Difference between revisions of "The longest chord passes through the centre of the circle"

From Karnataka Open Educational Resources
Jump to navigation Jump to search
m (added Category:Circles using HotCat)
 
(61 intermediate revisions by 8 users not shown)
Line 1: Line 1:
<!-- This portal was created using subst:box portal skeleton  -->
+
Investigating the diameter is the longest chord of a circle.
<!--        BANNER ACROSS TOP OF PAGE        -->
 
{| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;"
 
|-
 
|style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank]
 
|}
 
While creating a resource page, please click here for a resource creation [http://karnatakaeducation.org.in/KOER/en/index.php/Resource_Creation_Checklist '''checklist'''].
 
  
= Concept Map =
+
===Objectives===
__FORCETOC__
+
To understand longest chord passes through the centre and it is the diameter
<mm>[[circles_and_lines.mm|flash]]</mm>
+
===Estimated Time===
 +
30 minutes
  
= Textbook =
+
===Prerequisites/Instructions, prior preparations, if any===
To add textbook links, please follow these instructions to:
+
Prior knowledge of point, lines, angles, polygons
([{{fullurl:{{FULLPAGENAME}}/textbook|action=edit}} Click to create the subpage])
 
  
=Additional Information=
+
===Materials/ Resources needed===
==Useful websites==
+
* Digital : Computer, geogebra application, projector.
#[http://www.regentsprep.org/Regents/math/geometry/GP14/PracCircleSegments.htm www.regentsprep.com] conatins good objective problems on chords and secants <br>
+
* Non digital : Worksheet and pencil, compass, strings
#[http://www.mathwarehouse.com/geometry/circle/tangents-secants-arcs-angles.php www.mathwarehouse.com] contains good content on circles for different classes<br>
+
* Geogebra files :  [https://ggbm.at/c4eg7q2u Diameter is longest chord.ggb]
#[http://staff.argyll.epsb.ca/jreed/math20p/circles/tangent.htm staff.argyll]  contains good simulations
+
{{Geogebra|c4eg7q2u}}
  
==Reference Books==
+
===Process (How to do the activity)===
 +
Use the geogebra file to show how diameter is the longest chord.
  
= Teaching Outlines
+
Move the points on the circle to show the changes in the triangle.
Chord and its related theorems
 
==Concept #1 CHORD==
 
===Learning objectives===
 
The students should be able to:
 
# Recall the meaning of circle and chord.
 
# They should know the method to measure the perpendicular distance of the chord from the centre of the circle.
 
# State Properties of chord.
 
# By studying the theorems related to chords, the students should know that a chord in a circle is an important concept .
 
# They should be able to relate chord properties to find unknown measures in a circle.
 
# They should be able to apply chord properties for proof of further theorems in circles.
 
# The students should  understand the meaning of congruent chords.
 
  
===Notes for teachers===
+
What is the condition with respect to sides for formation of a triangle. Sum of two sides is larger than the third side.
# A chord is a straight line joining 2 points on the circumference of a circle.
 
# Chords within a circle can be related in many ways.  
 
# The theorems that involve chords of a circle are :
 
* Perpendicular bisector of a chord passes through the center of a circle.
 
* Congruent chords are equidistant from the center of a circle.
 
* If two chords in a circle are congruent, then their intercepted arcs are congruent.
 
* If two chords in a circle are congruent, then they determine two central angles that are congruent.
 
  
===Activity No 1[Theorem 1: Perpendicular bisector of a chord passes through the center of a circle.] ===
+
Compare the chord length with sum of two radii. When is the triangle reduced to a line segment.
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time <br>
 
20 minutes
 
*Materials/ Resources needed:
 
Laptop, Geogebra file, projector and a pointer.
 
