePuxRWBummXTjsuVRPRUfLI4NgktjpmxVGnCRcWZt3bsOZZsKr+1T0cQlohHhLT8nPDRJU8NAIvJu0VTuaVCFjSobBw6bzVP/9EXeXgEJKYVb/C/ZCe5uOPO9bvXsLQxHLo2LG2/K8hT130trG5TmhzXOxxy9fwxbtp5hYBr1mjGxRCF7utzi97u0qCRSosTNJqIrOjlJjquSj5dbs09i/qXNQWJrhK+niOZVPMzD0uJ6tNF1UkrfA+KrYYmO5dA10uLrTsXl+630RrWWTV3nl7ywWXrAxg3aB0KHU1j+rxyt3TGJoYFDiABIzGJEgTxmmSie1/xuBL875IRQV/BZaMDJ6ufi7rnBKaAFBLBwjctSbHEwUAAEAFAABQSwMEFAAIAAgAMYVzQwAAAAAAAAAAAAAAABIAAABnZW9nZWJyYV9tYWNyby54bWzdWEtT2zAQPre/QqN7FD/iEBhMpzC8ZkrpFA69KrJw1NqSaymE8Ou7kmywCZS+aJP6YMur9e76+1a7snff3JQFuua1FkqmOCQBRlwylQmZp3hurgYT/Gbv9W7OVc6nNUVXqi6pSfHIaqIbLXakek9LrivK+AWb8ZK+U4waZ25mTLUzHC4WC9IaIKrOh3luyI3OMALnUqe4GeyAud5Di9ipR0EQDj+dvfPmB0JqQyXjGEFgJWW1QqzMbBApZlyaWgkwbZQqHpOd8KKyHgVT8kgU3I71TC1O5SXM7tM6xaaeg3GmquUBreyb6EbW+juV1dwgGqT4LUY0TPE+XKIUH+Bhq3I+N63OsZOCOw1GmLWHjDDeM52bmartKKPGSkCTF7yEkJFZViCplJAGo4JOeWH97b1+tWvjRWr6mTPTRtvMu5uh1YHpA1WoGoF1oCp356k706KaURgBhU61oEteo2ta2NlGAtbOVMZ7UipF6ZhF2nAAMQTkKs4zN/LRwqACcy57rmihm2CYUnWm0U2KY5KMMVqmOCHjEUa3PuecknvTC3HbOI27UrMsurHsDhuQnoFrf9PhGgRky8EVkzB6cbgONh2uqEErIpM/k1xMlSWVGZKuknxQxTJX0qEkvlcDAKD79V/BU6HXYV6HwiVO8dR7a3w8wo331qLv7TgAheQ+ajMT7IvkGipU1KIU+MGJyDJua7oPqMeqB6813IHyj/P6dOppntu7uyjYavL9vTD7SZSE293DF6zBiERjn1QJCZIkaqz9Ahf8q/SPaHtOsSirQjBh7lKnsDl+Kg30Ze46hvaxdiD4wnl1CabP5WVNpbZ92eu0i/THkafrgnxAoknQPaKkKX6jnjjwi3sQBmQU/j88TNeFhwHUTwd8QCZJbylsO+ATEoZb3Ylkgzjol/Qzkfke2K/p05Uqfvhcse420sPnmHzRTtrdbYWxIxJq10s0xCfQoyvoHf0Mekdrgp77GnK7ie3JC4D3kS4f4HbkdwlvV+DLvg9fDZZabLI1KiLjfvFo92aJb6PQULfHk07BDze2iqxSedhuCh9SyX+cSr4uVIbu48PugWIyif1SgK12HI83lrE7ww94yzxvfIW345+pYMf/8kOqw5v92t5KwvDBCpyQOBjH95tcx+gWiaOgu2B/q9QNu/877L37K2IH7Z+gvW9QSwcIc+ZVjnUDAAB8EgAAUEsDBBQACAAIADGFc0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAxhXNDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1ZbW/bOBL+3P0VhD7cp9rmi0TJPacLJ8HiCnTbBdI7HO5wOFAS7XAjS1qRcpxgf/wOSUmW7SabNNdib4MmFMkhhzPPzDOUuvh+tynQVjZaVeVZQKY4QLLMqlyV67OgNatJEnz/9rvFWlZrmTYCrapmI8xZEFpJlcODXMWRSJNJgiWehBFNJ0KwdDJnfLXKY8r5SgYI7bR6U1YfxEbqWmTyKruWG/G+yoRxiq+Nqd/MZre3t9Ne1bRq1rP1Op3udB4gOGapz4Lu4Q1sd7DoljlxijGZ/fPH9377iSq1EWUG+q0JrXr73avFrSrz6hbdqtxcg8E0TgJ0LdX6GoyKKQvQzErV4JFaZkZtpYa1o64z2mzqwImJ0s6/8k+oGOwJUK62KpfNWYCnhOMQ8ySJ4iiZz5MwClDVKFmaTph0Smf9doutkrd+X/vk/RwgU1VFKuyW6NdfEcUUo9e2Ib6h0HDup7Afw8w31DehbyIvE/rloRcNvUzoZUJwxFZplRbyLFiJQoMPVblqAL+hr81dId15uoG9+eQ12KTVPQgzDIHinQ7jGL+2vxx+QzsxOzSSjLSapn1UqZ8f6ew1EszZ01XSF6hkvUqKo1ONNHrASP6Ib72Kx1w7mBmNHAuq3D/3e6KR0WdofNivT1fIw29i4mLWJ8qiyw2kr61sB6SRG22zhc1RNLdBT1AEmcFjiPEIkTk0MUWQC4hEKIygSxLEbRsjFsNEiBhKkJUjDLnUiBL4E8ZuM44i2MyOxpCRiICiEEUMEZdRIYI8Qi4rIUMpA4koQhEssuoJtVswjkIOPZagEM5oEzImIMhgIfRBPUWMIGYXkxhRjrjdj4Q20Xlijw5bUsQx4sRuCDkN+exzGeQTxKw13J0OfnqmUWXdmgNfZZu8fzRVPYAC0kBLe/bzNHVAjq8WhUhlAQXjykKK0FYUNjWcolVVGtSjSf3YuhH1tcr0lTQGVmn0s9iK98LI3Q8grXvdTjarSv1TU5mLqmg3pUYoqwo8nLkqyOiZDqeGDhtNhOOJaDTBR8/xZ/VWMINaLUF/1eheXOT5Oyuxpwjw5MeyuDtvpLipK/WQGR/EVq1dlJ8fxWpdiLvz1hgb//uRSwl/gF5ssa1hfS8xmFPqKyNryzmBg8oVuYVss0LlSpT/gPSw+i0AaKh5jh/7mhexsD9j1eRXdxqSBu3+JZsK9JJwOh//xAG681PseAoyXmfC5ns4P5yZw6IHp5xquR1iQezk3q3rxpLJqPNOn1fFfsh5+kLUpm3cfQXMaqxVy3JdSBeNjkzgMpDdpNXuyoch83t9uquhh/0J0rVDGAEd0Qi4fN21qW+djD3aIIWdDHYSuI9rlQ/zZE6dhGtT3zopSBR/tM5U0ptJcK9GaUeiOOgipCdIm2b2atGWyrzvO0ZlN3tT7YIP7SaV+2C1ApfKX4T8De9QDfmKahazo1Bc3MimlEWXEwB5W7XaM8YoXXKZqQ10/UTnOGFB/TucyY/mct3ITl4U7sbo3epm8TimT4bdVj801eZduf0EEXN0gMWsP+VCZ42qbWSiFOrTjdzHXq60gPKWj9fZfARvZDbBwSHGegvYojXXVePuhEBy0NoMLeQGLoDIuCAs241sVDb4vvwvcddLOFbbnZz2uFnXoyr9Gfh3qNV+les4GZh+IFCRKOpr4S6lXTiKO9kcOMft9mOVd4o7OV3Y2yzaKF+fN2Jnr3awX6qBmg1c6AGNcn+h9ycbGAdbBoMlPHIvDsBpnNuHldrJofCAl9Q9RIU4MGafMAaqxg3ckLW7tZkuf93D31Sey3I4rSghfhwK2tMjhGwtpY/2YaFlWMcbI+Q7YE4gclQzuHoZvBQKxy4DGPiJYOAnm0c+Z16XENoiQaeUOyAgsoC770fU4Gy1ZHlQyv3oUS6NHZZVm40oc1S6W95PzmH7y4aAsn2hmqyQ/16+RhDh/+kc1Jp++tzv2O3zOxCcfxEEhHpyd+0fAYbwK8NwJdd2/AiIJRhNOocfQFA+DoHudhuI6ndAOLwC5co7y16WOun86YT1THD2LsYd47hbFDh4AhSU4NEP+XKikb+Ufon2tVFt6kJlygyOLSz270oDlVK6unBa7W6krO1l5GP5qRGltl9YvEwfwg+j6xPqCNxzD255Am72OLiA0KgGZU+H9iug90VYqLUst3BSuKkjtMPd56w73IXAfT+yA+9MfFSQbuiejBIPkrpRO7Ts5Ze91BJeMUgyZXhODu7ES9apWIYuvGxKL+FFY+KS+rOBYl+g1EplzyfR7ATXi+fw5sWfgzfpNOGcMBITGpN5whOX4mwaxiGNMeWcUxIl0beqbKegXD4HlMs/Byh8SqOEEMoIjwkmZN7xLqE8icMwTKKIAmjxN6tzl54KL07QEc+rc+KldS79BnVuQqYsjNkcIEgwT+Yx8UkxYVMGhAVjmM3nmEbE+z+a8pCHkEAhIVGIefx/VAblrm7gYNbNfYrInQHDYOIs+MsvbWX+egHvE7l/dMsPIbbyweHiFxQ8ai9vLwPSfSrT8B642n9W8h8seND7tX8HNKIxjoZQz4UO6XDK4qMvL/tEe/jdJq2qQopysDQ9fvnc08//6u3zcd98XK20NI5ROg4h/aeiB5JA1C7l3FhmcX+exfkfyeLYW8zYky1uRK5afWzybPw5wn0c7P5n7e1vUEsHCLoaZCDWBwAA9hsAAFBLAQIUABQACAAIADGFc0PctSbHEwUAAEAFAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAMYVzQ3PmVY51AwAAfBIAABIAAAAAAAAAAAAAAAAAVwUAAGdlb2dlYnJhX21hY3JvLnhtbFBLAQIUABQACAAIADGFc0NFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAwJAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAMYVzQ7oaZCDWBwAA9hsAAAwAAAAAAAAAAAAAAAAAagkAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEAAIBAAB6EQAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | <ggb_applet width="1278" height="571" version="4.0" ggbBase64="UEsDBBQACAAIADGFc0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ+sM8HPn5ZLiYmBg4PX0cAkC0ieAOIWDDUgebqvnZmBgZfd0cQypuPV2znnv6EiR48yteZs1d7yKF5jpKl522bU1ccENx11yGjtOC4g3GXGIbkk4apRZ+NDJa4NkwcNDrdziQUu59FqyCiU4Ty3p4ZZcsuTKyRuBKyzSn1U/ZE2++ux49cnunzUPFtYuqfy49/fJnc/vFecfYXjgpHSHiYGF0UEAmWg8Vv1BUM626UBr0Jy/f3/8mCHdosDxSLZBoaDt4EFHJdamA65btmyJqK7ezcvLG1p65tw5JQ4GhRPiS4o0u/NcdDfJFR4Pz39gtV3AcVaH9P57G8zn3xOR+n/2ft6u+9abZN99OPc64+wWJY4mk/kKr/+vEe9UWLd/7zu+93+e19vf3rr9ugCL46xu8Z3irrE6/g3VN6vfWdxd25WaxNGkwMDBBEQNCo0LI18sXarqvfxyvM88Xn7+3Z9Xr159R4MlU66vr+/OmcL6+v3CiYWFF8vKys5NdX/+/NmznISEA3vj1i/dwuy4Tufy5cvrFq5fuzZUJDcsLGzN8uXHO5k4ilIrfn05YZqzf5f358+f3/3ddFPHXNxRanJzM3P1v5ozrr0bN250+CS+vlvM5Pbt29v27MnZvXu3TQTLx/aKPdfz7v46OM/Gk61q7sqVmtLy8vxfpJSVla/dvZs7n+/TUf7fV6ImHD7sLGfVNMUv/73/tw8P+9dZX7l+Pf1kyqWinTEK14PyhJaodLoc2rVrl878/xECizdvviwmJsY1yWVxoLWl5cODyh6Z91+l77arrq5et1o10mRLdHf2r6Py7+u23/lt//b9frtPBYJLrKZ0xH/LXXfH0Xm7UGpS0qFv37/X7t5WJCRUzsKpm/VHKlZLVHVv1hWpX1+TW1bfec3cdEXkbE1+Xl7YlQ3paWl3WhYs6nI7oOVqyf9ZhUPI6soKUc5VqdnZp11FTwZ15jgFtkgCzRFdGXLqeiXT1CUZfK69sRM9/+uJ9mYJugqohGi85ONyFXIVETXQOjTlUupn5VmMTT+u7ZWSleX9Y9WldCpQZfGi06l3NThZOYS4rkRonxXXcmXtj8v8U3n1gJTXshA5R6dGqcy9F2y6nsWKhKq0ioeq9BaJTzx/2UBwybkmFaF/+54/Pv70v7wrT+eid3Fqkzf29b2v/amz6uisOXO2pJ+c3y3/jXV2OHOTSOHvb8zxbaFTT9tUmUR9rV757PW5uWXZuX/PTd/vf2hlxMfpX04f2hmhEzbByT50OitHkd7FF+Zl399tD30fePvatW/7c77fzQidsatuvXh85K+nS2pPvL14SHDJxqIJbn9igImwRs9hgoH5kcuLIxoUSl2zDb1mPlynqhUVcpJTwePuxRWBummXTjsuVRPRUfLI4NgktjpmxVGnCRcWZt3bsOZZsKr+1T0cQlohHhLT8nPDRJU8NAIvJu0VTuaVCFjSobBw6bzVP/9EXeXgEJKYVb/C/ZCe5uOPO9bvXsLQxHLo2LG2/K8hT130trG5TmhzXOxxy9fwxbtp5hYBr1mjGxRCF7utzi97u0qCRSosTNJqIrOjlJjquSj5dbs09i/qXNQWJrhK+niOZVPMzD0uJ6tNF1UkrfA+KrYYmO5dA10uLrTsXl+630RrWWTV3nl7ywWXrAxg3aB0KHU1j+rxyt3TGJoYFDiABIzGJEgTxmmSie1/xuBL875IRQV/BZaMDJ6ufi7rnBKaAFBLBwjctSbHEwUAAEAFAABQSwMEFAAIAAgAMYVzQwAAAAAAAAAAAAAAABIAAABnZW9nZWJyYV9tYWNyby54bWzdWEtT2zAQPre/QqN7FD/iEBhMpzC8ZkrpFA69KrJw1NqSaymE8Ou7kmywCZS+aJP6YMur9e76+1a7snff3JQFuua1FkqmOCQBRlwylQmZp3hurgYT/Gbv9W7OVc6nNUVXqi6pSfHIaqIbLXakek9LrivK+AWb8ZK+U4waZ25mTLUzHC4WC9IaIKrOh3luyI3OMALnUqe4GeyAud5Di9ipR0EQDj+dvfPmB0JqQyXjGEFgJWW1QqzMbBApZlyaWgkwbZQqHpOd8KKyHgVT8kgU3I71TC1O5SXM7tM6xaaeg3GmquUBreyb6EbW+juV1dwgGqT4LUY0TPE+XKIUH+Bhq3I+N63OsZOCOw1GmLWHjDDeM52bmartKKPGSkCTF7yEkJFZViCplJAGo4JOeWH97b1+tWvjRWr6mTPTRtvMu5uh1YHpA1WoGoF1oCp356k706KaURgBhU61oEteo2ta2NlGAtbOVMZ7UipF6ZhF2nAAMQTkKs4zN/LRwqACcy57rmihm2CYUnWm0U2KY5KMMVqmOCHjEUa3PuecknvTC3HbOI27UrMsurHsDhuQnoFrf9PhGgRky8EVkzB6cbgONh2uqEErIpM/k1xMlSWVGZKuknxQxTJX0qEkvlcDAKD79V/BU6HXYV6HwiVO8dR7a3w8wo331qLv7TgAheQ+ajMT7IvkGipU1KIU+MGJyDJua7oPqMeqB6813IHyj/P6dOppntu7uyjYavL9vTD7SZSE293DF6zBiERjn1QJCZIkaqz9Ahf8q/SPaHtOsSirQjBh7lKnsDl+Kg30Ze46hvaxdiD4wnl1CabP5WVNpbZ92eu0i/THkafrgnxAoknQPaKkKX6jnjjwi3sQBmQU/j88TNeFhwHUTwd8QCZJbylsO+ATEoZb3Ylkgzjol/Qzkfke2K/p05Uqfvhcse420sPnmHzRTtrdbYWxIxJq10s0xCfQoyvoHf0Mekdrgp77GnK7ie3JC4D3kS4f4HbkdwlvV+DLvg9fDZZabLI1KiLjfvFo92aJb6PQULfHk07BDze2iqxSedhuCh9SyX+cSr4uVIbu48PugWIyif1SgK12HI83lrE7ww94yzxvfIW345+pYMf/8kOqw5v92t5KwvDBCpyQOBjH95tcx+gWiaOgu2B/q9QNu/877L37K2IH7Z+gvW9QSwcIc+ZVjnUDAAB8EgAAUEsDBBQACAAIADGFc0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAxhXNDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1ZbW/bOBL+3P0VhD7cp9rmi0TJPacLJ8HiCnTbBdI7HO5wOFAS7XAjS1qRcpxgf/wOSUmW7SabNNdib4MmFMkhhzPPzDOUuvh+tynQVjZaVeVZQKY4QLLMqlyV67OgNatJEnz/9rvFWlZrmTYCrapmI8xZEFpJlcODXMWRSJNJgiWehBFNJ0KwdDJnfLXKY8r5SgYI7bR6U1YfxEbqWmTyKruWG/G+yoRxiq+Nqd/MZre3t9Ne1bRq1rP1Op3udB4gOGapz4Lu4Q1sd7DoljlxijGZ/fPH9377iSq1EWUG+q0JrXr73avFrSrz6hbdqtxcg8E0TgJ0LdX6GoyKKQvQzErV4JFaZkZtpYa1o64z2mzqwImJ0s6/8k+oGOwJUK62KpfNWYCnhOMQ8ySJ4iiZz5MwClDVKFmaTph0Smf9doutkrd+X/vk/RwgU1VFKuyW6NdfEcUUo9e2Ib6h0HDup7Afw8w31DehbyIvE/rloRcNvUzoZUJwxFZplRbyLFiJQoMPVblqAL+hr81dId15uoG9+eQ12KTVPQgzDIHinQ7jGL+2vxx+QzsxOzSSjLSapn1UqZ8f6ew1EszZ01XSF6hkvUqKo1ONNHrASP6Ib72Kx1w7mBmNHAuq3D/3e6KR0WdofNivT1fIw29i4mLWJ8qiyw2kr61sB6SRG22zhc1RNLdBT1AEmcFjiPEIkTk0MUWQC4hEKIygSxLEbRsjFsNEiBhKkJUjDLnUiBL4E8ZuM44i2MyOxpCRiICiEEUMEZdRIYI8Qi4rIUMpA4koQhEssuoJtVswjkIOPZagEM5oEzImIMhgIfRBPUWMIGYXkxhRjrjdj4Q20Xlijw5bUsQx4sRuCDkN+exzGeQTxKw13J0OfnqmUWXdmgNfZZu8fzRVPYAC0kBLe/bzNHVAjq8WhUhlAQXjykKK0FYUNjWcolVVGtSjSf3YuhH1tcr0lTQGVmn0s9iK98LI3Q8grXvdTjarSv1TU5mLqmg3pUYoqwo8nLkqyOiZDqeGDhtNhOOJaDTBR8/xZ/VWMINaLUF/1eheXOT5Oyuxpwjw5MeyuDtvpLipK/WQGR/EVq1dlJ8fxWpdiLvz1hgb//uRSwl/gF5ssa1hfS8xmFPqKyNryzmBg8oVuYVss0LlSpT/gPSw+i0AaKh5jh/7mhexsD9j1eRXdxqSBu3+JZsK9JJwOh//xAG681PseAoyXmfC5ns4P5yZw6IHp5xquR1iQezk3q3rxpLJqPNOn1fFfsh5+kLUpm3cfQXMaqxVy3JdSBeNjkzgMpDdpNXuyoch83t9uquhh/0J0rVDGAEd0Qi4fN21qW+djD3aIIWdDHYSuI9rlQ/zZE6dhGtT3zopSBR/tM5U0ptJcK9GaUeiOOgipCdIm2b2atGWyrzvO0ZlN3tT7YIP7SaV+2C1ApfKX4T8De9QDfmKahazo1Bc3MimlEWXEwB5W7XaM8YoXXKZqQ10/UTnOGFB/TucyY/mct3ITl4U7sbo3epm8TimT4bdVj801eZduf0EEXN0gMWsP+VCZ42qbWSiFOrTjdzHXq60gPKWj9fZfARvZDbBwSHGegvYojXXVePuhEBy0NoMLeQGLoDIuCAs241sVDb4vvwvcddLOFbbnZz2uFnXoyr9Gfh3qNV+les4GZh+IFCRKOpr4S6lXTiKO9kcOMft9mOVd4o7OV3Y2yzaKF+fN2Jnr3awX6qBmg1c6AGNcn+h9ycbGAdbBoMlPHIvDsBpnNuHldrJofCAl9Q9RIU4MGafMAaqxg3ckLW7tZkuf93D31Sey3I4rSghfhwK2tMjhGwtpY/2YaFlWMcbI+Q7YE4gclQzuHoZvBQKxy4DGPiJYOAnm0c+Z16XENoiQaeUOyAgsoC770fU4Gy1ZHlQyv3oUS6NHZZVm40oc1S6W95PzmH7y4aAsn2hmqyQ/16+RhDh/+kc1Jp++tzv2O3zOxCcfxEEhHpyd+0fAYbwK8NwJdd2/AiIJRhNOocfQFA+DoHudhuI6ndAOLwC5co7y16WOun86YT1THD2LsYd47hbFDh4AhSU4NEP+XKikb+Ufon2tVFt6kJlygyOLSz270oDlVK6unBa7W6krO1l5GP5qRGltl9YvEwfwg+j6xPqCNxzD255Am72OLiA0KgGZU+H9iug90VYqLUst3BSuKkjtMPd56w73IXAfT+yA+9MfFSQbuiejBIPkrpRO7Ts5Ze91BJeMUgyZXhODu7ES9apWIYuvGxKL+FFY+KS+rOBYl+g1EplzyfR7ATXi+fw5sWfgzfpNOGcMBITGpN5whOX4mwaxiGNMeWcUxIl0beqbKegXD4HlMs/Byh8SqOEEMoIjwkmZN7xLqE8icMwTKKIAmjxN6tzl54KL07QEc+rc+KldS79BnVuQqYsjNkcIEgwT+Yx8UkxYVMGhAVjmM3nmEbE+z+a8pCHkEAhIVGIefx/VAblrm7gYNbNfYrInQHDYOIs+MsvbWX+egHvE7l/dMsPIbbyweHiFxQ8ai9vLwPSfSrT8B642n9W8h8seND7tX8HNKIxjoZQz4UO6XDK4qMvL/tEe/jdJq2qQopysDQ9fvnc08//6u3zcd98XK20NI5ROg4h/aeiB5JA1C7l3FhmcX+exfkfyeLYW8zYky1uRK5afWzybPw5wn0c7P5n7e1vUEsHCLoaZCDWBwAA9hsAAFBLAQIUABQACAAIADGFc0PctSbHEwUAAEAFAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAMYVzQ3PmVY51AwAAfBIAABIAAAAAAAAAAAAAAAAAVwUAAGdlb2dlYnJhX21hY3JvLnhtbFBLAQIUABQACAAIADGFc0NFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAwJAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAMYVzQ7oaZCDWBwAA9hsAAAwAAAAAAAAAAAAAAAAAagkAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEAAIBAAB6EQAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | ||
*Process: | *Process: | ||
− | # | + | # Show the geogebra file and ask the following questions. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
*Developmental Questions: | *Developmental Questions: | ||
# The teacher can point to centre of circle and ask the students as to what it is. | # The teacher can point to centre of circle and ask the students as to what it is. | ||
Line 94: | Line 84: | ||
# How do you measure a chord and in what units ? | # How do you measure a chord and in what units ? | ||
*Evaluation: | *Evaluation: | ||
− | Were the students able to distinguish between radius, diameter and chord ? | + | # Were the students able to distinguish between radius, diameter and chord ? |
*Question Corner: | *Question Corner: | ||
− | After drawing a chord,what are the two segregated parts of the circle called ? | + | 3 After drawing a chord,what are the two segregated parts of the circle called ? |
− | ==Concept # | + | ==Concept # 2. Angles in circles== |
===Learning objectives=== | ===Learning objectives=== | ||
# students should understand that the angle at the centre of the circle is 360 degrees. | # students should understand that the angle at the centre of the circle is 360 degrees. | ||
Line 105: | Line 95: | ||
{| style="height:10px; float:right; align:center;" | {| style="height:10px; float:right; align:center;" | ||
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | |<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | ||
− | ''[http:// | + | ''[http://karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div> |
|} | |} | ||
− | *Estimated Time :40 minutes | + | *Estimated Time : 40 minutes |
− | *Materials/ Resources needed :Laptop, geogebra file, projector and a pointer. | + | *Materials/ Resources needed : Laptop, geogebra file, projector and a pointer. |
*Prerequisites/Instructions, if any | *Prerequisites/Instructions, if any | ||
− | # | + | # Circles and its parts should have been done. |
− | |||
− | |||
− | |||
− | |||
*Multimedia resources: Laptop and a projector. | *Multimedia resources: Laptop and a projector. | ||
*Website interactives/ links/ / Geogebra Applets | *Website interactives/ links/ / Geogebra Applets | ||
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAKtagkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwFcD6PwiVBORw0KGgoAAAANSUhEUgAAAMgAAABcCAYAAAArr/rLAAAPI0lEQVR42u2deVQURx7HNWuexriJxgNQFPHgclHkEFFUEAUFYQRBREUUETVyqBi8HRQfnkFjNCoSFXHxeCZrUMQLCWvQkMMXj7zse/kn8e26Ocy6u3nJuslmf+uvTM/29FTP9Mx0DwP8eO/7uqeP6upf1Yeq+lV1Vbt27doBybnl4+oDs0JnkS2aR2QEePdDpwxL0NrYtZqEqzRM6XX2xEWL92gTgCzWJTPj4ba5AbEnLlpkgGJdMTdce5+lJiDPdezIZOl+AsRGvbe3nBnv+uuHjIwpaE5MHDysvmow8MkNJfBz3fvcxEN9c/YyzJ442ejYv6/cgFdfXsqOZcVNhe9rGwznlMbFUhjCdsb4aPjr2xfh0flrUJg2x2ycpcelGUo3TGd4Bj4vMzbByDZyz1MaZ9695uwjjcvHZZWGYx+VHeNeK343aZzMxf3LU+dYup/Sb2m7gHi4uMF/6z9gBsFtPxdXg5Eihwezfczwwd6+hnv+XlMP2xbmwkg/f26Y3n094P7p84ZwogJDwNOtN/zrciM79u07VyDQyweCvHyNMoC5uPDCwPvFYQjbr/9wyZDIj680mo2z9LgUkA7PdGBbIb5oC+l1vOcpfW/evXL2EcIVxyU7PtFw/4IpUy2WINI4ycVdeDam+09Xb7ZdQFbPmssMcW5LKduumjnXxLBSQHB/T94K+EfNu0Zhndm0jRleyOByRTxmgIBBXiyhxeeVxMVcGML2qyeJPm5YoFHc5OIsPY6ZBDNQdNBIo3CFZwmA/HKtCTp36iT7PKVx5t0rZx9eXIRr/nmhAbo819kkfcXx5MXJXNx5pWqbA+TukZPMAAeWr2bbO4dPmBglY9IUoyoWbrFaUrV+s1FY1SWl8J8nCcKr9oj35aoQSuJiLgxhmxIxgZVg0nO8OEuP78pZzqogvKqJUK3BY/W7D1h8npI48+61poq1O6fAYDNe+orjyYuTubgTIC3c+4Wl1HfVdVC2Yq3q4W9J3NIi7LA0OY398/L18CQ3L8kx6tKxC6yMWUm2IEBIPGHHYEDfALJFSwJkbHk59Ax+6lXKBiDjaSjs+yA7tDBAegQFGfbFgMx5+PDpfvv2ZFAV1KNLDyiYWEC2aGmAdHZ1JYM5QEsiloB7N3eyRUsDpMPzz8MzHTpY99+wezeoPrGv1enU9rVwesc6TcL+vP5aq7RZc2mLfpn6gPTX6SBIrzdS74gI8ExMNDmO18qF08/dDeDRp0YqQhep5Jg1Unq/tc+Ru158XNivXTgbahel2/UeWryzWmFbeh7PJlrEW433/uOFY87rxUJA8CUFNRcgSu5RCsgv396BrV1fYPr5q1uaZlg1bGbLvfYC4ui0btGA8Ay6q29vtl82fAjs9nA3Ovdm6HCT617z7GtkdOl9h4KHckHE+4R96X1y4YuvER8X7tnRszvbHhzmZ5KYvLjzzqEqxoZCUfv2sufF++ZsJoQj927iMHi2w2OC/Xi2QPHiJbYtL0xL8bY1rdsEIMLv8pAAo3Nv+A42yjS8RMOt9D7c3+nSE0r7uHIT8Q0/L5P75MIXX8MDZHOnjmz7UaneKCHk4s479/h+kxEg4vNCXMX75mwmhCP3buIw8Lk82wn2MweInG156aEk3ramdasERI1qx+GwIIfV+S3pZFwUfP+nd50mPq1Jaqd1mwCERCJAVNbXN87CNzffcdrwSASIRUAc7Yq1py5rjWvXGbw3cmFp5TI+rYs2tCns9R6qGcdWA4ijXLFKwpDKXteuta5pLfs9tOqT2dThN/D4y/dVeY82CYizuGKlz5dzr4qPb+veTTY8If48l6jU1cq7TuoOVuIe5dkJ4d3nPVD2vaRx4dmVlybScHjvwrOrUve0+FrxMXvduy0OEGdwxeIxIzeqnHuV44KUC88cIFJXq7m+BaXuUZ671uR5MvHn/TYHCM89be5drHkPKSBi17ca7l1qpDvYFcsLz5mrQra6VVvDOxEgJFJrAOT5zs9B5uwkkozOvVpJdtBYcdHj6JPblij85iM/Kp9sQd+kt+6v/2KGxEBGWAbop+jhUPohOJ9znunsy2dh/6z9bG5dPB/lE8UmYxB/GOX6An2ERoC0Mg3qNYj950cI3lr4FhROKoSs0VmQFJgEkd6R4OXixeTr5st+pwSlwMKxC2HN5DUGcBZFZkN2ZKYhzGet/BCNRIA45Uwjl/IvQWVmJcwbNQ/8+/gbYLBGOFtJXGQCTEkOh5qcGlYCkX0JkBarCK8IaFjRABumbLAZCrHG5uXA5s8WQfqtBAjuHww7k3fCxfyLNM0PAdLyFq7BKtGeGXsgqH+Q3WB49/GF2P17YOYdHRx5tRZmfKgznBs1cBQrmY7PP04TNhAgzq84/ziozauFMYPH2A2GoPiqCki7HQ+5xftgrf73kPZxosk10UOioX55PYwcMJLSgQBxTq2LXQfHM4+zRrZacPgOGAST97vApN3boerYZ5B2vQlm3k6RbaPU5NYwzxelBwHiNOr0bCc4mnEU9PF61cAQ4Ji05yW2RegOzj74tC2S6wpDgz359zy5bm/aXtiauJWtD0LpQ4A0u7D+PydsjmZw4O/M8ExIG5H2tN2R0RuCovuZvb8wppBBQulDgDSriuKLYPXk1ZrCgcLSY97fHrH9kIR+EJrsbjEcLEnmhs2ldCJAmkfTAqdBxbwKzeHAtsWOaTsMv7F6hdUsi2E9qW5dyL2gasM9MjIS5qTPgpgY0z4YoInJCRBBrEGcU6N6g1wKB6ogugB0ATqj66KKeiruXETvllou4NjYWMjNyQG9Xg979+41gOHp6cm2L774Ijt29uxZuH//Ptu/d+8eO45/eEx8HQHSSnU5/zKM8ByhORyofTP3mbp1d3RXHDb2uFfNr1LlvaOjJ0LRhvWQmppKpQQBwhcur7xt2jaHwBHqGQpbk7baBQgKAaEedwJEc6Hr9MbKG6oMHbEEB2pj/EYYO3isKSClL1n1HOxxv7z0MmVcAkRbLRq7iC1S4wg4BO8V77i1JQiqNKWUBjgSINrq+ivXVWmYK4Fjot9ENtRdLUBwgGNtbi1lXgJEG4UPCofXUl9zCBwobHtgG0QtQFBnFp2hQY0EiDbaPHUzpASnOAQOc9Ur1ITiHuDTb7DVz88fnw9Z4VmUgQkQ9YX9CY6CA/s9lkYtlf82xMx4LEv9IueWnKMMTICo/7nsscxjDoFD6Psw5ykLndEHQhL62hQX7F0Xf+NurfLy8iAlJZl7zlxvuvSc3LW3b98mQFqa5o+eD1ljshwCh1znoFg4WDFsVh+b4oOTROBEELbaYs2aNZCQkMD2zfWmiyGQ9qBj77rwJ94X7hF63oWt0BtPgDipNiVsgqThSQ6BA7/nQJm7Rul4LJ5yx+fC3FG2D2Is3bkdKiuOUDWKAPm/Dmcc5nbYqQ2HUHpYciV79xkME7f0sAkQHDaP38lTJiZA1Bt7tfSyQ+DAdoel6pW9rl6cUgjn4aJMTICoJvzOXGs4UIvHLVZclbMVECydzuWQJ4sAUVGX8i5pCseQAT5QcikTklLDoddveykDxMrxWGJdzLtImZgAUU+YobSAIzTRA97481yo+mE5NH5eDbMz42HV/gxNSxAUloiUiQkQh3USWgOHf8AA1hM+eV83qH94BD799C6cf/s8PLj6AIoWF8GRH7JZI1zLNsjRuUcpExMg6qlyXiUbMm4rHDgsJPxlVwZF5LqeMMR3IDt+95O7oC/UQ0VZBfzU+BNceOcCfPKwDsrvFGoGyPTg6VCsK6ZMTICop+KEYqPPXpXCgb3deB7bC4FRHibnU+NS4buH38Gt+ltQW1ILBYsLoKGuAY48WmyxNELQ/LxscwRkjs6kTEyAqCeWqcIzFcEhrkLhFD1y1aVHv85Ssn3Tdvix6Uf44t4X8OAvD+Bk5UkICRnCwjA7V2+uKwwbaf14LOwDoe9CCBDVJ2kom10mC4dcFUqpytPLuSN2ETa5e0YkujNZC0j1kmq2PgllYgJEVTUUNJjAYakKpUSThkxiM5dISxeEDsOWu2/4OA8YPb+31R2RuBQDZWACRHW9nvY6TAmNgbjDXSF6W3eLVSil2jV9FyuheOewVAqO7SfrDRu3zMWqZ2WPyYYV0SsoAxMg6svf3Q908wIhalMPq6tQcmJ/TU83bIyVq7fJNbEHu6nmyTq54CQbuk8ZmABRXX169ILc2AWqzqSIAwfRAWDuGqzGhWe72Q0IVq/qltdR5iVA1NXewkLDPs7gbilDWyNcZEfJJBDYFuF9YmvNcBP8ZBgn2abMS4BoJlzqoGl1kzozm4iWNLAkdOeid8zWEgRnNGlc2UgZlwDRXtjJtn7KersBwQazsKSBEqHb93f+A2wC5MCsAxDlHUUZlwBxzOyKjYWNsp4npVJaegjCXnNplUoJIPihF45GpkxLgDhM473Hw5mFZ2yGQ7qkgVKhWxf7P5QCgtW4umV14OfmR5mWAHGscFoenM7TFkCkSxooX/F2sJHbN+IVF5Nql1insk+x51B6ESDNIhw2botXy9rqldE3JMnuhhlN0P0bMLq/rNdqY8JGSicCpHnbIzh0w5rSQG5JA2uEpQiWJnLjsXBgpVprgpAIELvUtXNXtqCO0pJEbkkDq9owT0oNrF6h+xeHo0hH657OPs1c0pQ+BIjTlCS4XmHp9FJNq1fSTsKhIzwhclUvQ4O8KqsKSqaWUJoQIM6pZVHLmHdLzgVsbkkDa4XjwXBuLPRkYbUNpyaaETKD0oEAcW5N8JnAVqHCqo60x93ckga2aOIGN9BlDYdrhVchyCOI7E+AtJwq14IxC+CD1R8YtU3Uql4heCtjVkLT2pswYtxA6P7rvLWPb9wg+xMgLWvsFs7r+94r70F6WDqUJJbYBQZOuIAzL95cdRPyxucxEMnOBEirKFFC/EdB6uiZbBk3/MQWXbHoHpabLQU9XTjLIo7ZwsY33rcjeQdEeEWQTQmQVjgzimiqHWwv5Eflw9bErXAi6wQ0rGiAK0uvwNVlV9n22vJrUJlZyc4viVjCPqQiGxIgrVa4HoewJsfQsDCyCQFCkpYe1F4gQEgyDXWayZAAIclIN0wHwR7BZAsChMQTfvdBdiBASDIDGbFDj2xBgJA4wtVxaR4qAoSkoO+DRICQRHLv5s46A8kWBAiJI4TD9QVXskUb1P8An+rTHWD9D7EAAAAASUVORK5CYIJQSwcI/1i+CmEPAABcDwAAUEsDBBQACAAIAKtagkMAAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s1VdNU9swED2XX6HR3Xb8lQ8mhiFhAsxAmSkcelVsJVGxJddSCOHXdyXZkDQQmpYwJQdbXq/ert6T1pv+8UORo3taSSZ4gn23hRHlqcgYnyZ4riZOFx8fHfSnVEzpuCJoIqqCqARH2hM9SHbIxVdSUFmSlN6kM1qQS5ESZeBmSpWHnrdYLNwGwBXV1JtOlfsgM4wgOJcJrgeHALc2aREa96DV8r3vV5cW3mFcKsJTihEkVpC0EigtMp1EglPKVSUYQCsh8pds5zQvdUSWCj5iOdVjOROLC34LbwekSrCq5gCeinI5JKVeiaxtTbwLXs4VIq0En2BE/AQP4BYkeIi9xuV6rhqfM2OFcBJAUo2HFFM2Mpmrmaj0KCNKW8CT5rSAlJFalmApBeMKo5yMaa7jHR186et8kRj/oKlqsq3fmwdP+8DrochFhQAdpJqa6zjBQRxD2LycEbCAiMY5J0taoXuSa6/aAnhXIqNrVsJZYbRFUlGg0QfuSkozM7L5wqAEOLN/JiSXdTqpEFUm0YPeOZ0IoyVk4oLvo910xscs9YY91jHDVata5qup9L2apTf4GnwoX9eTiaRKL9IJArNGv71vOh1zZiGUE7vB3vkcfv795/tutyGs3X0XxlJRFIRniJt6c8UyS5qey55KxcCWimFNz3N9OLVwNcgbApxuCmBXuV2BdmQk0Lexve28pWN7aHvb9HlmOXajhuQo7K3+4o+j/OQ1yke7UD76YMq3sNp1g46l1Xc73TVa97GTv5Hly4yebjCabWe0AqSGruwtPleO7WtVpPUebHbceH1rGmpbbrvdWv3Zr5QTdlw/iJt6zji1PKoZS+84ldAjBE0NatnBOcsyqrsqO4f+5HaK1NcEs6LMWcrUE5e5rloXXEE3Rk2fIG3iK3zcUVreAvQ1v60Il7obsz7NHtxFzLoijTbEpH8uJv1fxHRCN/KNgD1zSECyCFqNXvRpBXsC/k22zMpGN2Q726Wqnf3Vl3wfRS3shG7H74axbZmcAL7QftSN2s3hDI2aHegXo3b0T+XNW+3C9bPp1fWg+X9y9AtQSwcIprFHkh0DAAASDQAAUEsDBBQACAAIAKtagkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACrWoJDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVba27jRhL+nZyioQXyYxHT/SY7sRPYwQY7wCSeycwuFvtnQZEtiWuKVEjKlge5wJ5ir5DnBXKAHGJPslXdpB6WTEu2kzjBWHx0s7urvvrq0WROPl1Mc3Jlqzori9MBC+iA2CIp06wYnw7mzegoGnz6yfsnY1uO7bCKyaispnFzOpDYM0tPB2bEI8ljehQy+JGCiaNYieFRymNlEibDZCgGhCzq7KOi/DKe2noWJ/ZNMrHT+GWZxI2beNI0s4+Oj6+vr4NuqqCsxsfj8TBY1OmAwDKL+nTQnnwEw208dC1cd04pO/7HFy/98EdZUTdxkdgBQRHm2Sfvv3dynRVpeU2us7SZgMA8AjkmNhtPQKhQ8QE5xl4z0MjMJk12ZWt4du3SCd1MZwPXLS6w/T1/RvKlPAOSZldZaqvTAQ04FYyrASmrzBZN24O1Mx13Y5xcZfbaD4Znbh45IE1Z5sMYxyHffEM45ZR8iAfmDxwOWvsm6u9R4Q/cH6Q/KN9H+sel7yp9H+n7SADqKquzYW5PB6M4r0FxWTGqALTldd3c5Natp72xkpl9CDLV2TvoLCho1Wsa7lP6If5p+JPYcLwpJFubtanmB07aTcl4GO0/J3+UpKKblOsdcnJ1h5y6Z1Iv+F6CqrU5YSr3z/1tzSj6xLw9o79+3IRa/iYinhx3XDlp6UHqCfZtzaex0xoJIwxRBu2eEQXk0CGYuSLMwCHkBOhAmCJSwSWLiMZjSEQIDZIIEhHsxwRx7FAR/MjQDaaJgsHwbgikJAwmkkQJwhypJAEqEUdMICkX0EMpouAhnJ5xHEJoIjVciYhIWCNyMmTQUcCDcA3TcyIYEfgwCwnXRON4TCLXdYRLhyE50ZRohgMCrYHSns7QPyICpdFudfBf52yyYjZvNnSVTNPutClnS1CgN3imldfznmrDKb53ksdDm0OgeIOQEnIV50gNN9GoLBqyZKa/N67i2SRL6je2aeCpmvw7vopfxo1dfA69625u1zcpi/pVVTaflfl8WtSEJGVOl2suc7Z2zperhgux1iDXG9Rag147D3fOW0ILmdcW5i+ruusep+kL7LHyEaDJiyK/Oa9sfDkrs00xTo5dzDmx8yTP0iwu/g5Wi7OgXsgqBKHj6kKQiqJuJWWVvrmpwZbJ4p+2KpFdPOBMMh2GLKSGwmM3voVHUWDgDgsjQbEH8LBOYmQhDwMmqZBSKBMyw0PwQje72wRTfm57tcQoXtiVuOMKSb528aI+L/PVLaeBz+JZM69c/gB+skKxzopxbp2VOJJDcE4uh+XijTcP4cd6ezODK+pXMBw7zROMe9DsfofLVlxUXzsOt2wHmV0Pdxz6o+sFpusX1QrJOgHZcpqsdm6NDlrOdC4LDR+D/LzImpfdRZMllysh8YEv59OhXZrP5pjsqcY8Ob5lXyeXtips3pozwDgv57Vn55qlpzbJpnDpG1qVxAjU32AB/m5qx5XtFp67rMwrzLXSdUPduu2G+rwqpy+Kq7dgBbcWcHLcrfKkTqpshtZGhhALLu3KntKsjiGUpOvPIf9A9ARDBqinQdUAM+fNpKxc3gUOBY5Iu9xOId8ijTMst56lmn/5zuVvsKZ5t+wgCrnWUnNlgAxatjysc0zjyDSDAKX+/PO3AzKNFy7Yu4t4WIOLaiChBU0Vq4TWO4yW4iHHbBmeku7kBrJmdzLKFnbpfmH92TvACxezsheEnJTDf4PbXYZoL8KqDzSvrJ16a+dKOWt3xzifTWIUkbWWH9+ASOtouTG/KNNWGew2Qxpw3JeQp4LdwXhNS1V38tcsTW2xfCauEuR1Gw2WxgC25hADfzbrFAnBxHomLAecwdKc61gzlBbHLUSdt1mq4y+DLXVtMmu3vpx+UF9Uen3hcakvuqe+7hCTbcvIdsnYkqhGE1EB1YzR0EjJBdQN2tnLkQL/DlbJoJDgEd4fkHe+XvP1CupiTe/rd29Rc1+Fnm0rdA/7e4w+L0aj2jaohCMeObG5OETdaN+HK/zIBJQppaTTrxCR9BqXgVaRDrWODIRXqqJejcsn0Pir31HjygmtfgN1s4CH0iiqdAQmHprQTy0CKBolYwqymIhpA7nIU+g7KafTuEhJ4UqQr0oov+1glQrHFA2dxMyFBBJzRMGreN50Hc79oO1Q94B4/juCKJwmWdiH4hoSAKAS0hguuTGQeAremn4YhFJxEVFJuRJG9jubh0HhcsLdSLzyQJxvAfHL9/1I3Irx398b48P9gyzkHWnmrR+T/razl+LAKCz39YLGM2N3zNnKYh8bo/O8vP7KjnK7cFL51rUs8w4g39gx3r8LytsYxv0Q1u1oHQDxPXRa8zF9ANCHB/U1woSBAfcUReC1pDbgxRw+yBaqqVBUQFkGMcOx5UioQEM3DmYmIKQrrXsA0/2A2a8L/0jta4FsOsuzJGuW2s3R474oGqgMrEuNtxP+S2tnWGNdFG+ruKhxI/dxEL/yEG/TdHgYxMNnBDEDJyeVlkYLClWxFt4jsoBB4a2Y4EoC8gx3StEj0kBEUEFrwTkcediXNz9viF/Cks8zHLmsbuEcbwGc9AOM4i/RS+7Ly++Ad7Osfxr2bvH0Zjepkb5SBVxwMAAqIwl5d9gDLX84tA9CZLiFSHoAIumzQWQXrW52k/AdFgMAYEi5AQQ1NaLbKfvtIFmy7xYeifeE6RYsF4dkjhe/e/pv9sRNgOPTzDAuVYQAMc8kLmSgJGSMymAyKUJfMhkZwM2QS8gvIe0X7FEl6yYin2VVspVGXtwVmGw/HJDiZclS3fZhYanDA1LrXRsw6jCy7LRtc49tZ2NbXDm/UROyoO1r3RvqDYK86+4smCsCsI21t96xtTwfqr0qW5Czrv9Z1+uMI9o0UBzwx01nwyjFuvlMtHOcSazoeGSUxqIupCIKQR9nChQSyAi4K7AtitgdhMQXDdkoSx6Re15s4T86LDEZPaPE5IgHDLyfgSgF9DJGhj58qSDEYkZo+KFGgTqRcmFAdaQMww2jEJgqe6zpeecluxE+vwvh8WEIj58TwpBwaCaUZBKCn4rw5S16VREwoXFPUEchDU1k2vqCq4BCEQv9gVsa4ucft77o2Qu4uHMv4IeD9gJ+uL0XwHCPQ3DDFQM2wYl6kr2Af7GeEL17T74/JKxvivp3B7J3PyC1SVn5bbpuR+7BkeSR+wR2MatgGlxKp0K7aMBDQcPp4IOv52Xz8VmV1AQtwY1Vk3o+bGyR2pQMb2Clduq7uaE3AcaxBpsDPy5gt+8HORUPp7N7713bKhut3hH7L2L4oCNXq9y6iavmFaY7xCfDKoi0AMduNOS+CsKjQzsKjDZgpvgJjwlDurENfb+2+Ya2304sccTY1HNcEICaxA1qnCQwXmVJVpO0nA+dwbRPffAnRj/efDRr8LG4uPEvfwmaHXSv7DTOCnynNwMpSTnyI7tsbX9E+QPdM7496CtV1t4uL7kpjEefrdDHtqdBHz/9uQf9MNCQE0kuIaumEZehQ18HmDhpJSOFW+VMHoa+2OSaQz4DsGGR08yjgTjH/jV9C/Le8Ij94dntMX/5jvzvP/8lhv787R8BxT04HAbGMMAK4jfllHsKI7W5oZAlG2kwsCtxF4zbWwC7N922M5/JATsAk1+jtHlw4gMpLNi9QRuPtIkoa7XGA8okFPpQYkJiRMNOazKgUFtCMWkgVYIisy+5lU+zDbCpy2FZ5jYuVm9K28B/K8N4+Ev8/oRh35o+or4uB0X1AhHPHDHdPe8iwKP7IPAAPTw/LXhPKli/OW5roQ1l6Cbn05GtLH5J/KD9IetJO/G5LN/i7utDtoleP2ybCLeFHq3MI79Bx/V+zIaSRkD5H4IjlEYDX/1b/aMIKp2IQSUbMaVC80QfMxxaU7zeril+PKim+HHvb4ie1PL7P+JZrxf8FgHbjVbf+8N73OaTvj/cBdTr+4q/nw4C6qd7gTqg+Ht6oLyD4vxgmMSvCtPx+qd27mvW9v/M+OT/UEsHCJzJjSWxCwAANjIAAFBLAQIUABQACAAIAKtagkP/WL4KYQ8AAFwPAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAq1qCQ6axR5IdAwAAEg0AABIAAAAAAAAAAAAAAAAApQ8AAGdlb2dlYnJhX21hY3JvLnhtbFBLAQIUABQACAAIAKtagkNFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAITAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAq1qCQ5zJjSWxCwAANjIAAAwAAAAAAAAAAAAAAAAAYBMAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEAAIBAABLHwAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | <ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAKtagkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwFcD6PwiVBORw0KGgoAAAANSUhEUgAAAMgAAABcCAYAAAArr/rLAAAPI0lEQVR42u2deVQURx7HNWuexriJxgNQFPHgclHkEFFUEAUFYQRBREUUETVyqBi8HRQfnkFjNCoSFXHxeCZrUMQLCWvQkMMXj7zse/kn8e26Ocy6u3nJuslmf+uvTM/29FTP9Mx0DwP8eO/7uqeP6upf1Yeq+lV1Vbt27doBybnl4+oDs0JnkS2aR2QEePdDpwxL0NrYtZqEqzRM6XX2xEWL92gTgCzWJTPj4ba5AbEnLlpkgGJdMTdce5+lJiDPdezIZOl+AsRGvbe3nBnv+uuHjIwpaE5MHDysvmow8MkNJfBz3fvcxEN9c/YyzJ442ejYv6/cgFdfXsqOZcVNhe9rGwznlMbFUhjCdsb4aPjr2xfh0flrUJg2x2ycpcelGUo3TGd4Bj4vMzbByDZyz1MaZ9695uwjjcvHZZWGYx+VHeNeK343aZzMxf3LU+dYup/Sb2m7gHi4uMF/6z9gBsFtPxdXg5Eihwezfczwwd6+hnv+XlMP2xbmwkg/f26Y3n094P7p84ZwogJDwNOtN/zrciM79u07VyDQyweCvHyNMoC5uPDCwPvFYQjbr/9wyZDIj680mo2z9LgUkA7PdGBbIb5oC+l1vOcpfW/evXL2EcIVxyU7PtFw/4IpUy2WINI4ycVdeDam+09Xb7ZdQFbPmssMcW5LKduumjnXxLBSQHB/T94K+EfNu0Zhndm0jRleyOByRTxmgIBBXiyhxeeVxMVcGML2qyeJPm5YoFHc5OIsPY6ZBDNQdNBIo3CFZwmA/HKtCTp36iT7PKVx5t0rZx9eXIRr/nmhAbo819kkfcXx5MXJXNx5pWqbA+TukZPMAAeWr2bbO4dPmBglY9IUoyoWbrFaUrV+s1FY1SWl8J8nCcKr9oj35aoQSuJiLgxhmxIxgZVg0nO8OEuP78pZzqogvKqJUK3BY/W7D1h8npI48+61poq1O6fAYDNe+orjyYuTubgTIC3c+4Wl1HfVdVC2Yq3q4W9J3NIi7LA0OY398/L18CQ3L8kx6tKxC6yMWUm2IEBIPGHHYEDfALJFSwJkbHk59Ax+6lXKBiDjaSjs+yA7tDBAegQFGfbFgMx5+PDpfvv2ZFAV1KNLDyiYWEC2aGmAdHZ1JYM5QEsiloB7N3eyRUsDpMPzz8MzHTpY99+wezeoPrGv1enU9rVwesc6TcL+vP5aq7RZc2mLfpn6gPTX6SBIrzdS74gI8ExMNDmO18qF08/dDeDRp0YqQhep5Jg1Unq/tc+Ru158XNivXTgbahel2/UeWryzWmFbeh7PJlrEW433/uOFY87rxUJA8CUFNRcgSu5RCsgv396BrV1fYPr5q1uaZlg1bGbLvfYC4ui0btGA8Ay6q29vtl82fAjs9nA3Ovdm6HCT617z7GtkdOl9h4KHckHE+4R96X1y4YuvER8X7tnRszvbHhzmZ5KYvLjzzqEqxoZCUfv2sufF++ZsJoQj927iMHi2w2OC/Xi2QPHiJbYtL0xL8bY1rdsEIMLv8pAAo3Nv+A42yjS8RMOt9D7c3+nSE0r7uHIT8Q0/L5P75MIXX8MDZHOnjmz7UaneKCHk4s479/h+kxEg4vNCXMX75mwmhCP3buIw8Lk82wn2MweInG156aEk3ramdasERI1qx+GwIIfV+S3pZFwUfP+nd50mPq1Jaqd1mwCERCJAVNbXN87CNzffcdrwSASIRUAc7Yq1py5rjWvXGbw3cmFp5TI+rYs2tCns9R6qGcdWA4ijXLFKwpDKXteuta5pLfs9tOqT2dThN/D4y/dVeY82CYizuGKlz5dzr4qPb+veTTY8If48l6jU1cq7TuoOVuIe5dkJ4d3nPVD2vaRx4dmVlybScHjvwrOrUve0+FrxMXvduy0OEGdwxeIxIzeqnHuV44KUC88cIFJXq7m+BaXuUZ671uR5MvHn/TYHCM89be5drHkPKSBi17ca7l1qpDvYFcsLz5mrQra6VVvDOxEgJFJrAOT5zs9B5uwkkozOvVpJdtBYcdHj6JPblij85iM/Kp9sQd+kt+6v/2KGxEBGWAbop+jhUPohOJ9znunsy2dh/6z9bG5dPB/lE8UmYxB/GOX6An2ERoC0Mg3qNYj950cI3lr4FhROKoSs0VmQFJgEkd6R4OXixeTr5st+pwSlwMKxC2HN5DUGcBZFZkN2ZKYhzGet/BCNRIA45Uwjl/IvQWVmJcwbNQ/8+/gbYLBGOFtJXGQCTEkOh5qcGlYCkX0JkBarCK8IaFjRABumbLAZCrHG5uXA5s8WQfqtBAjuHww7k3fCxfyLNM0PAdLyFq7BKtGeGXsgqH+Q3WB49/GF2P17YOYdHRx5tRZmfKgznBs1cBQrmY7PP04TNhAgzq84/ziozauFMYPH2A2GoPiqCki7HQ+5xftgrf73kPZxosk10UOioX55PYwcMJLSgQBxTq2LXQfHM4+zRrZacPgOGAST97vApN3boerYZ5B2vQlm3k6RbaPU5NYwzxelBwHiNOr0bCc4mnEU9PF61cAQ4Ji05yW2RegOzj74tC2S6wpDgz359zy5bm/aXtiauJWtD0LpQ4A0u7D+PydsjmZw4O/M8ExIG5H2tN2R0RuCovuZvb8wppBBQulDgDSriuKLYPXk1ZrCgcLSY97fHrH9kIR+EJrsbjEcLEnmhs2ldCJAmkfTAqdBxbwKzeHAtsWOaTsMv7F6hdUsi2E9qW5dyL2gasM9MjIS5qTPgpgY0z4YoInJCRBBrEGcU6N6g1wKB6ogugB0ATqj66KKeiruXETvllou4NjYWMjNyQG9Xg979+41gOHp6cm2L774Ijt29uxZuH//Ptu/d+8eO45/eEx8HQHSSnU5/zKM8ByhORyofTP3mbp1d3RXHDb2uFfNr1LlvaOjJ0LRhvWQmppKpQQBwhcur7xt2jaHwBHqGQpbk7baBQgKAaEedwJEc6Hr9MbKG6oMHbEEB2pj/EYYO3isKSClL1n1HOxxv7z0MmVcAkRbLRq7iC1S4wg4BO8V77i1JQiqNKWUBjgSINrq+ivXVWmYK4Fjot9ENtRdLUBwgGNtbi1lXgJEG4UPCofXUl9zCBwobHtgG0QtQFBnFp2hQY0EiDbaPHUzpASnOAQOc9Ur1ITiHuDTb7DVz88fnw9Z4VmUgQkQ9YX9CY6CA/s9lkYtlf82xMx4LEv9IueWnKMMTICo/7nsscxjDoFD6Psw5ykLndEHQhL62hQX7F0Xf+NurfLy8iAlJZl7zlxvuvSc3LW3b98mQFqa5o+eD1ljshwCh1znoFg4WDFsVh+b4oOTROBEELbaYs2aNZCQkMD2zfWmiyGQ9qBj77rwJ94X7hF63oWt0BtPgDipNiVsgqThSQ6BA7/nQJm7Rul4LJ5yx+fC3FG2D2Is3bkdKiuOUDWKAPm/Dmcc5nbYqQ2HUHpYciV79xkME7f0sAkQHDaP38lTJiZA1Bt7tfSyQ+DAdoel6pW9rl6cUgjn4aJMTICoJvzOXGs4UIvHLVZclbMVECydzuWQJ4sAUVGX8i5pCseQAT5QcikTklLDoddveykDxMrxWGJdzLtImZgAUU+YobSAIzTRA97481yo+mE5NH5eDbMz42HV/gxNSxAUloiUiQkQh3USWgOHf8AA1hM+eV83qH94BD799C6cf/s8PLj6AIoWF8GRH7JZI1zLNsjRuUcpExMg6qlyXiUbMm4rHDgsJPxlVwZF5LqeMMR3IDt+95O7oC/UQ0VZBfzU+BNceOcCfPKwDsrvFGoGyPTg6VCsK6ZMTICop+KEYqPPXpXCgb3deB7bC4FRHibnU+NS4buH38Gt+ltQW1ILBYsLoKGuAY48WmyxNELQ/LxscwRkjs6kTEyAqCeWqcIzFcEhrkLhFD1y1aVHv85Ssn3Tdvix6Uf44t4X8OAvD+Bk5UkICRnCwjA7V2+uKwwbaf14LOwDoe9CCBDVJ2kom10mC4dcFUqpytPLuSN2ETa5e0YkujNZC0j1kmq2PgllYgJEVTUUNJjAYakKpUSThkxiM5dISxeEDsOWu2/4OA8YPb+31R2RuBQDZWACRHW9nvY6TAmNgbjDXSF6W3eLVSil2jV9FyuheOewVAqO7SfrDRu3zMWqZ2WPyYYV0SsoAxMg6svf3Q908wIhalMPq6tQcmJ/TU83bIyVq7fJNbEHu6nmyTq54CQbuk8ZmABRXX169ILc2AWqzqSIAwfRAWDuGqzGhWe72Q0IVq/qltdR5iVA1NXewkLDPs7gbilDWyNcZEfJJBDYFuF9YmvNcBP8ZBgn2abMS4BoJlzqoGl1kzozm4iWNLAkdOeid8zWEgRnNGlc2UgZlwDRXtjJtn7KersBwQazsKSBEqHb93f+A2wC5MCsAxDlHUUZlwBxzOyKjYWNsp4npVJaegjCXnNplUoJIPihF45GpkxLgDhM473Hw5mFZ2yGQ7qkgVKhWxf7P5QCgtW4umV14OfmR5mWAHGscFoenM7TFkCkSxooX/F2sJHbN+IVF5Nql1insk+x51B6ESDNIhw2botXy9rqldE3JMnuhhlN0P0bMLq/rNdqY8JGSicCpHnbIzh0w5rSQG5JA2uEpQiWJnLjsXBgpVprgpAIELvUtXNXtqCO0pJEbkkDq9owT0oNrF6h+xeHo0hH657OPs1c0pQ+BIjTlCS4XmHp9FJNq1fSTsKhIzwhclUvQ4O8KqsKSqaWUJoQIM6pZVHLmHdLzgVsbkkDa4XjwXBuLPRkYbUNpyaaETKD0oEAcW5N8JnAVqHCqo60x93ckga2aOIGN9BlDYdrhVchyCOI7E+AtJwq14IxC+CD1R8YtU3Uql4heCtjVkLT2pswYtxA6P7rvLWPb9wg+xMgLWvsFs7r+94r70F6WDqUJJbYBQZOuIAzL95cdRPyxucxEMnOBEirKFFC/EdB6uiZbBk3/MQWXbHoHpabLQU9XTjLIo7ZwsY33rcjeQdEeEWQTQmQVjgzimiqHWwv5Eflw9bErXAi6wQ0rGiAK0uvwNVlV9n22vJrUJlZyc4viVjCPqQiGxIgrVa4HoewJsfQsDCyCQFCkpYe1F4gQEgyDXWayZAAIclIN0wHwR7BZAsChMQTfvdBdiBASDIDGbFDj2xBgJA4wtVxaR4qAoSkoO+DRICQRHLv5s46A8kWBAiJI4TD9QVXskUb1P8An+rTHWD9D7EAAAAASUVORK5CYIJQSwcI/1i+CmEPAABcDwAAUEsDBBQACAAIAKtagkMAAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s1VdNU9swED2XX6HR3Xb8lQ8mhiFhAsxAmSkcelVsJVGxJddSCOHXdyXZkDQQmpYwJQdbXq/ert6T1pv+8UORo3taSSZ4gn23hRHlqcgYnyZ4riZOFx8fHfSnVEzpuCJoIqqCqARH2hM9SHbIxVdSUFmSlN6kM1qQS5ESZeBmSpWHnrdYLNwGwBXV1JtOlfsgM4wgOJcJrgeHALc2aREa96DV8r3vV5cW3mFcKsJTihEkVpC0EigtMp1EglPKVSUYQCsh8pds5zQvdUSWCj5iOdVjOROLC34LbwekSrCq5gCeinI5JKVeiaxtTbwLXs4VIq0En2BE/AQP4BYkeIi9xuV6rhqfM2OFcBJAUo2HFFM2Mpmrmaj0KCNKW8CT5rSAlJFalmApBeMKo5yMaa7jHR186et8kRj/oKlqsq3fmwdP+8DrochFhQAdpJqa6zjBQRxD2LycEbCAiMY5J0taoXuSa6/aAnhXIqNrVsJZYbRFUlGg0QfuSkozM7L5wqAEOLN/JiSXdTqpEFUm0YPeOZ0IoyVk4oLvo910xscs9YY91jHDVata5qup9L2apTf4GnwoX9eTiaRKL9IJArNGv71vOh1zZiGUE7vB3vkcfv795/tutyGs3X0XxlJRFIRniJt6c8UyS5qey55KxcCWimFNz3N9OLVwNcgbApxuCmBXuV2BdmQk0Lexve28pWN7aHvb9HlmOXajhuQo7K3+4o+j/OQ1yke7UD76YMq3sNp1g46l1Xc73TVa97GTv5Hly4yebjCabWe0AqSGruwtPleO7WtVpPUebHbceH1rGmpbbrvdWv3Zr5QTdlw/iJt6zji1PKoZS+84ldAjBE0NatnBOcsyqrsqO4f+5HaK1NcEs6LMWcrUE5e5rloXXEE3Rk2fIG3iK3zcUVreAvQ1v60Il7obsz7NHtxFzLoijTbEpH8uJv1fxHRCN/KNgD1zSECyCFqNXvRpBXsC/k22zMpGN2Q726Wqnf3Vl3wfRS3shG7H74axbZmcAL7QftSN2s3hDI2aHegXo3b0T+XNW+3C9bPp1fWg+X9y9AtQSwcIprFHkh0DAAASDQAAUEsDBBQACAAIAKtagkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACrWoJDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVba27jRhL+nZyioQXyYxHT/SY7sRPYwQY7wCSeycwuFvtnQZEtiWuKVEjKlge5wJ5ir5DnBXKAHGJPslXdpB6WTEu2kzjBWHx0s7urvvrq0WROPl1Mc3Jlqzori9MBC+iA2CIp06wYnw7mzegoGnz6yfsnY1uO7bCKyaispnFzOpDYM0tPB2bEI8ljehQy+JGCiaNYieFRymNlEibDZCgGhCzq7KOi/DKe2noWJ/ZNMrHT+GWZxI2beNI0s4+Oj6+vr4NuqqCsxsfj8TBY1OmAwDKL+nTQnnwEw208dC1cd04pO/7HFy/98EdZUTdxkdgBQRHm2Sfvv3dynRVpeU2us7SZgMA8AjkmNhtPQKhQ8QE5xl4z0MjMJk12ZWt4du3SCd1MZwPXLS6w/T1/RvKlPAOSZldZaqvTAQ04FYyrASmrzBZN24O1Mx13Y5xcZfbaD4Znbh45IE1Z5sMYxyHffEM45ZR8iAfmDxwOWvsm6u9R4Q/cH6Q/KN9H+sel7yp9H+n7SADqKquzYW5PB6M4r0FxWTGqALTldd3c5Natp72xkpl9CDLV2TvoLCho1Wsa7lP6If5p+JPYcLwpJFubtanmB07aTcl4GO0/J3+UpKKblOsdcnJ1h5y6Z1Iv+F6CqrU5YSr3z/1tzSj6xLw9o79+3IRa/iYinhx3XDlp6UHqCfZtzaex0xoJIwxRBu2eEQXk0CGYuSLMwCHkBOhAmCJSwSWLiMZjSEQIDZIIEhHsxwRx7FAR/MjQDaaJgsHwbgikJAwmkkQJwhypJAEqEUdMICkX0EMpouAhnJ5xHEJoIjVciYhIWCNyMmTQUcCDcA3TcyIYEfgwCwnXRON4TCLXdYRLhyE50ZRohgMCrYHSns7QPyICpdFudfBf52yyYjZvNnSVTNPutClnS1CgN3imldfznmrDKb53ksdDm0OgeIOQEnIV50gNN9GoLBqyZKa/N67i2SRL6je2aeCpmvw7vopfxo1dfA69625u1zcpi/pVVTaflfl8WtSEJGVOl2suc7Z2zperhgux1iDXG9Rag147D3fOW0ILmdcW5i+ruusep+kL7LHyEaDJiyK/Oa9sfDkrs00xTo5dzDmx8yTP0iwu/g5Wi7OgXsgqBKHj6kKQiqJuJWWVvrmpwZbJ4p+2KpFdPOBMMh2GLKSGwmM3voVHUWDgDgsjQbEH8LBOYmQhDwMmqZBSKBMyw0PwQje72wRTfm57tcQoXtiVuOMKSb528aI+L/PVLaeBz+JZM69c/gB+skKxzopxbp2VOJJDcE4uh+XijTcP4cd6ezODK+pXMBw7zROMe9DsfofLVlxUXzsOt2wHmV0Pdxz6o+sFpusX1QrJOgHZcpqsdm6NDlrOdC4LDR+D/LzImpfdRZMllysh8YEv59OhXZrP5pjsqcY8Ob5lXyeXtips3pozwDgv57Vn55qlpzbJpnDpG1qVxAjU32AB/m5qx5XtFp67rMwrzLXSdUPduu2G+rwqpy+Kq7dgBbcWcHLcrfKkTqpshtZGhhALLu3KntKsjiGUpOvPIf9A9ARDBqinQdUAM+fNpKxc3gUOBY5Iu9xOId8ijTMst56lmn/5zuVvsKZ5t+wgCrnWUnNlgAxatjysc0zjyDSDAKX+/PO3AzKNFy7Yu4t4WIOLaiChBU0Vq4TWO4yW4iHHbBmeku7kBrJmdzLKFnbpfmH92TvACxezsheEnJTDf4PbXYZoL8KqDzSvrJ16a+dKOWt3xzifTWIUkbWWH9+ASOtouTG/KNNWGew2Qxpw3JeQp4LdwXhNS1V38tcsTW2xfCauEuR1Gw2WxgC25hADfzbrFAnBxHomLAecwdKc61gzlBbHLUSdt1mq4y+DLXVtMmu3vpx+UF9Uen3hcakvuqe+7hCTbcvIdsnYkqhGE1EB1YzR0EjJBdQN2tnLkQL/DlbJoJDgEd4fkHe+XvP1CupiTe/rd29Rc1+Fnm0rdA/7e4w+L0aj2jaohCMeObG5OETdaN+HK/zIBJQppaTTrxCR9BqXgVaRDrWODIRXqqJejcsn0Pir31HjygmtfgN1s4CH0iiqdAQmHprQTy0CKBolYwqymIhpA7nIU+g7KafTuEhJ4UqQr0oov+1glQrHFA2dxMyFBBJzRMGreN50Hc79oO1Q94B4/juCKJwmWdiH4hoSAKAS0hguuTGQeAremn4YhFJxEVFJuRJG9jubh0HhcsLdSLzyQJxvAfHL9/1I3Irx398b48P9gyzkHWnmrR+T/razl+LAKCz39YLGM2N3zNnKYh8bo/O8vP7KjnK7cFL51rUs8w4g39gx3r8LytsYxv0Q1u1oHQDxPXRa8zF9ANCHB/U1woSBAfcUReC1pDbgxRw+yBaqqVBUQFkGMcOx5UioQEM3DmYmIKQrrXsA0/2A2a8L/0jta4FsOsuzJGuW2s3R474oGqgMrEuNtxP+S2tnWGNdFG+ruKhxI/dxEL/yEG/TdHgYxMNnBDEDJyeVlkYLClWxFt4jsoBB4a2Y4EoC8gx3StEj0kBEUEFrwTkcediXNz9viF/Cks8zHLmsbuEcbwGc9AOM4i/RS+7Ly++Ad7Osfxr2bvH0Zjepkb5SBVxwMAAqIwl5d9gDLX84tA9CZLiFSHoAIumzQWQXrW52k/AdFgMAYEi5AQQ1NaLbKfvtIFmy7xYeifeE6RYsF4dkjhe/e/pv9sRNgOPTzDAuVYQAMc8kLmSgJGSMymAyKUJfMhkZwM2QS8gvIe0X7FEl6yYin2VVspVGXtwVmGw/HJDiZclS3fZhYanDA1LrXRsw6jCy7LRtc49tZ2NbXDm/UROyoO1r3RvqDYK86+4smCsCsI21t96xtTwfqr0qW5Czrv9Z1+uMI9o0UBzwx01nwyjFuvlMtHOcSazoeGSUxqIupCIKQR9nChQSyAi4K7AtitgdhMQXDdkoSx6Re15s4T86LDEZPaPE5IgHDLyfgSgF9DJGhj58qSDEYkZo+KFGgTqRcmFAdaQMww2jEJgqe6zpeecluxE+vwvh8WEIj58TwpBwaCaUZBKCn4rw5S16VREwoXFPUEchDU1k2vqCq4BCEQv9gVsa4ucft77o2Qu4uHMv4IeD9gJ+uL0XwHCPQ3DDFQM2wYl6kr2Af7GeEL17T74/JKxvivp3B7J3PyC1SVn5bbpuR+7BkeSR+wR2MatgGlxKp0K7aMBDQcPp4IOv52Xz8VmV1AQtwY1Vk3o+bGyR2pQMb2Clduq7uaE3AcaxBpsDPy5gt+8HORUPp7N7713bKhut3hH7L2L4oCNXq9y6iavmFaY7xCfDKoi0AMduNOS+CsKjQzsKjDZgpvgJjwlDurENfb+2+Ya2304sccTY1HNcEICaxA1qnCQwXmVJVpO0nA+dwbRPffAnRj/efDRr8LG4uPEvfwmaHXSv7DTOCnynNwMpSTnyI7tsbX9E+QPdM7496CtV1t4uL7kpjEefrdDHtqdBHz/9uQf9MNCQE0kuIaumEZehQ18HmDhpJSOFW+VMHoa+2OSaQz4DsGGR08yjgTjH/jV9C/Le8Ij94dntMX/5jvzvP/8lhv787R8BxT04HAbGMMAK4jfllHsKI7W5oZAlG2kwsCtxF4zbWwC7N922M5/JATsAk1+jtHlw4gMpLNi9QRuPtIkoa7XGA8okFPpQYkJiRMNOazKgUFtCMWkgVYIisy+5lU+zDbCpy2FZ5jYuVm9K28B/K8N4+Ev8/oRh35o+or4uB0X1AhHPHDHdPe8iwKP7IPAAPTw/LXhPKli/OW5roQ1l6Cbn05GtLH5J/KD9IetJO/G5LN/i7utDtoleP2ybCLeFHq3MI79Bx/V+zIaSRkD5H4IjlEYDX/1b/aMIKp2IQSUbMaVC80QfMxxaU7zeril+PKim+HHvb4ie1PL7P+JZrxf8FgHbjVbf+8N73OaTvj/cBdTr+4q/nw4C6qd7gTqg+Ht6oLyD4vxgmMSvCtPx+qd27mvW9v/M+OT/UEsHCJzJjSWxCwAANjIAAFBLAQIUABQACAAIAKtagkP/WL4KYQ8AAFwPAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAq1qCQ6axR5IdAwAAEg0AABIAAAAAAAAAAAAAAAAApQ8AAGdlb2dlYnJhX21hY3JvLnhtbFBLAQIUABQACAAIAKtagkNFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAITAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAq1qCQ5zJjSWxCwAANjIAAAwAAAAAAAAAAAAAAAAAYBMAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEAAIBAABLHwAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | ||