*Prerequisites/Instructions, if any
 
# The students should know the basic concepts of a circle and its related terms.
 
# They should have prior knowledge of chord and construction of perpendicular bisector to the chord.
 
*Multimedia resources: Laptop
 
  
*Website interactives/ links/ / Geogebra Applets
+
What can you conclude about the chord? When is it the largest?
<ggb_applet width="1280" height="572" version="4.0" ggbBase64="UEsDBBQACAAIABa+VEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ5WU/z/TCRzHP6dNs8gOrVBnsnu4tiK1HZHLatgSM4Tk25TRECH5bk0aFXG+z8MpnC8zX/Kli9D5ds2XwjL2mOFqxS75/nW+rPN4XPfL3eNxj8c9Hu/X8/V6vP+AZ5KtjaUSVAMKAIASkYC322nuTrwh8juECDlVAAAOJOJxDuHCmfxq0mWy2svpVSfPrL4AI/gJ86f+Yd0qAxAQBQLqhkFAcrc9FeRumyF2pjYkCwr6sq24d+kgQp1oIWZMgckbqefMtPxcQFrk8VbH1qBTS7PVIVoJANCotr4PQEAAxhdwX5z8bmhtaW5CWzQ+mf1m9LJHbuZcuajgTK/35hU1aEN/w8Cv1VXDjfyN2QFzRsZ5bVe3zPjfXz7cnOryki6sTC8WPRWLNz0HfVa2uu7DYrdRcbP8iuCIVfVRksTU1Ena3tPQPx3uWJVSFFzpbzouEmW/Xatb4prcjdFq8emfNjX8vL3daqYkR0cAkL/wd/8bOzemzf3wwVsgEin29vZSqNTJwae1tSphYWHtKyvYOG/JXpwNidTB49nlsFjQkJAQSmCgflSlhq6uLuXWLcO+16+pBSOxEQVgiS9OT0+v1oUSGyvrxlVtw+Hw9uXlUCMTE7G+cr4+odyhp9j2GILI4mPsZ3Tevu7vTwIkF3BqzWKx+JJ9+cUGXmcnXjAxETffNDsKpNYjmExm7sEm4S+srq6u40ZGOXxHoHtPcFBQ6oqqkEjq35xfnfEp/IoHx+f7YKOE1h4ecQKhsIemSkeCyaqlbq/Y54co+/38/CgxMfll9GXQINeOEwFVxfsOfXK+5QoimMOwlUjC0egCy5Nz6enpePlinURq05WSO+saeP/AQB9Ns1BcSkpKLSY1xwF62EsRDjAcZqI6JTlT2CeK3xqjsvfAkJFLqO/5NFgy+0gXGIbUyMrPK0Q0uDOXyag0Xoa/vd8j56PUvCyi76k7AVl5TgH3UYnDwfWoEbY6Q7K/PCNy/QwGEMdflAbCOcLoGpTYWN8ZbYhNXhq3P9Xqis2dCTduPVPgsgufoLbr5D4yVqu2qWnjk9zwbubieHQNrXaIgQo0cClqq0DXKzu6hW8ZbEsxaL/NS5gndl/j4+ppDEkP76NU3fvY5SACQctIU1NTWc4qprBUnjOhtu5YcmL3lgGW7TvVIVfng+KOVJNU8UXXZLSSSf78fBDciLV/oY2tvkYFVSy+iG78wTnz2R/9zAdXQBHH772PP9f2Lt7SWmsPCpzbEyldtA9fm7XqwBljMGoWlpZ1j9baUEcuwG4ubkk7v2Hd7QSRjRPBTDZFi8MuifHkj6ZpHDjAjSG9UvAoYWnKcmgpAqlARSiTLZjc0FB2RaenHQ1HElqcLim9dKlh60zFXzxkGnczmd+5sVTajLWCTZ6l20Qq4ZDP9SB0BNl2QjtBU7es0dEatIIjGOJSfcv009tPn3O3fixTNfzpXGpZfdR2hA5jAMdEgpJMW6up7h8iQ5XQfu8VYUhUTxqRcsPOO+BxwTV3nAoaau/87iOYXOrWfR0gQrwiLMshKlEKxxFcHS/9G1gchlORZEsvBpFTYvuoyWN9LoWxn208zbwYkF5qchtTWatDIDhATEytQgzLHi58NomMHBcpLCYn0uvB5Knwq1eLA3703WsRYlCcYWYJ8cJVbC6jrJ5l+kaUpnRUWjwuAi0cmnK0PkyzNTsUvHFw4AkDcmx+BO9VNxtbWJLHctCAeSqgQ5sRw/qDwYLPjbuaV9/IhHbPQ+QRBPuB0wlj9yy6E85nV/MfkrV+uw4t2V4vzZ/ngMszzP2ItMprIw+M7MycoP+0wH/K4X+8x7geNSIJGuQy17JjYIBoboOvOuvJ+BNQSwcI5+oQr24FAACoBQAAUEsDBBQACAAIABa+VEMAAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s3VhLU9swED63v0KjexQ/4hAYTKcwvGZK6RQOvSqycNTakmsphPDru5JssAmUvmiT+mDLq/Xu+vtWu7J339yUBbrmtRZKpjgkAUZcMpUJmad4bq4GE/xm7/VuzlXOpzVFV6ouqUnxyGqiGy12pHpPS64ryvgFm/GSvlOMGmduZky1MxwuFgvSGiCqzod5bsiNzjAC51KnuBnsgLneQ4vYqUdBEA4/nb3z5gdCakMl4xhBYCVltUKszGwQKWZcmloJMG2UKh6TnfCish4FU/JIFNyO9UwtTuUlzO7TOsWmnoNxpqrlAa3sm+hG1vo7ldXcIBqk+C1GNEzxPlyiFB/gYatyPjetzrGTgjsNRpi1h4ww3jOdm5mq7SijxkpAkxe8hJCRWVYgqZSQBqOCTnlh/e29frVr40Vq+pkz00bbzLubodWB6QNVqBqBdaAqd+epO9OimlEYAYVOtaBLXqNrWtjZRgLWzlTGe1IqRemYRdpwADEE5CrOMzfy0cKgAnMue65ooZtgmFJ1ptFNimOSjDFapjgh4xFGtz7nnJJ70wtx2ziNu1KzLLqx7A4bkJ6Ba3/T4RoEZMvBFZMwenG4DjYdrqhBKyKTP5NcTJUllRmSrpJ8UMUyV9KhJL5XAwCg+/VfwVOh12Feh8IlTvHUe2t8PMKN99ai7+04AIXkPmozE+yL5BoqVNSiFPjBicgybmu6D6jHqgevNdyB8o/z+nTqaZ7bu7so2Gry/b0w+0mUhNvdwxeswYhEY59UCQmSJGqs/QIX/Kv0j2h7TrEoq0IwYe5Sp7A5fioN9GXuOob2sXYg+MJ5dQmmz+VlTaW2fdnrtIv0x5Gn64J8QKJJ0D2ipCl+o5448It7EAZkFP4/PEzXhYcB1E8HfEAmSW8pbDvgExKGW92JZIM46Jf0M5H5Htiv6dOVKn74XLHuNtLD55h80U7a3W2FsSMSatdLNMQn0KMr6B39DHpHa4Ke+xpyu4ntyQuA95EuH+B25HcJb1fgy74PXw2WWmyyNSoi437xaPdmiW+j0FC3x5NOwQ83toqsUnnYbgofUsl/nEq+LlSG7uPD7oFiMon9UoCtdhyPN5axO8MPeMs8b3yFt+OfqWDH//JDqsOb/dreSsLwwQqckDgYx/ebXMfoFomjoLtgf6vUDbv/O+y9+ytiB+2foL1vUEsHCHPmVY51AwAAfBIAAFBLAwQUAAgACAAWvlRDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgACAAWvlRDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVY3XPbNhJ/Tv+KHT70KZIAgl9K5XRs33QuM26bGeduOn25gUhIQk2BLAHKkqd/fBcASVFW7DrppdfzxAEBLPbrt7tYePHtflvCTjRaVuoioFMSgFB5VUi1vghas5pkwbdvv1qsRbUWy4bDqmq23FwEkaWUxUWQZbxIY0InCV1lkyhPV5NlHhcTViQrtsx5tEqTAGCv5RtV/cC3Qtc8F7f5Rmz5TZVz4wRvjKnfzGb39/fTXtS0ataz9Xo53esiAFRT6Yug+3iD7E4O3TNHHhJCZz99f+PZT6TShqtcBGBNaOXbr14t7qUqqnu4l4XZoMFhhnZshFxv0Kg0jAKYWaoaPVKL3Mid0Hh2NHVGm20dODKu7P4r/wXlYE8AhdzJQjQXAZnSOCWMhnEAVSOFMh0N7WTNei6LnRT3np39cpJQIVNV5ZJbTvDbbxCSkMBrO1A/hDgkid8ifo0wP4R+iPwQe5rIH488aeRpIk8TsQB2UstlKS6CFS81uk6qVYOwDXNtDqVw+nQLR6vpa7RJywckZgT96n2N64S8tr8J/kZ2Y3ZqJB1JNU37rFC/P5LZS6QkSV8uMvwTIlkvMiT0XGIYP2Fk8oxvvYjnXDuYGY8ci6LcP/d7JpGFnyDxab++XGAS/SUmLmZ9oiy63AC9sbQdkEZstc0WNod4boOeAhYoSFKM8RjoHIc0BMwFoDFEMU5pBokdU2ApbkTAIANLRxm41Igz/C9KHbMEYmRmV1PMSKAoKIKYAXUZFQHmEbisxAwNGVLEMcR4yIqnoWXBEogSnLEMItTRJmRKkZDhQZyj+BAYBWYP0xTCBBLLj0Y20ZPMqo4sQ0gIJNQyxJzGfPa5jPQZMGtN4rTDn77SSFW35sRX+bboP01VD6AgNZalY9HzZeqkJr5alHwpSrwnbi2kADte2tRwglaVMtCjGfq1dcPrjcz1rTAGT2n4he/4DTdi/x1S6162o80rpd83lbmuynarNEBelWTQuSrp6DsctMYJG21E4414tJGMvtOPyq1wB1otUH7V6J6cF8U7S3EsEejJH1V5uGoEv6sreWrGYuaunIVo81IWkqt/Y9RaKdYvMNxArmz1N1AcsV6TqiluDxpjGfY/i6bCakNje+ke/Iz5mc65TbaYuK3xzLERu8HdfC+Omq8bm6+jyTt9VZXHJWfMNa9N27hOAEteYzW8VOtSOMBdvuI1m98tq/2tR5p5Xh8ONc46DZZr50TAjA9jvALX3bj0o6Oxqg1UxNEQR0H60JHFsE/noaNw49KPjgpj0avWmUp7MynpxUjt6hQJuiToa5CNZHtpt0qam35iZH53NNUe+KHdLsUxHizBP6RvMXzvdCqGfkExi9mjsFrciUaJsotihLytWu2TchTghcjlFqd+o3Mct6D+C3Xyq4VYN6Kj56Xrxbxb3S4Zx+fZsmP1XVNt36ndB4yYRwosZr2WC503sraRCUu8Au7EMfYKqTneIMX4nE079EZubwp0iLHewoRszaZqXLeFdQRHm22l2GKPBcYFoWq3opH54Hv1H+oaN1Sr7TQfcLOuh2r5C5a4x5CNPIgET4Qq8LLecNfwdQHJD6I5cY9j931V9KI7waXtFGEr/SW45XvbPyG/pcb6Z7BZRjzUsVn2YTHUD5f6eCRKElcEsCd33flK7sVQ3dFP8gHjwop1K49SxmBpvsM2VLvWyHQZ7D7+KYtCqEFbrjCCHA5YnGoftLUQPt6HgzUa7yrHCPsOmjOQXLEZfH0ZnIHR9SZ+/6j9U1C4+jKAQV4IBnmxefRj5nUpoS0SdGofEgf7gZo8jGLMmWqr5cl16VcfJdNL/XX1/++vcJp6f7Epif4rDsur7ZarApRrPa9lk5ciOLZAnNg4A06t+7xvWtNv5J5Zx+LM+1iKRgUl/wPvf2Ll+ETnf07+Yqch1A41xc4G3+Wke/UfiJcPD/3KHr0z8X0F7ZYe6AgahL2Re7js6S97qsvQHcxYREY/GGOXrJNxib3ZxGfJZew+u05A/Kq8PdrfiLbhlCuZP4/ve5cQp/DmZ7heP4/raVZdf1ZWuUf+uhv/HpmVRWmW0fk8nBPG4ix1eYa6pPhCj1JGw3kWJnP2JdLuVqzt+iNgrnzeXZ/ho57HR3fchqv8f5p5YxfPk2Q+j8MkSwlFj3YepuTE8bH38CSbRnEah1k4x/s6m+Py52fyo2SR27qUuTSDZ0sbGe+UwWZSuNbpvCG8E6K2/fqP6kPDlbZ/3vM0fYA/De8NqnwltaskjzBWZ+Dy58G15g/I8b8JspOPgnj4KOQW2mjKaJLie4TRLA4jRr8Qtiedwb5ukJ+tEn1lEnuDCuHGRfD1r21lvnkvmlqoQuZtyRtYdpBBtUJ9BL7h0F6oudZC40JTteuN3xA2cgYyd4dOPUenxSmCVmxwqsNnodg/Ev80ju5vEBq7/9Xxve6eqSTondr334Y3xt0h4GCn08TBHE+jcFwWx36fjV8k7q3f/dn67e9QSwcIeAeIsEsHAABTFwAAUEsBAhQAFAAIAAgAFr5UQ+fqEK9uBQAAqAUAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACAAWvlRDc+ZVjnUDAAB8EgAAEgAAAAAAAAAAAAAAAACyBQAAZ2VvZ2VicmFfbWFjcm8ueG1sUEsBAhQAFAAIAAgAFr5UQ9Y3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAZwkAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAWvlRDeAeIsEsHAABTFwAADAAAAAAAAAAAAAAAAADECQAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQAAgEAAEkRAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
*Process:
 
# Show the children the geogebra file.
 
# Let them identify the chord. Ask them to define a chord.
 
# Let them recall what a perpendicular bisector is.
 
# Show them the second chord.
 
# Let students observe if everytime the perpendicular bisector of the chord passes through the centre of the circle.
 
*Developmental Questions:
 
# What is a chord ?
 
# At how many points on the circumference does the chord touch a circle .
 
# What is a bisector ?
 
# What is a perpendicular bisector ?
 
# In each case the perpendicular bisector passes through which point ?
 
# Can anyone explain why does the perpendicular bisector always passes through the centre of the circle ?
 
  
*Evaluation
+
[[Category:Circles]]
# What is the angle formed at the point of intersection of chord and radius ?
 
# Are the students able to understand what a perpendicular bisector is ?
 
# Are the students realising that perpendicular bisector drawn for any length of chords for any circle always passes through the center of the circle .
 
*Question Corner:
 
# What do you infer ?
 
# How can you reason that the perpendicular bisector for any length of chord always passes through the centre of the circle.
 
 
 
===Activity No # 2.[Theorem 2.Congruent chords are equidistant from the center of a circle.] ===
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time :40 minutes.
 
*Materials/ Resources needed:
 
Laptop, geogebra,projector and a pointer.
 
*Prerequisites/Instructions, if any
 
# The students should have prior knowledge of a circle, its centre, radius, circumference and a    chord.
 
# They should know that the length of the chord means its perpendicular distance from the centre.
 
# They should know to draw perpendicular bisector to a given chord.
 
# They should know the meaning of the term congruent and equidistant.
 
*Multimedia resources: Laptop, geogebra file, projector and a pointer.
 