*Process: | *Process: | ||
− | # | + | # Project the geogebra file and ask the questions listed below. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
*Developmental Questions: | *Developmental Questions: | ||
# Name the centre of the circle? | # Name the centre of the circle? | ||
Line 153: | Line 130: | ||
{| style="height:10px; float:right; align:center;" | {| style="height:10px; float:right; align:center;" | ||
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | |<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | ||
− | ''[http:// | + | ''[http://karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div> |
|} | |} | ||
*Estimated Time: 40 minutes | *Estimated Time: 40 minutes | ||
*Materials/ Resources needed:Laptop, projector, geogebra file and a pointer. | *Materials/ Resources needed:Laptop, projector, geogebra file and a pointer. | ||
*Prerequisites/Instructions, if any | *Prerequisites/Instructions, if any | ||
− | # | + | # Knowledge of a circle, angles, arcs and segments. |
− | # | + | # About the types of angles. |
− | # | + | # Skill of drawing a circle , angles and measuring them. |
*Multimedia resources : Laptop, Projector. | *Multimedia resources : Laptop, Projector. | ||
− | *Website interactives/ links/ / Geogebra Applets | + | *Website interactives/ links/ / Geogebra Applets: This file has been done by Mallikarjun Sudi of Yadgir. |
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAEJcgkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ32WaTQUDBfHx9gZJUtqjDGWHvtY0hg7mUI89i1rDEJmypqxpLGELFHGvlT2dxpCtiyDaBQzQrLv+x5TCuH14f3wvOc95z3nd+8998s993/P/fBPMDPR5+IAcwAAAC5DA5TFWe05C0c2lrMsU3XYCwBwzhqidK1CxrfyOa2srcEUbZ5wY0TFhVdZCU3f0yr90pmMGHV1a4FXGHhjv+MlU86DZtjUUCWg2Jyle2+GPyuExastFWd4NNkgSV99CtSG+moq3iiWUdIrZvLubzTlhyFXOoc5fzke9x6SAmhaYTs7jb9+aR8F0Zr4TI8vAe5wXRO32DykhJgF5ozvUFjNHwCAikrlM5IjbeawGmGB7K5d3QFJ4wdLHOLwcAUOTh1YvZxBpvv2t3pWDpAOjNHSH9f+nEdFzRhCda3Qw+l4Vzg0dt0QAQZWj4M44rEXr14zzDGi9o8g8IXMg+lWyw8tzok7RKo3v4gBwbi7045JBEahR8S6XD127RPuLgdprJlrr8R010xEBGEjb2A3w/PmXubpubkqU8SCxFNRq9HplfG9bOHodWSZImnsydjJp/7oJlmZwa3J6AV1eoV81IZjdMHNt4nooHwAsPrKQul0+PYkruw5JrRsGh6Xk3+pGy0atnv+tPlWbESQaJbEr41XCurTn/qjnGi4wyMY/z7VlhpC/zCnca2+maTTh+hL2gjmjNzvX8a6iua0rEIzDqhgyJJiynAQkK0rI4gull7bUntsX+ekLv/aJBM1I4A33hyKlvhJkkk9DQd3Xp1/Pbl3kTXilXQSWXO4zwYW7PQywmFCemC1E1Ous/6fNZdG02w+43wKGp0xz6BYj42Wgvd2V4qay9VbD/ICq4O1J2j38C1OAXKFmryLGYUmuPoIAWIb0maEHcZdyBW4hD2ZkY/GHY2bWf31WAfwvwC42f6BweOA77CjP5MEe2duA0AaWCvq3owmsb7tzQPNNkuhkuoqTmCTsV1OrYW1p3cwgejmMnGSMD7zc488CTkuKdNenBmB2FLksWrzwbQs2iVPkEqpyrKI79T3Npmp3DDTXZqcvmap4pPcqiF46659YPNh20CbamSAlmdY8IEOLJOht+y+/wRYZnKTzUEF6q8+fbSeoOb2hT51MumyESM4JEgfNT9WqSRp3s3OdAKjGwkf7EtUnmyMSBx5Hn2ynTGnVOa3Tqlr11ElzFBAfAhMUTzDBTcnnHcJgh77e7Rmu/Xx6o7KzyBnE7QMWzG0JtT9FUQhkfm/ztEoyjxIwC4i13uFT3d3GBweKGWuFf8RPAr9g9mp4e+xAlNL0ilEb7jtAKPjMFaEch78uUgSn/nFvUBHikEsfmgH4qVEURj3jqcmNlUaHZDPVLUbg4uYzA1rD+DgLiGppASD6uVuzTyHE7YVjUPJh6XnNJ48vzbXN3dNubDMLKeIeW/zh1ImerW3oxA7U5Jy+uOHTexunuJWGtcwdmXagQ4qJJKsXYUxoQXJvZOhLQvy5PmMm3unxZ6ZMsYNcrs/AkOdPZvfa9ZyBbTZjNzzoOTRvASAu1/s3xTd0EjCBrB39sw/DcqzU07UU3Pst+7fnBXkiXwqYEwNkeVa4XqXFbAKpwRX9NFKhHOZ/VeGG5oHocRKvwRd7bt88TERu+vQE9+VexlA1cNJRNCfjo/ravskiO2e0sTw1mWM3dK9oNbg4L4RsWB5lbTfKJgh3wfTL0CTMpGMTm6LoQDkaXZZOjJmf6p593791vLsFwR2FyX5wqvYB8+zZgPiEwp+gXyHvcqyNq3wfB4nxh+AdLork7Kd30x/mh/2OyfmBI5X3uGjMfMTQ+w8sj1yCr7GFr7mgZo0fFDVvcOBYhk3HbyONaRiugeWcxAtNV5X4t55dWx9PLeyfwU3+SqQo8FFGV+VskUl1MqoNt5+G2T//omK5WUUEGgKU6Kl7j4JTNjsEkmRn/c6rv0Gdcj0XhvaZC5NcOeV89vATgkqQgiseXKpEnWKcWVYwlv3PZ4rALSdtlaPnKi6AjNzU+eyZ/9SiqsQhr6mm5Y35pNlr65bwkDhdJeeIk4NHIXxUUbn0Ko4nRoKUk0ut2Fx6WrGRIGwZgTifHzCAgPpEf4WI02gR1p6b/V7dSsa9zHrMhdPnInbKcokwciP9++OKKVH4RRBjZqQC7atLbkjPqSL0lxIe1hsenf114lvAyVEK2ezbQIyUNwJZcck4Mm/t44Jw91xxd/7RnQ7toEOS+j/zVA0/xjNbKFb6yvkyLKgJJnZTG6YXw1F21ZmWXeEfduc+77R2WRdlduE7jbGjmlasLs7D+hBrJUTbAcZT07H2bu9nPpWZWgIJovz7IEy8sWODhKZfjHIBpXO1O2s4hfZshds9p3GIFNX7fM52ckpE/I9S/F7axreCyzQ9y0o9q+FzIg4FrrIe1OZRDqFoJyU/ReRBJXIZdljtc/b8RY9zaaRa2T8Yna8gGSdimRPh5T+L+Jahr/oO5LJ+hZJ/Zt6sJ+pVVy0rfe2g3KDQs1a7oe2HwVrWEQd6Grxw+Pxi3J+VyUTKANsZD6bp8u+wkMhtOIJR1d95Th+ivobzM+3z7xkbQceQN0ah4wgYxfNIJFFqhUTHD+ZV4ab+Cb8NewmSs1lbS05Riw8W/fxz5j2FI4/D87pgyAdlw0vc+WQPgsSyuyT8BEsoXWI578XjhztzPryo0VD4B5HJW/3LdXki15VLoDA7StwZJ3vUB2aPTNDbOxHVpI5oGpo9WYthm+Ubb3KHuQyGqcDbo9Wpg5mCyzDf0iC1oIN8zwOer/aFYmQks50FNvKgfgROF1rMyVyad3Lj2efavTXuV/nPMq3xjnlct/Bno2/gx0EskYS2XtyL3YJToRyijoRqRfl4gkRs2J42aLwXorBJpR/LShAfunr4DEHhnd9eLTLB4MS6PHPGSuOVU7B2pI62T/PLdhvXNkcPPxF8crzbwGDS+r169AJhUXdIxRYpGKyrsk914m638keDvv9PnmDH59W2SXpttSdx4dcuO38wKcHLb57PE8IMDXINrt7k3i3v0CgFfGac1EkJ+UzI43XgH1pTOumaFTacMDlO71ZXbQ1PT29VmfBgRvlnKiP18s1ZkfhGbuKPGuenx7b2ydpmUfAffBfeAev8SquX/Vwux9bWBbKwORmqMrfCBVLY3iHrJxd09VzeVmVXHyl2M/fCthfsns2RAMvy5bb2S9gS8Q+i0dtLydLgejjBsZVl5whKvqCjdMJZ7tc6DEi0sjt2vBriQLT6s+M6Lese0WcoE3NvflOLMuD7wO3v4xtDP94AlsQyj6cuubJCQ1jpfnqijoELrrlLCKoMlGpa44X4kG0Gwo1lySBz3Xrprlq1S66lxoN9iQRFkWup2qQClZ48H9caVpWkAfbH57S105CXdL3WC5Ew2Q2RLmzAdwd8Zf6Xt9Kbo276/lHOTro8EjYLKH9NjBtO9lPs1jqNjivnwxqZuZnzTvu/GqRMz9kUyzy45Vkgb5qufJsOB706qQlyhORjVz8wL13Lvz64xZWxatojp3TdTmacBov90HUzd9eevCporaYUT6g1Gvftv7vtGgyLvwYHf69c+ZfdYQW3w63Rxu9KgcjiRcLI8XLHkDLUKC5+ds3UnoEfq8123koWwdFgC0hezgRnGGvN7PKO2vZ+1Mu1KL34jIStOTexQiJabMVz+TszvuF4/1D27Qg47Z2UxcbR9PERoGpScn5VDghfHQ8gbnB90QULi9nflR3d2YpZtahad+YhPmjQh5d8RFaNH14aEQVQDrCOm9Jz3fwbVn6uVvwaM/PxvE8fGT34bLmjs3R/Cb6KGVRRStyqvoAqM2BKhx7fgNlWiiCYcOsrazf5f3z89sdvbRtUzc6fcc+nV9+jnFGyGzCCKPbQhVgiteJMb5l4wQ/oD5LzK6Qfhn4k84qxRf3mSGzUCew1PLJYXldCzgXVR3Uxc3D87qeKhVjKVVgO6QhdxJecAlGRjCfmSYYWVA0MYxcwkPyuP0GJUYWD3Io86I1ShvWIWqlOMmMwEpjPACAD2luH1WPXpr5ve1dftb+Axj3/4GP6b8c17nZU54SQQvhG9N8Z5YfYHjDBFV5/U7UvwFQSwcI5511gQEMAAAZDAAAUEsDBBQACAAIAEJcgkMAAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s1VdNU9swED2XX6HR3Xb8lQ8mhiFhAsxAmSkcelVsJVGxJddSCOHXdyXZkDQQmpYwJQdbXq/ert6T1pv+8UORo3taSSZ4gn23hRHlqcgYnyZ4riZOFx8fHfSnVEzpuCJoIqqCqARH2hM9SHbIxVdSUFmSlN6kM1qQS5ESZeBmSpWHnrdYLNwGwBXV1JtOlfsgM4wgOJcJrgeHALc2aREa96DV8r3vV5cW3mFcKsJTihEkVpC0EigtMp1EglPKVSUYQCsh8pds5zQvdUSWCj5iOdVjOROLC34LbwekSrCq5gCeinI5JKVeiaxtTbwLXs4VIq0En2BE/AQP4BYkeIi9xuV6rhqfM2OFcBJAUo2HFFM2Mpmrmaj0KCNKW8CT5rSAlJFalmApBeMKo5yMaa7jHR186et8kRj/oKlqsq3fmwdP+8DrochFhQAdpJqa6zjBQRxD2LycEbCAiMY5J0taoXuSa6/aAnhXIqNrVsJZYbRFUlGg0QfuSkozM7L5wqAEOLN/JiSXdTqpEFUm0YPeOZ0IoyVk4oLvo910xscs9YY91jHDVata5qup9L2apTf4GnwoX9eTiaRKL9IJArNGv71vOh1zZiGUE7vB3vkcfv795/tutyGs3X0XxlJRFIRniJt6c8UyS5qey55KxcCWimFNz3N9OLVwNcgbApxuCmBXuV2BdmQk0Lexve28pWN7aHvb9HlmOXajhuQo7K3+4o+j/OQ1yke7UD76YMq3sNp1g46l1Xc73TVa97GTv5Hly4yebjCabWe0AqSGruwtPleO7WtVpPUebHbceH1rGmpbbrvdWv3Zr5QTdlw/iJt6zji1PKoZS+84ldAjBE0NatnBOcsyqrsqO4f+5HaK1NcEs6LMWcrUE5e5rloXXEE3Rk2fIG3iK3zcUVreAvQ1v60Il7obsz7NHtxFzLoijTbEpH8uJv1fxHRCN/KNgD1zSECyCFqNXvRpBXsC/k22zMpGN2Q726Wqnf3Vl3wfRS3shG7H74axbZmcAL7QftSN2s3hDI2aHegXo3b0T+XNW+3C9bPp1fWg+X9y9AtQSwcIprFHkh0DAAASDQAAUEsDBBQACAAIAEJcgkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACABCXIJDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1bW3LcxhX9tlfRNR8uO/GA/UbDIe3io1RRlWy5TCWlSiqVwgA9wzYxwAjAkEOVF+CsIvnLr2XvwAvQIryS3O4GZjCchzgkRdEhTeHRjX6cc8+9txvw/lezcYYudFmZIj/okQD3kM6TIjX56KA3rYd91fvqy4/3R7oY6UEZo2FRjuP6oMdtTZPCIzFPlWBpPwxJ2uchH/SjkOo+xykTKYlYKgc9hGaV+SIvvonHuprEiT5NzvQ4flYkce06PqvryRd7e5eXl0HbVVCUo73RaBDMqrSHYJh5ddBrTr6A5pYeumSuOsWY7L38+plvvm/yqo7zRPeQncLUfPnxR/uXJk+LS3Rp0voMRk8VzONMm9EZTCoUtIf2bK0JIDLRSW0udAXPdi7dpOvxpOeqxbkt/8ifoWw+nx5KzYVJdXnQwwHFjFDRQ0VpdF43NUjT017bxv6F0Ze+MXvm+uE9VBdFNohtO+iHHxDFFKPP7YH4A4WDlL4I+3uY+QP1B+4Pwtfh/nHuq3Jfh/s6nPXQhanMINMHvWGcVQCcyYclkDa/ruqrTLvxNDcWcyafw5wq8xoqMwyoeqThPsaf2z8Jf9wW7C1PknR6rcvpjp22XRIaqpv3Se80U9Z2SuWaeVKxYZ5yS6d+4jeaqOj0CV25/9zfSo9s2zSv9+iv79ah5A8yxf29Viv7jTxQdWbrNuZT63FlBcMiJCJr9wQJEIcMwcwFIhEcQopADogIxAVcEoWkPYaIhVDAEUMK2XqEIacOoeAfHrrGJBLQmL0bgigRgY44EgwRJyqOQErICRNEShnUEAIJeMh2T6htgknEJVwxhTiM0WoyJFCRwYNwDd1TxAhi9mESIiqRtO0RbrUulR06NEmRxEgS2yDIGiTt5Qz1FWJ2NtKNDn5aZ2PyybRewioZp+1pXUzmpEBt8EwLr+c91ZJT/Gg/iwc6g0BxailF6CLOrDRcR8Mir9Fcmf7eqIwnZyapTnVdw1MV+j6+iJ/FtZ49gdpV27ermxR59W1Z1MdFNh3nFUJJkeH5mIuMdM7pfNRwwToFvFsgOgWycx6u7beAEjStNPRflFVbPU7Tp7bGwkcAks/z7Oqo1PH5pDDL09jfczFnX0+TzKQmzv8KVmt7sbigRQiyjqsNQUKpdiRFmZ5eVWDLaPY3XRYHvT5XgSKL3wieu/JFNIoCjnkklAxDqUQIY0tiq0IuAi46v+ASrjYUNT3rizlD8UwvJjsqrcQ7F0+royJb3HLzP44n9bR02QN4ydJO6jAfZdrZiJM4hObkfFDMTr1xMN/Wi6sJXGE/gsHI4Y5s1INi9+9gXmoHta3cNjcvJxF1Ndxx4I+uFhiuH1QzSdJOkMy7MZVzarjXKKZ1WNbsbYif5qZ+1l7UJjlfTNI+8M10PNBz41luk9xXm/t716xr/1yXuc4aYwYap8W08trs2HmqEzOGS1/QQBJbov4CA/B3Uz0qdTvwzOVkHjBXirtmunLbNfWkLMZP84sXYAXXBrC/145yv0pKM7HWhgYQCc71wp5SU8UQSNLuc1Z9MPXEBgyAp7bQgC6n9VlRuqwL3AkcregyPYZsC9XOsNx45jC/feOyNxjTtBk2CSglIcM8lCySmGHp51FlNolDYwPhieI//PpTD43jmRWtv4gHFXioGvJZgCpf5LPeXzQKD6lNluEpquzJFUhD2JOhmem594UJmNdAmB3NwmAs56gYfA9edx6h/RwWdaB4bu6COGunQjhrh5wOxphNzmKbh5LG8uMrmFKXLdfk10XagnFdITW47XPIUsHuoN26kao7+bNJU53Pn4nLxOq6iQVzYwBbc4yBN5tYhTnsIJZoL4V5ixMYm/MdHUtpiFyh1LmbORyHvdvA5XDq4mWPc7zwVryeD4eVri2tfUocq4SshXMTCqsIkHUINBqrnAEFIXVd9UkgIZ187Zdsfsli8eiA3717TZ83BfX4wUF9L6iJgDIPGwm4xNH8V9n13j1gmBTjcZynKHd57ncFrPF0b5FvxdjaJ4qJ8zwophZZD9u0bisc+Uabpt5BzNEHtHbpkJTbSFtAHwYMC8Gx5FQxqbhorTeSIYZFMQ+x4pRy8h54cHnHehqOPQtHKyy8/Xk7DdfiyM83jiMP58c7fon4aEOjtWStJEJ3dfNZVlx+p4eZnjnofWknUdnA06ke2fubmLpOUbydoapprcU3fodUOh5jrVYs8nd1Ygs99FkAqUPXA3mGAkEaV0QDKVQY0dD/km3BmG5nSb/K/SOVzyHNeJKZxNRzSDPrNJ/mNWSU2qVUq4niudYTm5s/z1+UcV7Z7b+78XrseV2V3mA3XgePilcWcAqkEcnCKGIMR6zhFYes4/64j9l9isEBcsIxU84F/r+RfLiJ5GQ3kpNHRTKGYLYUtXxSwQOhrsU44FgGsBCPKGMswhzj8PdL8TMY8pGxLRflNZ7jFYLT7QTb6c/ZS1fZXV4OP7Bvbrzw1Xo3DZxGgQxDDIFdiUgAq+L9cHorKgYrVOgdqNCPjopVx3m13s3aoMkCJUUUEcEkI4xL9dDEzMV3jZXUO0K9Qs7zXdL95x9+HdZJ6WUAdEhGw5AwptqMngehFJIJyRUWkoRNOiMCrCgNcRSFlCkio3tM8I9Nmaxk+M835Y3D7YgnRW6ShbnfLfDgNVm7fQNocvuqVT8x2RJrNyVhrT3Ld9izGWno1XqMCqEZbl7yXmFvBOh1e2cGqPXdrSvS3HpNOmsyWIaXZoYO2/qHba1DaqcaSBmBQWBMmCR2XX3Imh4OOTQMdiAVqBkzEUqswhDuC1shCiOMJaEUtAvrcbVehfa9gxmaZJfdi5N/knd5tfe5TqbeZYVbV8r3sb0BwYr5vkRgX8Dd+0L6WwfrssyGK/o62cWjnXx4j3Yf0IcBhkQAY1inQd5HcOhogDxRRYqTEFIELhj4yfdAytbE+2SFndFuiffoUSXeNh3gS4g2iTcLu+jLdgWtmMIyUkpSiFMwlN9r5r2e45NNiyuzG8fmUXFMA8gdYDVMBSE0kpiwRkuUYEgEmU0hSAjU+8SiT2SgIBUXKpIRh4ij2O+W5i0blScbNyp/2Wmj8pdHvVHZbFPytZby4bYp9WxSQjc2RLQY6FkNE4aCg94nr6ZF/Sfk2qggs0MxSlxC6gtcY8uc2Kd7y03dTYEN6Pj2+nPfaVS6NMPFNw3+Cy7aa9XQgFnVcVm7VAD5lyoypHjxE4nGJ0eELxbO0VLoeze4dAncBbb1GYgTxIIaJ4biUiP9ahpnwc3hpreE29r0fTm8jYDbr8O2Ak4ARMUXgBPebDHKiN4ecLYE+NcmhzkDuAmqpoNa5+Cb42Raa+T8SbUD2OzmYMPSKzU+E7Pf0zS1P8W//oQ+yUBib998hn778b/o07dv/I0Iij67QWRackYPSRREq86Pat49Yt4lCu/IFF9i6lSPTd/7mwVV7nMbT9UOTPG7MgW0/PavfztWHi8pPFBSddQj2xfCRHb2+TjdjRSxLJ/4e5j0knqKQT2tbiEfcWf5RJv1Q9TjFpAICOnop313T0RHP2qjfG6zeH2yy+L1yYfcVuhH25Kle1zbWsFQBcsqpbB9IynanXFOBCTjMHoIPJTc047DennJJXk1Gdcf0afP4hf65d/fvvnHZ3Dlbx+slP7cKW2Eh26gPHnHLGFtJryjdkzl5rCcmt4lW4OYFHWztcb92YW1XVnNk4doN/cXLvHz24//OTw+QgfInpwc3dzZhfex20qsn3j4PNhG+y607RskHCjaRXazv1oPrVqC9uXNwVR3fZVzH5tr10CSgSSd4Iu9D+uLAJb7HYw2Bt/buPSXu7j0lx/y80GvRbrTRrFdXN/qSziBCcORlAzMk6uFT7f7APYVDVVEEnYvPn2v+7Wu+xy++V+7vvwfUEsHCNR/rJdpCwAAdzYAAFBLAQIUABQACAAIAEJcgkPnnXWBAQwAABkMAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAQlyCQ6axR5IdAwAAEg0AABIAAAAAAAAAAAAAAAAARQwAAGdlb2dlYnJhX21hY3JvLnhtbFBLAQIUABQACAAIAEJcgkNFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAKIPAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAQlyCQ9R/rJdpCwAAdzYAAAwAAAAAAAAAAAAAAAAAABAAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEAAIBAACjGwAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | <ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAEJcgkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ32WaTQUDBfHx9gZJUtqjDGWHvtY0hg7mUI89i1rDEJmypqxpLGELFHGvlT2dxpCtiyDaBQzQrLv+x5TCuH14f3wvOc95z3nd+8998s993/P/fBPMDPR5+IAcwAAAC5DA5TFWe05C0c2lrMsU3XYCwBwzhqidK1CxrfyOa2srcEUbZ5wY0TFhVdZCU3f0yr90pmMGHV1a4FXGHhjv+MlU86DZtjUUCWg2Jyle2+GPyuExastFWd4NNkgSV99CtSG+moq3iiWUdIrZvLubzTlhyFXOoc5fzke9x6SAmhaYTs7jb9+aR8F0Zr4TI8vAe5wXRO32DykhJgF5ozvUFjNHwCAikrlM5IjbeawGmGB7K5d3QFJ4wdLHOLwcAUOTh1YvZxBpvv2t3pWDpAOjNHSH9f+nEdFzRhCda3Qw+l4Vzg0dt0QAQZWj4M44rEXr14zzDGi9o8g8IXMg+lWyw8tzok7RKo3v4gBwbi7045JBEahR8S6XD127RPuLgdprJlrr8R010xEBGEjb2A3w/PmXubpubkqU8SCxFNRq9HplfG9bOHodWSZImnsydjJp/7oJlmZwa3J6AV1eoV81IZjdMHNt4nooHwAsPrKQul0+PYkruw5JrRsGh6Xk3+pGy0atnv+tPlWbESQaJbEr41XCurTn/qjnGi4wyMY/z7VlhpC/zCnca2+maTTh+hL2gjmjNzvX8a6iua0rEIzDqhgyJJiynAQkK0rI4gull7bUntsX+ekLv/aJBM1I4A33hyKlvhJkkk9DQd3Xp1/Pbl3kTXilXQSWXO4zwYW7PQywmFCemC1E1Ous/6fNZdG02w+43wKGp0xz6BYj42Wgvd2V4qay9VbD/ICq4O1J2j38C1OAXKFmryLGYUmuPoIAWIb0maEHcZdyBW4hD2ZkY/GHY2bWf31WAfwvwC42f6BweOA77CjP5MEe2duA0AaWCvq3owmsb7tzQPNNkuhkuoqTmCTsV1OrYW1p3cwgejmMnGSMD7zc488CTkuKdNenBmB2FLksWrzwbQs2iVPkEqpyrKI79T3Npmp3DDTXZqcvmap4pPcqiF46659YPNh20CbamSAlmdY8IEOLJOht+y+/wRYZnKTzUEF6q8+fbSeoOb2hT51MumyESM4JEgfNT9WqSRp3s3OdAKjGwkf7EtUnmyMSBx5Hn2ynTGnVOa3Tqlr11ElzFBAfAhMUTzDBTcnnHcJgh77e7Rmu/Xx6o7KzyBnE7QMWzG0JtT9FUQhkfm/ztEoyjxIwC4i13uFT3d3GBweKGWuFf8RPAr9g9mp4e+xAlNL0ilEb7jtAKPjMFaEch78uUgSn/nFvUBHikEsfmgH4qVEURj3jqcmNlUaHZDPVLUbg4uYzA1rD+DgLiGppASD6uVuzTyHE7YVjUPJh6XnNJ48vzbXN3dNubDMLKeIeW/zh1ImerW3oxA7U5Jy+uOHTexunuJWGtcwdmXagQ4qJJKsXYUxoQXJvZOhLQvy5PmMm3unxZ6ZMsYNcrs/AkOdPZvfa9ZyBbTZjNzzoOTRvASAu1/s3xTd0EjCBrB39sw/DcqzU07UU3Pst+7fnBXkiXwqYEwNkeVa4XqXFbAKpwRX9NFKhHOZ/VeGG5oHocRKvwRd7bt88TERu+vQE9+VexlA1cNJRNCfjo/ravskiO2e0sTw1mWM3dK9oNbg4L4RsWB5lbTfKJgh3wfTL0CTMpGMTm6LoQDkaXZZOjJmf6p593791vLsFwR2FyX5wqvYB8+zZgPiEwp+gXyHvcqyNq3wfB4nxh+AdLork7Kd30x/mh/2OyfmBI5X3uGjMfMTQ+w8sj1yCr7GFr7mgZo0fFDVvcOBYhk3HbyONaRiugeWcxAtNV5X4t55dWx9PLeyfwU3+SqQo8FFGV+VskUl1MqoNt5+G2T//omK5WUUEGgKU6Kl7j4JTNjsEkmRn/c6rv0Gdcj0XhvaZC5NcOeV89vATgkqQgiseXKpEnWKcWVYwlv3PZ4rALSdtlaPnKi6AjNzU+eyZ/9SiqsQhr6mm5Y35pNlr65bwkDhdJeeIk4NHIXxUUbn0Ko4nRoKUk0ut2Fx6WrGRIGwZgTifHzCAgPpEf4WI02gR1p6b/V7dSsa9zHrMhdPnInbKcokwciP9++OKKVH4RRBjZqQC7atLbkjPqSL0lxIe1hsenf114lvAyVEK2ezbQIyUNwJZcck4Mm/t44Jw91xxd/7RnQ7toEOS+j/zVA0/xjNbKFb6yvkyLKgJJnZTG6YXw1F21ZmWXeEfduc+77R2WRdlduE7jbGjmlasLs7D+hBrJUTbAcZT07H2bu9nPpWZWgIJovz7IEy8sWODhKZfjHIBpXO1O2s4hfZshds9p3GIFNX7fM52ckpE/I9S/F7axreCyzQ9y0o9q+FzIg4FrrIe1OZRDqFoJyU/ReRBJXIZdljtc/b8RY9zaaRa2T8Yna8gGSdimRPh5T+L+Jahr/oO5LJ+hZJ/Zt6sJ+pVVy0rfe2g3KDQs1a7oe2HwVrWEQd6Grxw+Pxi3J+VyUTKANsZD6bp8u+wkMhtOIJR1d95Th+ivobzM+3z7xkbQceQN0ah4wgYxfNIJFFqhUTHD+ZV4ab+Cb8NewmSs1lbS05Riw8W/fxz5j2FI4/D87pgyAdlw0vc+WQPgsSyuyT8BEsoXWI578XjhztzPryo0VD4B5HJW/3LdXki15VLoDA7StwZJ3vUB2aPTNDbOxHVpI5oGpo9WYthm+Ubb3KHuQyGqcDbo9Wpg5mCyzDf0iC1oIN8zwOer/aFYmQks50FNvKgfgROF1rMyVyad3Lj2efavTXuV/nPMq3xjnlct/Bno2/gx0EskYS2XtyL3YJToRyijoRqRfl4gkRs2J42aLwXorBJpR/LShAfunr4DEHhnd9eLTLB4MS6PHPGSuOVU7B2pI62T/PLdhvXNkcPPxF8crzbwGDS+r169AJhUXdIxRYpGKyrsk914m638keDvv9PnmDH59W2SXpttSdx4dcuO38wKcHLb57PE8IMDXINrt7k3i3v0CgFfGac1EkJ+UzI43XgH1pTOumaFTacMDlO71ZXbQ1PT29VmfBgRvlnKiP18s1ZkfhGbuKPGuenx7b2ydpmUfAffBfeAev8SquX/Vwux9bWBbKwORmqMrfCBVLY3iHrJxd09VzeVmVXHyl2M/fCthfsns2RAMvy5bb2S9gS8Q+i0dtLydLgejjBsZVl5whKvqCjdMJZ7tc6DEi0sjt2vBriQLT6s+M6Lese0WcoE3NvflOLMuD7wO3v4xtDP94AlsQyj6cuubJCQ1jpfnqijoELrrlLCKoMlGpa44X4kG0Gwo1lySBz3Xrprlq1S66lxoN9iQRFkWup2qQClZ48H9caVpWkAfbH57S105CXdL3WC5Ew2Q2RLmzAdwd8Zf6Xt9Kbo276/lHOTro8EjYLKH9NjBtO9lPs1jqNjivnwxqZuZnzTvu/GqRMz9kUyzy45Vkgb5qufJsOB706qQlyhORjVz8wL13Lvz64xZWxatojp3TdTmacBov90HUzd9eevCporaYUT6g1Gvftv7vtGgyLvwYHf69c+ZfdYQW3w63Rxu9KgcjiRcLI8XLHkDLUKC5+ds3UnoEfq8123koWwdFgC0hezgRnGGvN7PKO2vZ+1Mu1KL34jIStOTexQiJabMVz+TszvuF4/1D27Qg47Z2UxcbR9PERoGpScn5VDghfHQ8gbnB90QULi9nflR3d2YpZtahad+YhPmjQh5d8RFaNH14aEQVQDrCOm9Jz3fwbVn6uVvwaM/PxvE8fGT34bLmjs3R/Cb6KGVRRStyqvoAqM2BKhx7fgNlWiiCYcOsrazf5f3z89sdvbRtUzc6fcc+nV9+jnFGyGzCCKPbQhVgiteJMb5l4wQ/oD5LzK6Qfhn4k84qxRf3mSGzUCew1PLJYXldCzgXVR3Uxc3D87qeKhVjKVVgO6QhdxJecAlGRjCfmSYYWVA0MYxcwkPyuP0GJUYWD3Io86I1ShvWIWqlOMmMwEpjPACAD2luH1WPXpr5ve1dftb+Axj3/4GP6b8c17nZU54SQQvhG9N8Z5YfYHjDBFV5/U7UvwFQSwcI5511gQEMAAAZDAAAUEsDBBQACAAIAEJcgkMAAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s1VdNU9swED2XX6HR3Xb8lQ8mhiFhAsxAmSkcelVsJVGxJddSCOHXdyXZkDQQmpYwJQdbXq/ert6T1pv+8UORo3taSSZ4gn23hRHlqcgYnyZ4riZOFx8fHfSnVEzpuCJoIqqCqARH2hM9SHbIxVdSUFmSlN6kM1qQS5ESZeBmSpWHnrdYLNwGwBXV1JtOlfsgM4wgOJcJrgeHALc2aREa96DV8r3vV5cW3mFcKsJTihEkVpC0EigtMp1EglPKVSUYQCsh8pds5zQvdUSWCj5iOdVjOROLC34LbwekSrCq5gCeinI5JKVeiaxtTbwLXs4VIq0En2BE/AQP4BYkeIi9xuV6rhqfM2OFcBJAUo2HFFM2Mpmrmaj0KCNKW8CT5rSAlJFalmApBeMKo5yMaa7jHR186et8kRj/oKlqsq3fmwdP+8DrochFhQAdpJqa6zjBQRxD2LycEbCAiMY5J0taoXuSa6/aAnhXIqNrVsJZYbRFUlGg0QfuSkozM7L5wqAEOLN/JiSXdTqpEFUm0YPeOZ0IoyVk4oLvo910xscs9YY91jHDVata5qup9L2apTf4GnwoX9eTiaRKL9IJArNGv71vOh1zZiGUE7vB3vkcfv795/tutyGs3X0XxlJRFIRniJt6c8UyS5qey55KxcCWimFNz3N9OLVwNcgbApxuCmBXuV2BdmQk0Lexve28pWN7aHvb9HlmOXajhuQo7K3+4o+j/OQ1yke7UD76YMq3sNp1g46l1Xc73TVa97GTv5Hly4yebjCabWe0AqSGruwtPleO7WtVpPUebHbceH1rGmpbbrvdWv3Zr5QTdlw/iJt6zji1PKoZS+84ldAjBE0NatnBOcsyqrsqO4f+5HaK1NcEs6LMWcrUE5e5rloXXEE3Rk2fIG3iK3zcUVreAvQ1v60Il7obsz7NHtxFzLoijTbEpH8uJv1fxHRCN/KNgD1zSECyCFqNXvRpBXsC/k22zMpGN2Q726Wqnf3Vl3wfRS3shG7H74axbZmcAL7QftSN2s3hDI2aHegXo3b0T+XNW+3C9bPp1fWg+X9y9AtQSwcIprFHkh0DAAASDQAAUEsDBBQACAAIAEJcgkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACABCXIJDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1bW3LcxhX9tlfRNR8uO/GA/UbDIe3io1RRlWy5TCWlSiqVwgA9wzYxwAjAkEOVF+CsIvnLr2XvwAvQIryS3O4GZjCchzgkRdEhTeHRjX6cc8+9txvw/lezcYYudFmZIj/okQD3kM6TIjX56KA3rYd91fvqy4/3R7oY6UEZo2FRjuP6oMdtTZPCIzFPlWBpPwxJ2uchH/SjkOo+xykTKYlYKgc9hGaV+SIvvonHuprEiT5NzvQ4flYkce06PqvryRd7e5eXl0HbVVCUo73RaBDMqrSHYJh5ddBrTr6A5pYeumSuOsWY7L38+plvvm/yqo7zRPeQncLUfPnxR/uXJk+LS3Rp0voMRk8VzONMm9EZTCoUtIf2bK0JIDLRSW0udAXPdi7dpOvxpOeqxbkt/8ifoWw+nx5KzYVJdXnQwwHFjFDRQ0VpdF43NUjT017bxv6F0Ze+MXvm+uE9VBdFNohtO+iHHxDFFKPP7YH4A4WDlL4I+3uY+QP1B+4Pwtfh/nHuq3Jfh/s6nPXQhanMINMHvWGcVQCcyYclkDa/ruqrTLvxNDcWcyafw5wq8xoqMwyoeqThPsaf2z8Jf9wW7C1PknR6rcvpjp22XRIaqpv3Se80U9Z2SuWaeVKxYZ5yS6d+4jeaqOj0CV25/9zfSo9s2zSv9+iv79ah5A8yxf29Viv7jTxQdWbrNuZT63FlBcMiJCJr9wQJEIcMwcwFIhEcQopADogIxAVcEoWkPYaIhVDAEUMK2XqEIacOoeAfHrrGJBLQmL0bgigRgY44EgwRJyqOQErICRNEShnUEAIJeMh2T6htgknEJVwxhTiM0WoyJFCRwYNwDd1TxAhi9mESIiqRtO0RbrUulR06NEmRxEgS2yDIGiTt5Qz1FWJ2NtKNDn5aZ2PyybRewioZp+1pXUzmpEBt8EwLr+c91ZJT/Gg/iwc6g0BxailF6CLOrDRcR8Mir9Fcmf7eqIwnZyapTnVdw1MV+j6+iJ/FtZ49gdpV27ermxR59W1Z1MdFNh3nFUJJkeH5mIuMdM7pfNRwwToFvFsgOgWycx6u7beAEjStNPRflFVbPU7Tp7bGwkcAks/z7Oqo1PH5pDDL09jfczFnX0+TzKQmzv8KVmt7sbigRQiyjqsNQUKpdiRFmZ5eVWDLaPY3XRYHvT5XgSKL3wieu/JFNIoCjnkklAxDqUQIY0tiq0IuAi46v+ASrjYUNT3rizlD8UwvJjsqrcQ7F0+royJb3HLzP44n9bR02QN4ydJO6jAfZdrZiJM4hObkfFDMTr1xMN/Wi6sJXGE/gsHI4Y5s1INi9+9gXmoHta3cNjcvJxF1Ndxx4I+uFhiuH1QzSdJOkMy7MZVzarjXKKZ1WNbsbYif5qZ+1l7UJjlfTNI+8M10PNBz41luk9xXm/t716xr/1yXuc4aYwYap8W08trs2HmqEzOGS1/QQBJbov4CA/B3Uz0qdTvwzOVkHjBXirtmunLbNfWkLMZP84sXYAXXBrC/145yv0pKM7HWhgYQCc71wp5SU8UQSNLuc1Z9MPXEBgyAp7bQgC6n9VlRuqwL3AkcregyPYZsC9XOsNx45jC/feOyNxjTtBk2CSglIcM8lCySmGHp51FlNolDYwPhieI//PpTD43jmRWtv4gHFXioGvJZgCpf5LPeXzQKD6lNluEpquzJFUhD2JOhmem594UJmNdAmB3NwmAs56gYfA9edx6h/RwWdaB4bu6COGunQjhrh5wOxphNzmKbh5LG8uMrmFKXLdfk10XagnFdITW47XPIUsHuoN26kao7+bNJU53Pn4nLxOq6iQVzYwBbc4yBN5tYhTnsIJZoL4V5ixMYm/MdHUtpiFyh1LmbORyHvdvA5XDq4mWPc7zwVryeD4eVri2tfUocq4SshXMTCqsIkHUINBqrnAEFIXVd9UkgIZ187Zdsfsli8eiA3717TZ83BfX4wUF9L6iJgDIPGwm4xNH8V9n13j1gmBTjcZynKHd57ncFrPF0b5FvxdjaJ4qJ8zwophZZD9u0bisc+Uabpt5BzNEHtHbpkJTbSFtAHwYMC8Gx5FQxqbhorTeSIYZFMQ+x4pRy8h54cHnHehqOPQtHKyy8/Xk7DdfiyM83jiMP58c7fon4aEOjtWStJEJ3dfNZVlx+p4eZnjnofWknUdnA06ke2fubmLpOUbydoapprcU3fodUOh5jrVYs8nd1Ygs99FkAqUPXA3mGAkEaV0QDKVQY0dD/km3BmG5nSb/K/SOVzyHNeJKZxNRzSDPrNJ/mNWSU2qVUq4niudYTm5s/z1+UcV7Z7b+78XrseV2V3mA3XgePilcWcAqkEcnCKGIMR6zhFYes4/64j9l9isEBcsIxU84F/r+RfLiJ5GQ3kpNHRTKGYLYUtXxSwQOhrsU44FgGsBCPKGMswhzj8PdL8TMY8pGxLRflNZ7jFYLT7QTb6c/ZS1fZXV4OP7Bvbrzw1Xo3DZxGgQxDDIFdiUgAq+L9cHorKgYrVOgdqNCPjopVx3m13s3aoMkCJUUUEcEkI4xL9dDEzMV3jZXUO0K9Qs7zXdL95x9+HdZJ6WUAdEhGw5AwptqMngehFJIJyRUWkoRNOiMCrCgNcRSFlCkio3tM8I9Nmaxk+M835Y3D7YgnRW6ShbnfLfDgNVm7fQNocvuqVT8x2RJrNyVhrT3Ld9izGWno1XqMCqEZbl7yXmFvBOh1e2cGqPXdrSvS3HpNOmsyWIaXZoYO2/qHba1DaqcaSBmBQWBMmCR2XX3Imh4OOTQMdiAVqBkzEUqswhDuC1shCiOMJaEUtAvrcbVehfa9gxmaZJfdi5N/knd5tfe5TqbeZYVbV8r3sb0BwYr5vkRgX8Dd+0L6WwfrssyGK/o62cWjnXx4j3Yf0IcBhkQAY1inQd5HcOhogDxRRYqTEFIELhj4yfdAytbE+2SFndFuiffoUSXeNh3gS4g2iTcLu+jLdgWtmMIyUkpSiFMwlN9r5r2e45NNiyuzG8fmUXFMA8gdYDVMBSE0kpiwRkuUYEgEmU0hSAjU+8SiT2SgIBUXKpIRh4ij2O+W5i0blScbNyp/2Wmj8pdHvVHZbFPytZby4bYp9WxSQjc2RLQY6FkNE4aCg94nr6ZF/Sfk2qggs0MxSlxC6gtcY8uc2Kd7y03dTYEN6Pj2+nPfaVS6NMPFNw3+Cy7aa9XQgFnVcVm7VAD5lyoypHjxE4nGJ0eELxbO0VLoeze4dAncBbb1GYgTxIIaJ4biUiP9ahpnwc3hpreE29r0fTm8jYDbr8O2Ak4ARMUXgBPebDHKiN4ecLYE+NcmhzkDuAmqpoNa5+Cb42Raa+T8SbUD2OzmYMPSKzU+E7Pf0zS1P8W//oQ+yUBib998hn778b/o07dv/I0Iij67QWRackYPSRREq86Pat49Yt4lCu/IFF9i6lSPTd/7mwVV7nMbT9UOTPG7MgW0/PavfztWHi8pPFBSddQj2xfCRHb2+TjdjRSxLJ/4e5j0knqKQT2tbiEfcWf5RJv1Q9TjFpAICOnop313T0RHP2qjfG6zeH2yy+L1yYfcVuhH25Kle1zbWsFQBcsqpbB9IynanXFOBCTjMHoIPJTc047DennJJXk1Gdcf0afP4hf65d/fvvnHZ3Dlbx+slP7cKW2Eh26gPHnHLGFtJryjdkzl5rCcmt4lW4OYFHWztcb92YW1XVnNk4doN/cXLvHz24//OTw+QgfInpwc3dzZhfex20qsn3j4PNhG+y607RskHCjaRXazv1oPrVqC9uXNwVR3fZVzH5tr10CSgSSd4Iu9D+uLAJb7HYw2Bt/buPSXu7j0lx/y80GvRbrTRrFdXN/qSziBCcORlAzMk6uFT7f7APYVDVVEEnYvPn2v+7Wu+xy++V+7vvwfUEsHCNR/rJdpCwAAdzYAAFBLAQIUABQACAAIAEJcgkPnnXWBAQwAABkMAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAQlyCQ6axR5IdAwAAEg0AABIAAAAAAAAAAAAAAAAARQwAAGdlb2dlYnJhX21hY3JvLnhtbFBLAQIUABQACAAIAEJcgkNFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAKIPAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAQlyCQ9R/rJdpCwAAdzYAAAwAAAAAAAAAAAAAAAAAABAAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEAAIBAACjGwAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | ||
*Process: | *Process: | ||
Line 202: | Line 179: | ||
*Question Corner: | *Question Corner: | ||
# Recall the theorems related to angles in a circle. | # Recall the theorems related to angles in a circle. | ||
− | ==Concept # | + | |
+ | ==Concept # 3. Finding the Circumference of a circle== | ||
===Learning objectives=== | ===Learning objectives=== | ||
# The children understand that the distance around the edge of a circle is known as circumference. | # The children understand that the distance around the edge of a circle is known as circumference. | ||
Line 215: | Line 193: | ||
{| style="height:10px; float:right; align:center;" | {| style="height:10px; float:right; align:center;" | ||
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | |<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | ||
− | ''[http:// | + | ''[http://karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div> |
|} | |} | ||
*Estimated Time : 45 mins | *Estimated Time : 45 mins | ||
Line 221: | Line 199: | ||
Note books, compass, pencil, mender, scale. | Note books, compass, pencil, mender, scale. | ||
*Prerequisites/Instructions, if any: | *Prerequisites/Instructions, if any: | ||
− | # | + | # Circles basics should have been done. |
− | |||
*Multimedia resources: | *Multimedia resources: | ||
*Website interactives/ links/ / Geogebra Applets | *Website interactives/ links/ / Geogebra Applets | ||
Line 249: | Line 226: | ||
# What is the name of that constant ? | # What is the name of that constant ? | ||
# Try to collect more information on Pi. | # Try to collect more information on Pi. | ||
− | ==Concept # | + | |
+ | ==Concept # 4. Finding the area of a circle.== | ||
===Learning objectives=== | ===Learning objectives=== | ||
# The child should understand that the area of a circle is the entire planar surface. | # The child should understand that the area of a circle is the entire planar surface. | ||
Line 263: | Line 241: | ||
{| style="height:10px; float:right; align:center;" | {| style="height:10px; float:right; align:center;" | ||
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | |<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | ||
− | ''[http:// | + | ''[http://karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div> |
|} | |} | ||
*Estimated Time:90 mins | *Estimated Time:90 mins | ||
Line 289: | Line 267: | ||
{| style="height:10px; float:right; align:center;" | {| style="height:10px; float:right; align:center;" | ||
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | |<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | ||
− | ''[http:// | + | ''[http://karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div> |
|} | |} | ||
*Estimated Time: 45mins | *Estimated Time: 45mins | ||
Line 297: | Line 275: | ||
Prior knowledge of circle, radius, square and area of square. | Prior knowledge of circle, radius, square and area of square. | ||
*Multimedia resources: Laptop. | *Multimedia resources: Laptop. | ||
− | *Website interactives/ links/ / Geogebra Applets | + | *Website interactives/ links/ / Geogebra Applets: This file was done by Bindu. |
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIADB3c0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ12XdzQb3vvHY8VoNLQ0okbQYdUeqU1VrRJ7KxpB+1HUTBUNETSoXaVGVemwS+2VSO3SWi01owi1asT6JD/9/n7n98f3nnOfe88999znec77uefeVwLC7BYnBz8HAADgNDLUtzwde067Mxvw1EpVHvUDAFwNRvq61mGT6y6c/rxjvJGJ2la8Uwr6pX1sdYj3OhbyTyQkYfC+7y+ybDu1uYYPIL5liNhCEAJva4WHcbyFefybkGhhuQrmfxFwhWQxiZG4dEkE3dsve4hOkBXpFeul5E//fH68v956HBmiurnc8kJ9s00zdEizeTn/1M7mN8vIHYZpCElMr+1NGocWgdMwSK6vLiiCkoqKMUWrYMi26XxECuhSTPwGAcqYNNeVcB7h6Ph+fJtvfPt4a56ox09DBRmoP9p969gdvZ4scP0coeDrd3lNTvTWQ3dhg4id5afe9tohv+3jnRM/76iu5vbGaoTRjsKjNRKPUFRs3Rh1UBjy9XvdK5CCCwW9ste51mcoLOqyTWWeiv/MOEQ0tRON2Dq5eST3rd7U7ij84cqwyLy92wl0MAjYmY4sKCm54kQx29VVSAGJqjXaX2LqhQVWewNFoIY4PhTXLhFZgMMBnSif9uctZei4i4kUw7V1ztE3ET/DxDpeeOFkY/o9IyPtIB0H25Oh2RM/FANRcsIu2quHMnaPV0XNPOP7SJJHSkYl1gLSXnlvvioqAGRa/P0B89RMu7Pj1cVvfNq7kzmFvBPz84Ue0354MTkHWfhfjJwrYoj/Mtto9aH9EFV4O+XlyWGYkDqkv8wBQMSxUHuFyegUPG8u3hMJmxq/kooRV4w3bt+fHNZt8bHaAqBqA4dY4MsvYVoRViVYfrZQM3o8d2dtv+wEsGzlsW2BmvJ3nezTI1swcneH+weE72r06HiocolB8KopyFxLYkhqlrTRvYloJB9CuQjnLd8gp8v4H7WaGxrg2P163klVmoyUlBUl0dbK6vV49dz1hp6JHS8lDVyAz/+p9qhxV0Nfqax5eoOrkS9p2W9UNf0Meutkj8qM5tsb3GDv8x5VJWOCuJNcLvbBRjLz41yFWyoSd0W+8UaZVyVZzD4SQjWdo8Qsy36LS23zbPo2m07ufnamm5E85P1u3SP1tJgE3V1ndOwNf997brs1EsHB2C1ea6hQbJ1N/cqaj0m8A3Jk4+8ktzMcoOiFqQMn3Dp3Cmy9aC/rE05c00RYCC02v7QaKDleovkVWYOFPnnIQjlZiVik4TWmzlIJT2C0BfDH1f8v2wf3YAbsVi0YRNrZ3pQBhewFmI2NjaUA890vCgJYUsZNOFuTPwrOhqfjPdZ6buBiRsfGjAK4Pt/BxcDA0LPRGkg4W584UTflAS6m8L9rFOt+TTRC7r+zPY8bi9893VMjJxt7wQjIscPPx/a/E0sePLJQ/MK1b0bANBFkqlASfu9HuFJ5OmjRg92L62hCFOoNTC3T7dm8DLVEcXqchpAmUzTvF9R5GkR/Hdc8TFpFFh9xV/io7ertHJ6u02gbnGUkzi7w94ynz8N4eXlP8/LMmIeB7rsr7btdlTLs3nyjeIK5exSerNATRPoD0z+aC/YsBqdWHIRH+yLh8Q4bZ0cyDYU1olK1EnevjWTS8t2S00Gs88G8ds05/3yv0r32/pdkjIqmpqBM665lndZd3H6tmBBxtgKTYXGSr+Kb41igGa7i/LD3MsPRAealbz7keDAsWVBdZSs3E72zxEmLAe3eDf7t4gcrkzYG03wnWpNx+U8VupLwNghE4cb7OM/ZtojVjoGeHkT7VdNsABH4pzKgUFGsE/zlUiIOqHBvVPwGk3vLd78QIT/YQINBsgDUA7Y4g8gONYRQNDU15Ty62AxNTJjaZ83xI+LorY8fVh4XD+UoS71dxzCxzpmml+O9U4VQ2RMVKY4o1BWkp6dF2MiSVnZ/b3MmxNmfwRnfnIfIVo0ktsTGxiKsrTO26I4G9IWT9vCyy+NQLKGF/cJS3b257w6if5w4gRKHdKMmoNFq+a2/+tlC8CqVIW/BiZQZ7TNzrxoBFKLlvlaXS7ZqDlZCCAt9in2XcP6qY44c71mEdyiBhz+evi81t0voHQ6d4DHONs7ASpReoCik+B/tUlYDNA17AJrjyZiok0mGIagiyhRR8FujWFFAH3yp5GghA8k2QlKYrMXQ7VNhskzsaBgCfE5BB8z5xK//NSURrL3yA92CWcHoq1coXng0qmFGZfpNF3LzUqzVdmDcMlTuiLEBUBvrNqV/UT/uAfyUb1i5XtbRBlGCr/ws4TTTr0bC3C+lyj2dAQ3fzwxvcPjqVOIBwGfotpdccLsrFuRn10b9FJslOAiQVdEbKsj4FGrtvexrc7KV5frUgxSDmbvFfM4yTPFEpXRfBSBtATwk9pVVlUt0cTX94U/k7IpvO7zU0don/dF+nnqbFdqDiEPfhInEqhK9rd42IKjW0X7od6OAFr9GsdJlKdqBcGbwiiUJ0bZeKLeJiEUfHx0VtrcX6OFTa9/ZOb8z9URUjjmX7td/eAPkOi/I6dnI2pQlaEfzOLa8OnBRVsa2wfeKeb50wbnbMy8XjbNUpf51CgjPkqCvomc6dX8fyTyGSHKoXQgWDKyvMbs+nskvY6skOzx/d8C2Rcdrb3UsJT39vP0/r7mreniWHrkJW5WYsuu/ripYq2wXkmk7WOioDiB/9gm4/ybZ99YzIcEOeJVpnpqyuMBA38vrgYxGWtLVkjN3CsnhNOYgVOZ7pibytOOYMmHzEy/pnqAXo8H9GbRe+d13U7YChfOqnzyVyib8ZOWLRcCLscH/kKcd2GlvPIe3cXGuhXep/EjqxnSJiOviK/C2QdpxwA/P50aB2gelzuRIzuiN0RKDtXE+7uEbk2WVI0ijX8rx0zK2JiZ4pS4Ti7JO89CKGvvIvWJfGWu4jK1h7t7TzrZZPXdX9djU2LBeHaBWuOOr8IjMciBXJsYN7Sz/szLinQ/MDEap4aq0iejSE34I9ddt+2TmcqYHWDkd5HNRf6W/KW+E5Hs+NuhjC3TqTlRHVFnYxs0LC3Xvn9mvFKm0iBLWxRaQVx5bL7p7Lol7W0H6ajrvq7pMAokdYNvrRXjl++OGqlQuCsdI4vKXvIthQRICUHH3vsVZgxDBk8b5GVaLO4Sdesn7ydTW5AaERbN92Ukrd9O+kr6yEN++W4jwdmNrDCvYOEbNQM2TAZro71E9QCp6nCKS0Tl1JmW9Grjy8YmQWW6Fukmtg+zA2sn62Pn5X7GqTC1/MhzVAoXBo0nGQyU2W+TASIAPcYiFviRAVNF4NrZTEcPqZf5MSNx0NImcqCJ2ntQWICbvoMVG3lz8HFD0XdN8pxz0WY3fVV0o2moLbkhee2MpUByyJi9xNhqecPo4+J7+YTT4aY94mlQfEWbgD37s3on22lQf3v91y391LUp3sNvvxhoNPKaWVWKuDZjFMNYl+6aEUAcD52iH9W+DNTnXglk2mb1/HTaLhKOaIi52X+4bf61gJyHy2t4lAiClmdyEkG+2T6TFrW5VKlLln2y2cfAIzJ34vf7TazKk+zX5eewul1Cu7SSEZJwx+GEw5NhfD2hCEUbXdQ8LOmO7aw2XKWurDLQp6EzwKoiZvjcIKm71l92NchIvjtsahhoSNvC84B6fnz1VNcC5kZBbqX/iU4O4I57ZMXERG83yMIX3kSgYyldvRY3p1YTwpSZQQ09EzedtKKEGyrz2DP1Pru7AJFwtZngNjNPBVdbyOJRO8GWV61a1VZwtrOnOUo53uHhrAsazJMgInbFOJDNVkt2dpQgtDEd4zpxXudOseRg3pb4BnYFJ7HAw0OPY6YEVmlNU799rme7lfzaPSdTkSnlppxi3CC88aiWhDWjUFVGtH37tZrOsLWxINDGi+mFgoDv5c1LWJp606TOWTsbtR2E9BMubJd/ADac2JP8jkxBr55wwUS4nJCN3AfbdABcjJyToJ0U9TrAciag+GUK9Y8qZh13V7lUk6bbcWfzQrQ833PEKj/YWHNLKOTj2uEwQFfT7jV7OYyXGgeP6+oyPkWFN49U3D2q3W/elv1Uvjl6hi2q6ukhr7Y3HfyGLSo8gsJnZvYVRD+53RrOIKJlsEt87Trm8dfL6eUZWeys6QuZC1tV7C99IHOhguyIs+jWaJVf6Y0qeHwkUfeK/BCcnKrrRTg5FcN4UUE0fDYqcD/4x1/+hTnZASi6lcG23jrMXtHCsoL1NaPnaFs3JiR26rWrcmrRnwTMOpEt/0aY/rrO2s5uCLPE22LPz/rVGkKXgPlLaegWfuUXZ+lQ9Meua0+9nHry1l0N41vZQT1Rz0oSNQs+xcr+Z+Xz+bLSIK2hvUpJp6cli3RWVs2lThZqS6b/h8emGTeJ7Kr9SdqM+kdqCVxDN9uZj/FpV2UEyWen4IG625w+HPOa/xD6zBR9+tMcEOylpZDURm8HbQkvKTBxgYS1pFo4fnx+KFlYVF+tz8BSd8QLy1DBDuPniNZA6Ild8e5/oaWEMmHlEwQ4Enj8pDLGgl+cYYv8hKhmo7/n7sMG8Moa7YoJXSx6cKxze6aNHPyEo12syrG32WER9uLif9IJNu9W/dt8sq6A0DhB75K+qHjKN7bQzHW05vZsz5XEbZQ/fVejruAfTnEpO3emfussKuszIIc+OAPL8aSqK4yXb4CZ4IGtJqCnnt9GlszFiufjRGr/b+Sgect3KXLH8c9blkDUUT4SRcKiNfyRdcQ9QUBcXmpew4ZGKAaWCbpcy2I5PomCawvlYbmIUyEdbgJ12cuX+BAzcEIum8CwFsxmZs0P9K989rvR1/zmQu4Epc1K4xrnzybec2X6ena4mMWDyrPnWbbp5aZaDtxVf/ZYsC2L3ZHl8495Du4R93Af/ynRCy6IHSb/bezzf1onQECFcr0fvdl0jtDTnvPJC30ROGLFbKcV06VN3ARrWmXw683m8w85ohZo1a9Cl+7pJYoo9TcEqA7BaYAITlObMutXXexA5utgI3CO9SnVdVn4dyfLDLhFTuWRu1b/c3iaJgPB+VNGI2MYWdBYl5hbdiUEQrJHsVkXHnp4EazZ6ie1KUx1fy1SZefaCajJexf19oInywaYE+Fv9i4psrZqPH5ns+eiiIi/+/iy/2aDR16XvtBHasBKOMV0JoBlXeGuhkvh7XsiznDmpuQc2P/2j2l83weHkq8kr0c5lzGmvDp/cCseK5TuXzT5nsqbCK8+YPvIgGbgMi2p+RR5Yhv/6+NV0YUU0b1AgTi3dEbLocbkIdMuMQVqD+wTndNWlzGUQ0G51VLlq9MhlGJT2VqF2n/GnxSuD+pcvddXGJcnu1Qoxh4+s9CC1QCMkdAtdOlYH6P8pme29xr84bcu7vKX5wpGMcS5DpryquTinpXog/K5Kqy9WPBKVefRI2Rue97BJjqQrlyxN1N0iKZyihDtI9BQqxk9RYl8EXy72lx2qg6FnCQf9/lwXCiDTsosiRF2EwemKBxUH7+mog7obnwSrQhrmR9dJw3WL8CC/9+ydulssGgoCzAHnDI4jb1x/6eoMpN30HG6YFcSGJ3xmrPRTdEnY7dyBUIiGs6csstfpunrpG2ul1MPqNAvcI+2OM8b/tkn6tm5Ff6rKakKo53TWvzcNfm39fP0yKdCbchvtMvzlaa/MjXDhDvVrgIurhcc0hUEbvecUV2rhGhasr3UHLNh8D6B2bAjZPWJKw/wFq14dBUT2cyQMKj5gUsHSy1Up85dfcNZZ83Ts4VuG+AtTU4DTZnTTTL9Czy36fwBQSwcIQCnmA+0QAADxEAAAUEsDBBQACAAIADB3c0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIADB3c0MAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VvrbtvIFf6dfYoBCyxa1JLnfsnKWTjJbhsgewGcFkWLYkGJY5lrilRIypaC/dFn6iP0BfpKPTND6mpZl2Q3SlDnMiTncGbOd+4zdO/r6ShDd7as0iK/iEgXR8jmgyJJ8+FFNKmvOzr6+tkXvaEthrZfxui6KEdxfRFxR5kmF5EQXEgmZMfovu7wfkI7xvaTjsH8mmFClVVJhNC0Sp/mxffxyFbjeGCvBjd2FL8uBnHtJ76p6/HT8/P7+/tuO1W3KIfnw2G/O61gAFhmXl1EzcVTGG7lpXvmySnG5Pxv370Ow3fSvKrjfGAj5FiYpM++eNK7T/OkuEf3aVLfAMNUAx83Nh3eAFNK0AidO6oxIDK2gzq9sxW8u3Trma5H48iTxbnrfxKuUDbnJ0JJepcmtryIcJcYqZWIUFGmNq8bCtLMdN6O0btL7X0YzF35eXiE6qLI+rEbB/3yC6KYYnTmGhIaCo2UoQuHZ5iFhoaGh0YEGh5e54GUBxoeaDiL0F1apf3MXkTXcVYBcGl+XYLQ5vdVPcusX0/zYMEzOQOeqvQdEMN8EQpIw8LP8BnH/l/geYlBsjRjXU4OnLCdDrRM7zcffS8O2Vb+6Db+5CMTBob3YlAszSfwmf/r/23MyB5jcX3GcP9+E0r+m7DYO2/to9eYBKpuHG2jNrUdVc5ImEHCOF0nSIBBSAWqLRAx0CiKwAQQEYgLuCUaSdcqxBR0cMSQRo6OMOQtQmj4jys/mEQCBnNPFRgiIjARR4Ih4g2JIzAf5I0RDJMyoBACCXjJTU+oG4JJxCXcMY04rNHZoSJAyOBFuIfpKWIEMfcyUYhKJN14hDv7ltotHYakSGIkiRsQTBnMOJgw0GvEHDeygSvNx5N6BaLBKGkv62I8lwVQgxNaOLjglFb835NeFvdtBjHhykkSobs4c9bgJ7ou8hrNDTE8G5bx+CYdVFe2ruGtCv0c38Wv49pOvwXqqp3b0w6KvPqxLOoXRTYZ5RVCgyLD8zUXGVm6pvNVww1b6uDLHWKpQy5dqwfnLaAHTSoL8xdl1ZLHSfLKUSzcAiD5Q57Nnpc2vh0X6SobvXMfXnp2MsjSJI3zv4KyulkcLmgRbZyfaqON0LpdSVEmV7MKVBhN/27LAvqo7BLJNVeKca6djc1CD2eia5gwSlEJ/zEYsBrEzvbgFaaUEuDVlSFSQs9sa5ef2N7NBRRP7YLXYZnOVcVdv6qeF1ky7/bcv4jH9aT0aQK4xdKxdJkPM+s1xNs1xODBbb+YXgXVYGGsN7Mx3OGwgP7Qo47AM1ABEXLYtP3Qehq3sjkV9jTYU+BW19Jk3k8M9RS+7YfWU4HyhqU1nJKWS4LbadLK+zMcNVbT+iqn+i6iT/K0ft3e1OngdsGqe+H7yahv5wq0Oib5UGP2ztc0rHdry9xmjUKDLCfFpAr2uaTriR2kI7gNHQ0ksRPXX2AB4Wlih6VtF575FCwA5nvxsqpuPPZDfVsWo1f53RvQhbUF9M7bVfaqQZmOncqhPgSBW7vQqiStYoghyfJ7zgKB9YGLFQBP7aAB25zUN0XpkyxwKdA6w8vsCJIrVHv18ho6h/lPPldzeKKi/zN4tXngC/0LgUH3g6rmlTLOxjexy+caprN4ZssVGPx43xXJOjiAvecALHzsE0KQ7tjaoBh1YxBoDAN6e1pxUoB3haZOT7uKUq6NIJho4hKLmUvYBYG8gzJDjdEEkvEIvQt5fMhjHRDOAFdcdni6JkVQrYDhBpr5ZGTLdDDHq4yTdFJ5UOH1STOIbOc8FGhBtiJN9kS6oasyl3KjURpytVEMuIEXjPsVxJYaig5Q8HxRdIS1tb4ZO8E6pLWvbRy43Lir63S6pKageek7sLQ1C1v4lxoC3y2k9GC1ckm67uLPaZLYfL7cTcUQeyrGsqwGxWgU5wnKfcL1Ii0HmY0WGUCMnQGgmMzlFgQwqdveJIzYjLMhfbDBJdknR9lS69wbGWO+JGN2mDU9CDR9HGgIuDa/g8VCgIdSFDeF7gwHa0bv2idTQKnjH81I8+gdWTInEFeZTtFlS3/ZUl1CZqJJl0pmNBecGG6IgsesmeESEpTOAyZ8KdzzTSMOy36bB06rEBRcRpZegzAe1YBLSFDW5J9syDwGosHjcl+3+vDKmtETwrrYKMaEoIayedDe5kjxunGveJ3puARxOoNo5nxjpzWsADouoi/fTor6K8cdukDhBv0RhVX5JHZ1+ZBrLiJAGOd9owA+Pgb4JLkCPK8XCaVPi3jUSrd1Cg86K+QdEyHeL3Eud0Pn+Kcr0CHkwSuuUYyCm0DBI6ASffk7gr/q7PvjqeejVW/jSWlRBzgCrkvkf8KU0Q65hEWeolzkulyqOi7rH13g9LLoENI1WnGpNafwh0vqZWO6HO4w2DHmSkqlluPxbomRFYld7I8iOXEU8YMogveXSivFmZGEQrIuQ1qjuxIcpDESaiRMCWOHocgbFL1zACcRYGzA3OUrwgAfOJH5rdSSQoQxBuYWlDFNqW6UUlPFDacEKlCuVpPE3XCKFaV8wB3sraXixLV0G6hQN2tAFbuymxPFWyUFLXXPCMVMuXB+CKrqWFNXnySIGvIEI0H9sIFMx++0ewzB9onRUjBQTUW2G/oj9d3lZ1Hf6a5LGglomODcqIAP5IYKAgwjWmJwiMQw+UEKvNWU0UtpLWcMGcI/Ls+aJOGfGznk88fzx1UZPT9KRoSGusG3pyEnyj+enK7s0D1fk9RlqO6ebyb5jwuoakabJ/gf068sAMZN9S199RU2PrBgALkE3AWRbcF4TCG4VlGlo3GWDtJ6Dl3mJP8qr21ZWb/rtLmXdmvt2G1i/pC/KeO8cgeigWZpj26rnWWzYZFvkx+KqSsI1sU4hrdIoIl/IoGqDw3UllD5xFBZuv1qKCRfQCMvope77DIsohVrGP5YRLeryxJkD20FuGRpTWWoOERntkeHDcX+6bjs+JGl/l+7d8PePxnQO6JrVn+8DHArA2660nAFzltQafTnI4Lj9jx+FRHortYEYiQETowhntNvOs0edqe1BSq61HAIoJoJrLmWn40c7MnIQTb+p9X9jtvBW1F+8smivppxvjgKc3fSOgxNPzRHp5uTaZqlcTlbXf7uXJJ3KRFKagJRQWMoMH+FI51VqF6ePlQPl0frUH2YpPvhep019brPl47ZVGIf2QkcXbqzLmcaU6M0EYxRIzz2qquF0AYLISQG+A/c6ZSre9PzDf3fh027c+Rx/sNeyMpPckfEgEYrTJQRxtWOpN0RMZRiJrmkXAt+IKr60cOSppLYA1F9kohuHJasb9TRLmZEQA5hJBfKUNZ4CbdnJyC7pozB5YG7yWYT0+J6/QRlvwMUFA5a0NpP+Z9/77/9Z05SNPucl2iJsVFCMmiMCsmf6ArwKFxRRQw1jEhx4IEJXvUjFwtU//uvQ46hYKDTxvXhE5QOcTmz0Mq43VMXBnWj86DtSlKiAVbB2aHnUOQxpZ/7lL2A3VV8b9koOAWNFdJgykFl3bk8180nN9hAnsyp1EZQqg/0JmTtUBa0dHqYAyC7TkxPFVAKeEIJCFrJJeQTuP2ECUKg5EpxTAzX2H0ieRCgbAXQl7CyO/d9mascJpn/jYX5UfXA6+8BUO/K2XZscr0/2O7bo/WseKsEyE5vAQWHgsWBBAyTzH1IED506kJBjgl2v8uhKOZbnfD58hd5/rPX5rc1nv0PUEsHCAV3ixbjCgAASjIAAFBLAQIUABQACAAIADB3c0NAKeYD7RAAAPEQAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAMHdzQ9Y3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAMREAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAwd3NDBXeLFuMKAABKMgAADAAAAAAAAAAAAAAAAACOEQAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAAKscAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | <ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIADB3c0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ12XdzQb3vvHY8VoNLQ0okbQYdUeqU1VrRJ7KxpB+1HUTBUNETSoXaVGVemwS+2VSO3SWi01owi1asT6JD/9/n7n98f3nnOfe88999znec77uefeVwLC7BYnBz8HAADgNDLUtzwde067Mxvw1EpVHvUDAFwNRvq61mGT6y6c/rxjvJGJ2la8Uwr6pX1sdYj3OhbyTyQkYfC+7y+ybDu1uYYPIL5liNhCEAJva4WHcbyFefybkGhhuQrmfxFwhWQxiZG4dEkE3dsve4hOkBXpFeul5E//fH68v956HBmiurnc8kJ9s00zdEizeTn/1M7mN8vIHYZpCElMr+1NGocWgdMwSK6vLiiCkoqKMUWrYMi26XxECuhSTPwGAcqYNNeVcB7h6Ph+fJtvfPt4a56ox09DBRmoP9p969gdvZ4scP0coeDrd3lNTvTWQ3dhg4id5afe9tohv+3jnRM/76iu5vbGaoTRjsKjNRKPUFRs3Rh1UBjy9XvdK5CCCwW9ste51mcoLOqyTWWeiv/MOEQ0tRON2Dq5eST3rd7U7ij84cqwyLy92wl0MAjYmY4sKCm54kQx29VVSAGJqjXaX2LqhQVWewNFoIY4PhTXLhFZgMMBnSif9uctZei4i4kUw7V1ztE3ET/DxDpeeOFkY/o9IyPtIB0H25Oh2RM/FANRcsIu2quHMnaPV0XNPOP7SJJHSkYl1gLSXnlvvioqAGRa/P0B89RMu7Pj1cVvfNq7kzmFvBPz84Ue0354MTkHWfhfjJwrYoj/Mtto9aH9EFV4O+XlyWGYkDqkv8wBQMSxUHuFyegUPG8u3hMJmxq/kooRV4w3bt+fHNZt8bHaAqBqA4dY4MsvYVoRViVYfrZQM3o8d2dtv+wEsGzlsW2BmvJ3nezTI1swcneH+weE72r06HiocolB8KopyFxLYkhqlrTRvYloJB9CuQjnLd8gp8v4H7WaGxrg2P163klVmoyUlBUl0dbK6vV49dz1hp6JHS8lDVyAz/+p9qhxV0Nfqax5eoOrkS9p2W9UNf0Meutkj8qM5tsb3GDv8x5VJWOCuJNcLvbBRjLz41yFWyoSd0W+8UaZVyVZzD4SQjWdo8Qsy36LS23zbPo2m07ufnamm5E85P1u3SP1tJgE3V1ndOwNf997brs1EsHB2C1ea6hQbJ1N/cqaj0m8A3Jk4+8ktzMcoOiFqQMn3Dp3Cmy9aC/rE05c00RYCC02v7QaKDleovkVWYOFPnnIQjlZiVik4TWmzlIJT2C0BfDH1f8v2wf3YAbsVi0YRNrZ3pQBhewFmI2NjaUA890vCgJYUsZNOFuTPwrOhqfjPdZ6buBiRsfGjAK4Pt/BxcDA0LPRGkg4W584UTflAS6m8L9rFOt+TTRC7r+zPY8bi9893VMjJxt7wQjIscPPx/a/E0sePLJQ/MK1b0bANBFkqlASfu9HuFJ5OmjRg92L62hCFOoNTC3T7dm8DLVEcXqchpAmUzTvF9R5GkR/Hdc8TFpFFh9xV/io7ertHJ6u02gbnGUkzi7w94ynz8N4eXlP8/LMmIeB7rsr7btdlTLs3nyjeIK5exSerNATRPoD0z+aC/YsBqdWHIRH+yLh8Q4bZ0cyDYU1olK1EnevjWTS8t2S00Gs88G8ds05/3yv0r32/pdkjIqmpqBM665lndZd3H6tmBBxtgKTYXGSr+Kb41igGa7i/LD3MsPRAealbz7keDAsWVBdZSs3E72zxEmLAe3eDf7t4gcrkzYG03wnWpNx+U8VupLwNghE4cb7OM/ZtojVjoGeHkT7VdNsABH4pzKgUFGsE/zlUiIOqHBvVPwGk3vLd78QIT/YQINBsgDUA7Y4g8gONYRQNDU15Ty62AxNTJjaZ83xI+LorY8fVh4XD+UoS71dxzCxzpmml+O9U4VQ2RMVKY4o1BWkp6dF2MiSVnZ/b3MmxNmfwRnfnIfIVo0ktsTGxiKsrTO26I4G9IWT9vCyy+NQLKGF/cJS3b257w6if5w4gRKHdKMmoNFq+a2/+tlC8CqVIW/BiZQZ7TNzrxoBFKLlvlaXS7ZqDlZCCAt9in2XcP6qY44c71mEdyiBhz+evi81t0voHQ6d4DHONs7ASpReoCik+B/tUlYDNA17AJrjyZiok0mGIagiyhRR8FujWFFAH3yp5GghA8k2QlKYrMXQ7VNhskzsaBgCfE5BB8z5xK//NSURrL3yA92CWcHoq1coXng0qmFGZfpNF3LzUqzVdmDcMlTuiLEBUBvrNqV/UT/uAfyUb1i5XtbRBlGCr/ws4TTTr0bC3C+lyj2dAQ3fzwxvcPjqVOIBwGfotpdccLsrFuRn10b9FJslOAiQVdEbKsj4FGrtvexrc7KV5frUgxSDmbvFfM4yTPFEpXRfBSBtATwk9pVVlUt0cTX94U/k7IpvO7zU0don/dF+nnqbFdqDiEPfhInEqhK9rd42IKjW0X7od6OAFr9GsdJlKdqBcGbwiiUJ0bZeKLeJiEUfHx0VtrcX6OFTa9/ZOb8z9URUjjmX7td/eAPkOi/I6dnI2pQlaEfzOLa8OnBRVsa2wfeKeb50wbnbMy8XjbNUpf51CgjPkqCvomc6dX8fyTyGSHKoXQgWDKyvMbs+nskvY6skOzx/d8C2Rcdrb3UsJT39vP0/r7mreniWHrkJW5WYsuu/ripYq2wXkmk7WOioDiB/9gm4/ybZ99YzIcEOeJVpnpqyuMBA38vrgYxGWtLVkjN3CsnhNOYgVOZ7pibytOOYMmHzEy/pnqAXo8H9GbRe+d13U7YChfOqnzyVyib8ZOWLRcCLscH/kKcd2GlvPIe3cXGuhXep/EjqxnSJiOviK/C2QdpxwA/P50aB2gelzuRIzuiN0RKDtXE+7uEbk2WVI0ijX8rx0zK2JiZ4pS4Ti7JO89CKGvvIvWJfGWu4jK1h7t7TzrZZPXdX9djU2LBeHaBWuOOr8IjMciBXJsYN7Sz/szLinQ/MDEap4aq0iejSE34I9ddt+2TmcqYHWDkd5HNRf6W/KW+E5Hs+NuhjC3TqTlRHVFnYxs0LC3Xvn9mvFKm0iBLWxRaQVx5bL7p7Lol7W0H6ajrvq7pMAokdYNvrRXjl++OGqlQuCsdI4vKXvIthQRICUHH3vsVZgxDBk8b5GVaLO4Sdesn7ydTW5AaERbN92Ukrd9O+kr6yEN++W4jwdmNrDCvYOEbNQM2TAZro71E9QCp6nCKS0Tl1JmW9Grjy8YmQWW6Fukmtg+zA2sn62Pn5X7GqTC1/MhzVAoXBo0nGQyU2W+TASIAPcYiFviRAVNF4NrZTEcPqZf5MSNx0NImcqCJ2ntQWICbvoMVG3lz8HFD0XdN8pxz0WY3fVV0o2moLbkhee2MpUByyJi9xNhqecPo4+J7+YTT4aY94mlQfEWbgD37s3on22lQf3v91y391LUp3sNvvxhoNPKaWVWKuDZjFMNYl+6aEUAcD52iH9W+DNTnXglk2mb1/HTaLhKOaIi52X+4bf61gJyHy2t4lAiClmdyEkG+2T6TFrW5VKlLln2y2cfAIzJ34vf7TazKk+zX5eewul1Cu7SSEZJwx+GEw5NhfD2hCEUbXdQ8LOmO7aw2XKWurDLQp6EzwKoiZvjcIKm71l92NchIvjtsahhoSNvC84B6fnz1VNcC5kZBbqX/iU4O4I57ZMXERG83yMIX3kSgYyldvRY3p1YTwpSZQQ09EzedtKKEGyrz2DP1Pru7AJFwtZngNjNPBVdbyOJRO8GWV61a1VZwtrOnOUo53uHhrAsazJMgInbFOJDNVkt2dpQgtDEd4zpxXudOseRg3pb4BnYFJ7HAw0OPY6YEVmlNU799rme7lfzaPSdTkSnlppxi3CC88aiWhDWjUFVGtH37tZrOsLWxINDGi+mFgoDv5c1LWJp606TOWTsbtR2E9BMubJd/ADac2JP8jkxBr55wwUS4nJCN3AfbdABcjJyToJ0U9TrAciag+GUK9Y8qZh13V7lUk6bbcWfzQrQ833PEKj/YWHNLKOTj2uEwQFfT7jV7OYyXGgeP6+oyPkWFN49U3D2q3W/elv1Uvjl6hi2q6ukhr7Y3HfyGLSo8gsJnZvYVRD+53RrOIKJlsEt87Trm8dfL6eUZWeys6QuZC1tV7C99IHOhguyIs+jWaJVf6Y0qeHwkUfeK/BCcnKrrRTg5FcN4UUE0fDYqcD/4x1/+hTnZASi6lcG23jrMXtHCsoL1NaPnaFs3JiR26rWrcmrRnwTMOpEt/0aY/rrO2s5uCLPE22LPz/rVGkKXgPlLaegWfuUXZ+lQ9Meua0+9nHry1l0N41vZQT1Rz0oSNQs+xcr+Z+Xz+bLSIK2hvUpJp6cli3RWVs2lThZqS6b/h8emGTeJ7Kr9SdqM+kdqCVxDN9uZj/FpV2UEyWen4IG625w+HPOa/xD6zBR9+tMcEOylpZDURm8HbQkvKTBxgYS1pFo4fnx+KFlYVF+tz8BSd8QLy1DBDuPniNZA6Ild8e5/oaWEMmHlEwQ4Enj8pDLGgl+cYYv8hKhmo7/n7sMG8Moa7YoJXSx6cKxze6aNHPyEo12syrG32WER9uLif9IJNu9W/dt8sq6A0DhB75K+qHjKN7bQzHW05vZsz5XEbZQ/fVejruAfTnEpO3emfussKuszIIc+OAPL8aSqK4yXb4CZ4IGtJqCnnt9GlszFiufjRGr/b+Sgect3KXLH8c9blkDUUT4SRcKiNfyRdcQ9QUBcXmpew4ZGKAaWCbpcy2I5PomCawvlYbmIUyEdbgJ12cuX+BAzcEIum8CwFsxmZs0P9K989rvR1/zmQu4Epc1K4xrnzybec2X6ena4mMWDyrPnWbbp5aZaDtxVf/ZYsC2L3ZHl8495Du4R93Af/ynRCy6IHSb/bezzf1onQECFcr0fvdl0jtDTnvPJC30ROGLFbKcV06VN3ARrWmXw683m8w85ohZo1a9Cl+7pJYoo9TcEqA7BaYAITlObMutXXexA5utgI3CO9SnVdVn4dyfLDLhFTuWRu1b/c3iaJgPB+VNGI2MYWdBYl5hbdiUEQrJHsVkXHnp4EazZ6ie1KUx1fy1SZefaCajJexf19oInywaYE+Fv9i4psrZqPH5ns+eiiIi/+/iy/2aDR16XvtBHasBKOMV0JoBlXeGuhkvh7XsiznDmpuQc2P/2j2l83weHkq8kr0c5lzGmvDp/cCseK5TuXzT5nsqbCK8+YPvIgGbgMi2p+RR5Yhv/6+NV0YUU0b1AgTi3dEbLocbkIdMuMQVqD+wTndNWlzGUQ0G51VLlq9MhlGJT2VqF2n/GnxSuD+pcvddXGJcnu1Qoxh4+s9CC1QCMkdAtdOlYH6P8pme29xr84bcu7vKX5wpGMcS5DpryquTinpXog/K5Kqy9WPBKVefRI2Rue97BJjqQrlyxN1N0iKZyihDtI9BQqxk9RYl8EXy72lx2qg6FnCQf9/lwXCiDTsosiRF2EwemKBxUH7+mog7obnwSrQhrmR9dJw3WL8CC/9+ydulssGgoCzAHnDI4jb1x/6eoMpN30HG6YFcSGJ3xmrPRTdEnY7dyBUIiGs6csstfpunrpG2ul1MPqNAvcI+2OM8b/tkn6tm5Ff6rKakKo53TWvzcNfm39fP0yKdCbchvtMvzlaa/MjXDhDvVrgIurhcc0hUEbvecUV2rhGhasr3UHLNh8D6B2bAjZPWJKw/wFq14dBUT2cyQMKj5gUsHSy1Up85dfcNZZ83Ts4VuG+AtTU4DTZnTTTL9Czy36fwBQSwcIQCnmA+0QAADxEAAAUEsDBBQACAAIADB3c0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIADB3c0MAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VvrbtvIFf6dfYoBCyxa1JLnfsnKWTjJbhsgewGcFkWLYkGJY5lrilRIypaC/dFn6iP0BfpKPTND6mpZl2Q3SlDnMiTncGbOd+4zdO/r6ShDd7as0iK/iEgXR8jmgyJJ8+FFNKmvOzr6+tkXvaEthrZfxui6KEdxfRFxR5kmF5EQXEgmZMfovu7wfkI7xvaTjsH8mmFClVVJhNC0Sp/mxffxyFbjeGCvBjd2FL8uBnHtJ76p6/HT8/P7+/tuO1W3KIfnw2G/O61gAFhmXl1EzcVTGG7lpXvmySnG5Pxv370Ow3fSvKrjfGAj5FiYpM++eNK7T/OkuEf3aVLfAMNUAx83Nh3eAFNK0AidO6oxIDK2gzq9sxW8u3Trma5H48iTxbnrfxKuUDbnJ0JJepcmtryIcJcYqZWIUFGmNq8bCtLMdN6O0btL7X0YzF35eXiE6qLI+rEbB/3yC6KYYnTmGhIaCo2UoQuHZ5iFhoaGh0YEGh5e54GUBxoeaDiL0F1apf3MXkTXcVYBcGl+XYLQ5vdVPcusX0/zYMEzOQOeqvQdEMN8EQpIw8LP8BnH/l/geYlBsjRjXU4OnLCdDrRM7zcffS8O2Vb+6Db+5CMTBob3YlAszSfwmf/r/23MyB5jcX3GcP9+E0r+m7DYO2/to9eYBKpuHG2jNrUdVc5ImEHCOF0nSIBBSAWqLRAx0CiKwAQQEYgLuCUaSdcqxBR0cMSQRo6OMOQtQmj4jys/mEQCBnNPFRgiIjARR4Ih4g2JIzAf5I0RDJMyoBACCXjJTU+oG4JJxCXcMY04rNHZoSJAyOBFuIfpKWIEMfcyUYhKJN14hDv7ltotHYakSGIkiRsQTBnMOJgw0GvEHDeygSvNx5N6BaLBKGkv62I8lwVQgxNaOLjglFb835NeFvdtBjHhykkSobs4c9bgJ7ou8hrNDTE8G5bx+CYdVFe2ruGtCv0c38Wv49pOvwXqqp3b0w6KvPqxLOoXRTYZ5RVCgyLD8zUXGVm6pvNVww1b6uDLHWKpQy5dqwfnLaAHTSoL8xdl1ZLHSfLKUSzcAiD5Q57Nnpc2vh0X6SobvXMfXnp2MsjSJI3zv4KyulkcLmgRbZyfaqON0LpdSVEmV7MKVBhN/27LAvqo7BLJNVeKca6djc1CD2eia5gwSlEJ/zEYsBrEzvbgFaaUEuDVlSFSQs9sa5ef2N7NBRRP7YLXYZnOVcVdv6qeF1ky7/bcv4jH9aT0aQK4xdKxdJkPM+s1xNs1xODBbb+YXgXVYGGsN7Mx3OGwgP7Qo47AM1ABEXLYtP3Qehq3sjkV9jTYU+BW19Jk3k8M9RS+7YfWU4HyhqU1nJKWS4LbadLK+zMcNVbT+iqn+i6iT/K0ft3e1OngdsGqe+H7yahv5wq0Oib5UGP2ztc0rHdry9xmjUKDLCfFpAr2uaTriR2kI7gNHQ0ksRPXX2AB4Wlih6VtF575FCwA5nvxsqpuPPZDfVsWo1f53RvQhbUF9M7bVfaqQZmOncqhPgSBW7vQqiStYoghyfJ7zgKB9YGLFQBP7aAB25zUN0XpkyxwKdA6w8vsCJIrVHv18ho6h/lPPldzeKKi/zN4tXngC/0LgUH3g6rmlTLOxjexy+caprN4ZssVGPx43xXJOjiAvecALHzsE0KQ7tjaoBh1YxBoDAN6e1pxUoB3haZOT7uKUq6NIJho4hKLmUvYBYG8gzJDjdEEkvEIvQt5fMhjHRDOAFdcdni6JkVQrYDhBpr5ZGTLdDDHq4yTdFJ5UOH1STOIbOc8FGhBtiJN9kS6oasyl3KjURpytVEMuIEXjPsVxJYaig5Q8HxRdIS1tb4ZO8E6pLWvbRy43Lir63S6pKageek7sLQ1C1v4lxoC3y2k9GC1ckm67uLPaZLYfL7cTcUQeyrGsqwGxWgU5wnKfcL1Ii0HmY0WGUCMnQGgmMzlFgQwqdveJIzYjLMhfbDBJdknR9lS69wbGWO+JGN2mDU9CDR9HGgIuDa/g8VCgIdSFDeF7gwHa0bv2idTQKnjH81I8+gdWTInEFeZTtFlS3/ZUl1CZqJJl0pmNBecGG6IgsesmeESEpTOAyZ8KdzzTSMOy36bB06rEBRcRpZegzAe1YBLSFDW5J9syDwGosHjcl+3+vDKmtETwrrYKMaEoIayedDe5kjxunGveJ3puARxOoNo5nxjpzWsADouoi/fTor6K8cdukDhBv0RhVX5JHZ1+ZBrLiJAGOd9owA+Pgb4JLkCPK8XCaVPi3jUSrd1Cg86K+QdEyHeL3Eud0Pn+Kcr0CHkwSuuUYyCm0DBI6ASffk7gr/q7PvjqeejVW/jSWlRBzgCrkvkf8KU0Q65hEWeolzkulyqOi7rH13g9LLoENI1WnGpNafwh0vqZWO6HO4w2DHmSkqlluPxbomRFYld7I8iOXEU8YMogveXSivFmZGEQrIuQ1qjuxIcpDESaiRMCWOHocgbFL1zACcRYGzA3OUrwgAfOJH5rdSSQoQxBuYWlDFNqW6UUlPFDacEKlCuVpPE3XCKFaV8wB3sraXixLV0G6hQN2tAFbuymxPFWyUFLXXPCMVMuXB+CKrqWFNXnySIGvIEI0H9sIFMx++0ewzB9onRUjBQTUW2G/oj9d3lZ1Hf6a5LGglomODcqIAP5IYKAgwjWmJwiMQw+UEKvNWU0UtpLWcMGcI/Ls+aJOGfGznk88fzx1UZPT9KRoSGusG3pyEnyj+enK7s0D1fk9RlqO6ebyb5jwuoakabJ/gf068sAMZN9S199RU2PrBgALkE3AWRbcF4TCG4VlGlo3GWDtJ6Dl3mJP8qr21ZWb/rtLmXdmvt2G1i/pC/KeO8cgeigWZpj26rnWWzYZFvkx+KqSsI1sU4hrdIoIl/IoGqDw3UllD5xFBZuv1qKCRfQCMvope77DIsohVrGP5YRLeryxJkD20FuGRpTWWoOERntkeHDcX+6bjs+JGl/l+7d8PePxnQO6JrVn+8DHArA2660nAFzltQafTnI4Lj9jx+FRHortYEYiQETowhntNvOs0edqe1BSq61HAIoJoJrLmWn40c7MnIQTb+p9X9jtvBW1F+8smivppxvjgKc3fSOgxNPzRHp5uTaZqlcTlbXf7uXJJ3KRFKagJRQWMoMH+FI51VqF6ePlQPl0frUH2YpPvhep019brPl47ZVGIf2QkcXbqzLmcaU6M0EYxRIzz2qquF0AYLISQG+A/c6ZSre9PzDf3fh027c+Rx/sNeyMpPckfEgEYrTJQRxtWOpN0RMZRiJrmkXAt+IKr60cOSppLYA1F9kohuHJasb9TRLmZEQA5hJBfKUNZ4CbdnJyC7pozB5YG7yWYT0+J6/QRlvwMUFA5a0NpP+Z9/77/9Z05SNPucl2iJsVFCMmiMCsmf6ArwKFxRRQw1jEhx4IEJXvUjFwtU//uvQ46hYKDTxvXhE5QOcTmz0Mq43VMXBnWj86DtSlKiAVbB2aHnUOQxpZ/7lL2A3VV8b9koOAWNFdJgykFl3bk8180nN9hAnsyp1EZQqg/0JmTtUBa0dHqYAyC7TkxPFVAKeEIJCFrJJeQTuP2ECUKg5EpxTAzX2H0ieRCgbAXQl7CyO/d9mascJpn/jYX5UfXA6+8BUO/K2XZscr0/2O7bo/WseKsEyE5vAQWHgsWBBAyTzH1IED506kJBjgl2v8uhKOZbnfD58hd5/rPX5rc1nv0PUEsHCAV3ixbjCgAASjIAAFBLAQIUABQACAAIADB3c0NAKeYD7RAAAPEQAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAMHdzQ9Y3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAMREAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAwd3NDBXeLFuMKAABKMgAADAAAAAAAAAAAAAAAAACOEQAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAAKscAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | ||
*Process: | *Process: |
Latest revision as of 16:02, 17 May 2017
Concept # Measurements in circles: 1. Radius and Diameter
Learning objectives
- Ability to measure radius, diameter, circumference, chord length and angles subtended at the centre and on the circumference of the circle.
- Radius, diameter and chord lengths are linear measurements.
- Relate the size of the circle with radius.
- They realise that to draw a circle knowing the measure of radius or diameter is essential.
- There can be infinite radii in a circle.
- Diameter is twice the radius.
- The students should understand what a chord is.
- Chords of different lengths can be drawn in a circle.
- Chord length can be measured using a scale and its units is cm.
- The length of the chord increases as it moves closer to the diameter.
- The longest chord in the circle is its diameter.
- Distance of chord from the centre is its perpendicular distance from the centre.
- A chord divides the circle into two segments.
- Angle at the centre of the circle is 360º.
- Angles in circles are measured using protractor.
- Circumference and area are calculated using formula.
Notes for teachers
Activity No # 1. Measuring radius and diameter.
- Estimated Time: 15 mins
- Materials/ Resources needed:
- Laptop, goegebra tool, projector and a pointer.
- students' geometry box
- Prerequisites/Instructions, if any:
- Circle and its basic parts should have been done.
- Multimedia resources: Laptop
- Website interactives/ links/ / Geogebra Applets : This file was done by ITfC-Edu-Team.
- Process:
- Initially the teacher can explain the terms: circle, its centre, radius, diameter and circumference.
- Ask the children “What parameter is needed to draw a circle of required size ?”
- Show them how to measure radius on the scale accurately using compass.
- Show them to draw a circle.
- Given diameter, radius = D/2.
- Also the other way i.e. If a circle is given, then its radius can be measured by using scale which is the linear distance between centre of the circle and any point on the circumference.
- To measure diameter, measure the length of that chord which passes through the centre of the circle.
Then she can project the digital tool 'geogebra.' and further clarify concepts.
- Developmental Questions:
- Name the centre of the circle.
- Name the point on the circumference of the circle.
- What is the linesegment AB called ?
- Name the line passing through the centre of the circle.
- Using what can you measure the radius and diameter.
- Name the units of radius/diameter.
- Evaluation:
- How do you measure exact radius on the compass?
- Are the children able to corelate the radius/diameter of a circle with its size ?
- Question Corner:
- If the centre of the circle is not marked , then how do you get the radius for a given circle.
- How many radii/diameter can be drawn in a circle?
- Are all radii for a given circle equal ?
- Is a circle unique for a given radius/diameter ?
- In how many parts does a diameter divide the circle ? What is each part called ?
Activity No # 2 Measuring a chord in a circle.
- Estimated Time : 10 minutes
- Materials/ Resources needed:
Laptop, geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any:
- Multimedia resources:
Laptop, geogebra file, projector and a pointer.
- Website interactives/ links/ / Geogebra Applets
- Process:
- Show the geogebra file and ask the following questions.
- Developmental Questions:
- The teacher can point to centre of circle and ask the students as to what it is.
- She can point to radius and ask the students to name it.
- Then ask them if any two points on the circumference are joined by a line segment what is it called ?
- How many chords can be drawn in a circle ?
- Are lengths of all chords the same ?
- Name the biggest chord in a circle.
- How do you measure a chord and in what units ?
- Evaluation:
- Were the students able to distinguish between radius, diameter and chord ?
- Question Corner:
3 After drawing a chord,what are the two segregated parts of the circle called ?
Concept # 2. Angles in circles
Learning objectives
- students should understand that the angle at the centre of the circle is 360 degrees.
Notes for teachers
Activity No # 1.The angle at the centre is double the angle at the circumference
- Estimated Time : 40 minutes
- Materials/ Resources needed : Laptop, geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any
- Circles and its parts should have been done.
- Multimedia resources: Laptop and a projector.
- Website interactives/ links/ / Geogebra Applets
- Process:
- Project the geogebra file and ask the questions listed below.
- Developmental Questions:
- Name the centre of the circle?
- Name the minor arc.
- Name the point on the circumference of the circle at which the arc subtends an angle.
- Name all radii from figure.
- What type of triangle is triangel APO ?
- Name the two equal sides of the triangle APO.
- Recall the theorem related to isosceles triangle.
- Name the two equal angles.
- Name the exterioe angle for the triangle APO
- Recall the exterior angle theorem.
- What relation do you observe between <p and <x.
- Similarly try to explain the same with triangle PBO.
- If <APO is half of <AOQ and <BPO is half of <BOQ what can you conclude about angles <AOB and <APB.
- What relation do you observe between the angle at the centre and that on the circumference formed by the same arc ?
- Evaluation:
- In a circle, how many angles are subtended by an arc at its centre?
- In a circle, how many angles are subtended by an arc at its circumference?
- Question Corner:
- What are the applications of this theorem.
Activity No # 2. Angles in a circle.
- Estimated Time: 40 minutes
- Materials/ Resources needed:Laptop, projector, geogebra file and a pointer.
- Prerequisites/Instructions, if any
- Knowledge of a circle, angles, arcs and segments.
- About the types of angles.
- Skill of drawing a circle , angles and measuring them.
- Multimedia resources : Laptop, Projector.
- Website interactives/ links/ / Geogebra Applets: This file has been done by Mallikarjun Sudi of Yadgir.
- Process:
- The teacher can recall the concept of circle, arc segment.
- She can then project the geogebra file , change slider and make clear the theorems about angles in a circle.
Developmental Questions:
- Name the minor and major segments.
- Name the angles formed by them.
- Where are the two angles subtended ?
- What is the relation between the two angles.
- Name the major and minor arcs.
- What is an acute angle?
- What is an obtuse angle?
- What type of angles are formed by minor arc ?
- What type of angles are formed by major arc ?
- What are your conclusions ?
- Evaluation:
- How many angles can a segment subtend on the circumference ?
- What can you say about these angles ?
- Question Corner:
- Recall the theorems related to angles in a circle.
- Process:
- The teacher can recall the concept of circle, arc segment.
- She can then project the geogebra file , change slider and make clear the theorems about angles in a circle.
Developmental Questions:
- Name the minor and major segments.
- Name the angles formed by them.
- Where are the two angles subtended ?
- What is the relation between the two angles.
- Name the major and minor arcs.
- What is an acute angle?
- What is an obtuse angle?
- What type of angles are formed by minor arc ?
- What type of angles are formed by major arc ?
- What are your conclusions ?
- Evaluation:
- How many angles can a segment subtend on the circumference ?
- What can you say about these angles ?
- Question Corner:
- Recall the theorems related to angles in a circle.
Concept # 3. Finding the Circumference of a circle
Learning objectives
- The children understand that the distance around the edge of a circle is known as circumference.
- The children learn to measure the circumference of the circle.
- Derivation of formula for circumference.
- They understand what is pi.
Notes for teachers
The circumference of a circle relates to one of the most important mathematical constants in all of mathematics. This constant pi, is represented by the Greek letter П. The numerical value of π is 3.14159 26535 89793 , and is defined by the ratio of a circle's circumference to its diameter. C = п. D or C = 2пr.
Activity No # 1 Derivation of formula for circumference and the value for pi.
- Estimated Time : 45 mins
- Materials/ Resources needed:
Note books, compass, pencil, mender, scale.
- Prerequisites/Instructions, if any:
- Circles basics should have been done.
- Multimedia resources:
- Website interactives/ links/ / Geogebra Applets
- Process:
- Ask the children to draw five circles with different radii.
- Let them carefully measure their circumferences using wool.
- Mark the distance around the circle on the wool with a sketch pen.
- Measure the length of the measured wool using a scale.
- Make a table with columns radius, diameter and circumference
- For every circle find Circumference / diameter.
- Round C/d to two decimal places.
- Observe the answers in each case. It would be aprroximately 3.14 .
- The value 3.14 is the value of pi which is constant.
C/d = п or C = п d or C = 2п r.
- Developmental Questions:
- Have you noted down radius, diameter and their respective circumferences.
- Check if your calculations are correct.
- What do you infer from the observed results ?
- Evaluation:
- Are the children taking correct measurements.
- Are they comparing the results of C/d with all circles.
- Are they noticing that it is constant .
- Are they questioning why it is constant?
- Question Corner:
- How do you derive the formula for circumference of a circle ?
- What is the name of that constant ?
- Try to collect more information on Pi.
Concept # 4. Finding the area of a circle.
Learning objectives
- The child should understand that the area of a circle is the entire planar surface.
- Derivation of the formula for area of the circle.
- Area of the circle is dependent on its radius.
- The formula for area of a circle is derived by converting the circle into an equally sized parallelogram.
Notes for teachers
1.Proof for area of a circle refer to them following link. http://www.basic-mathematics.com/proof-of-the-area-of-a-circle.html
Activity No # 1. To discover a formula for the area of a circle.
This activity has been taken from website : http://www.mathsteacher.com.au/year8/ch12_area/07_circle/circle.htm
- Estimated Time:90 mins
- Materials/ Resources needed:A compass, pair of scissors, ruler and protractor , pencil and chart papers.
- Prerequisites/Instructions, if any
- Prior knowledge of circle, radius and parallelogram area.
- Skill to measure and draw accurately.
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process:
Refer this website : http://www.mathsteacher.com.au/year8/ch12_area/07_circle/circle.htm
- Developmental Questions:
- Calculate the area of the figure in Step 6 by using the formula: Area = base x height
- What is the area of the circle drawn in Step 1?
- It appears that there is a formula for calculating the area of a circle. Can you discover it?
- Evaluation:
- Is the student able to comprehend the idea of area.
- Is the student able to corelate that the base of the parallelogram formed is half of the circle's circumference.
- Question Corner:
- What is the area of a parallelogram ?
- Is there any other way by which you can deduce the formula for area of a circle ?
Activity No # 2. Proving area of the circle = п r² using geogebra applet.
- Estimated Time: 45mins
- Materials/ Resources needed;
Laptop, geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any:
Prior knowledge of circle, radius, square and area of square.
- Multimedia resources: Laptop.
- Website interactives/ links/ / Geogebra Applets: This file was done by Bindu.
- Process:
- Show the students the two figures circle and square.
- Tell them that the radius and side of square are of same measure as it would help us in deducing the formula for area of circle.
- Formulas are easy ways of calculating area .
- If formulas are not known then the entire area in question can be divided into small squares of 1 unit measure and can deduce the formula of the whole.
- First the number of full squares is counted.
- Then two half squares would add up to 1 full square.
- Ignore less than quarter . Take 3/4 as full.
- Finally adding up the whole number would give us the full area of the figure in question.
- Divide area of circle with that of square and deduce formula for square with known formula for square.
- Developmental Questions:
- Which are these two figures?
- What inputs do you need to draw a circle ? And for a square ?
- What do you observe as constant in the two figures ?
- Do you think the size of both the figures are same ?
- How do we find it ?
- What is the formula to find the area of a square ?
- When we do not know the formula for area, how do we deduce it ?
- Count the number of squares in the entire area of circle ?
- How to add half and quarter squares ?
- Approximately how many total 1 unit squares cover the circle ?
- So, what is the area of the circle ?
- What are we trying to deduce (get) through this activity ?
- Fine lets try dividing the area of circle with area of square and observe the proceedings while we try to deduce the formula for area of circle.
- Evaluation;
- Has the student understood the concept of area.
- Was the student aligned with the assignment and was he able to follow the sequence of steps ?
- Is the student able to appreciate the analogy ?
- Question Corner;
- What is Pi ?
- What do you understand by area ?
- What is the formula to find the area of square and that of a circle ?
Hints for difficult problems
Project Ideas
Math Fun
Usage
Create a new page and type {{subst:Math-Content}} to use this template