*Website interactives/ links/ / Geogebra Applets
 
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAMSKc0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1VXBzQb3Ns3UhIzomaNlKoaFbOKmiGECmqLlZq1S6O2NkapTY1ataUoUrP2rlEpqmbNVoVS1VKbf97v/73fOd+95977nOeO83t+597neW6sIUqbkY6bjoKCghGpo3mPPA6SmweQhtzDPp85U1AwNSM11U0C5rZtgj3YTLlh4tHTNC+0Tx1AFyzsusmRE1HsNoY6mWrFEA+PHjjuqrjOU42Cq8n9Fkgby2/7tOr3JdWeRN644q5xl7obgYyKarz8UIs0N/dsckLj6UTGb89wmfxFv3IXvoPFd347X07OUofaiO7E3KWQJQVyLQFHdEtq6ToSyu/d/aqdrX3jSImx1VXGqFN2Z4QjoQWy7pUuONkSiw3duwqkgzbq0FvvChodhb/5GjVxW+MmugooDc3DN9w8/pZ4CaNxM0fqbjP26y0juI5Yv/TqpkDR1Zea7hdczRnHCJ+nBKd2Vp7zJBnqg4EPxhyoRc0QnmKIH91xqjrTq1a5ww43WLmgw6xqzLFBnYRq/rQ47OgoYb9EgGDNXic96GS0MHJiqJp/GK1ow2LOhur4XrJIUedT8bhG9NmpiulKf1nFDuFPLOLD9exOYkc7Pt+8WvWow3K2apOYAY2QiSHaTfFrQMOb+MqqdJcuTjQK1ARO+SeouUYY4cTiOr0lu062mIvhpX0HD4H4CmtqF9JRjDvwoveCan3gkSPDZmxwq0RyWW7naVuz+acZeTK0C78I/GZGfhmPQfQ/AGOUfxsvwFsG34v/F56zufd9b4byIP+tkeD6yJdiuJGr0+WzSpfX5KbkV+/bYcWaOz7MxW0Grh2n7eSkj1b89AC9dSs/B9u3hITfSzweEexxqQaCvxV/DQWldpicRaXWxDkIQxx/bi77KfA6RNi8VS6gzUnn/+i+L8f2saZC2CFswKVBLGJzMTp8I8EMBd+Pr/D5LdcaVJcG/V0Xd2q6JtlBK2OKNPUWxQ5X/UuPKVpGT2wV1cKW/+gHuuqRI800+oM2gZPhOlDw9RUdXTrWyG7J1c/mdtvw5LKy69ttzc1ZZm+stAxeqTjhJDmpXr48dnU2M2PHYrEEACYg7vFSQpJvfUODEQZTKAKyQqMt++8H0MJk02VciGOJvEo8np/KDcpTBLUnchX8jr/AFb/QYgJwwgYxXgsCQTvKRRP3ilofv0NlQSUwGxOlHTWnr8KvKz7EkT4ZxKqcJpN+1LSnXI8HCA3mKwdDKvwOzw5a9g7/ootgnZNJOTntIxff9a8/8Qb9rv8hoty2l2wVh3694cP6eQdfDnK4PpadOeX6fiZM6feVBaXgJD7bUNLIsLcrVDFQGqpOzBMM2hvMaWttjfX121fuFQZseP0oaxXemYBd6nQFUCiopSbOMW2ff3nnt5Hj3bHBuGS0oM4soVLQWr7jtsLC/LBl/mx36iqDmBh26Ol7N7ffEjtvpYteG8d2nCQiwQeApwD8goleQiv3zVLKyUr9nFuWZZ/N5hCMWozclnxLIVtxmb8OH+4d8zm7mWAKUckHSy6QvpvqY0/GkwtF1Ut9cWTaPh39Wd8uNUq6/M5vmemzZ2UxMZpYEkwgjWS9Nkq2hnVWsQKC36HlP0smGeUaNLxccsXaYQ06/Hf4jNZ3akij8r0GMhggbgBtZ2HQ+fNIThzrena8n9ir8iCwCHn529qLyFgKWWghYjSn/MDz20Dim4InpMNdPtB561jYGfashUTr5ELbY9vBk0vTcz+Le3BovGZ6EjB5KyVaSp+FaSO23uUDyShTiWq9IkCA2WPVQsKgBwyw+5P92E3guKLXYk3z+aBr5zhK7od7fRhKmsLOUUZOVDACX51I+vNx/wTpfBJnhyuAJ3REX8kjGZbEiOuroZKFxjHliKdQWAee38HOnCObW7BSKwVvtVuk258LveliJSv3/makoBYF3pJzV8NFZdxUvBBB6SxqEBa23GJo6YgFPRkGYHW/wC0K2aMq3YYw8dMsU3dHIU4vdrTSNPPBgAQWXucmlsTLLBRIiGUqUG6YISGhGwJYj+cEA24xxJtoUSdDV1D5EdeetqTjQ1OTVBuZ/TZfoMBbXFJQIDc/N0ZWO0kgRcDqlWOovkaiF/bR7QBV5aXohdbZbD4ZnFpCbCOjAESESm3Ut867zx53m0p8VZIi6KlOCZBCCSnNzcoldS0ms2KkP45jY4bgwPLaqrZZhjMf/O386GSutjqzi+eNTlmPw4tRmF8Tp4owsOTZdHPQviivgu+1U8qovz/xCY1SWdD2rlqJKe8+KlERKnm539ENU18HEmS24w6dKu70lgOeVghMeR/qP+8qiN2/xoCYBELc5UoLCp7Mzc+HosMQVKyAaHXxoOdCXottSFomHpLyKzl3M51dTCtGskgDHG+NifWoSsnPR12R92IQk8jYOcYmKAkSQb7ry7yjy+yb5vP6BWkd2B9m2dJOuha7UkL8iVDI6lr0coDibJ5JsAa4ML+LQJjGV1dPfXHqOVkq1cvs+RnXxRJpLkPxZWC8WLvBqAXEel3zLtjUCh7NUBh68ldBV69EmL+yx35kcLDAJT+wbPrAWwMCEB3d2q1rUHmSOUHlPtnkOY+gZeabDBkeDmU5HH8eSQrrJY0XNyRFEFh6ZmVrg/bd3qTU2LQ2Hth6eVW/ZamcqMDjx3QcpsZGgS4I8NN0MXO3dcJhbRACHNKdWQIrtGn1NyIXTUGk/+BQO7ym/Yzb6bsjTbumIFTfysoqNRs6XWNXfn524r4eQcs8df0x7lqzubExnJqWabJa4aqOk5NQAqeUgGOsIyJZPYJm/PToz8asy6tSv3XiuN9H5UweUTNPzzdlq7mR5rIclEipVYPwwkuVHIZILVDCvGLic7Hn6XZ1Q2nCxnB4BGLK8SrQQ8216+v7JGa3rPtJMFkdKqRA9UskmaSY1sc7tmjQfVkit6kE4ZlVg8+KhlVbAAFhspWGg1IdSmPKthvcp62RqjsLd7KlBXM2rTbrPYk/FdQBD/We/zKE9bLiYsKojmlXKpSkbQ/n6du/HW4em9ev7bHP317RYbkO7JXBAZcPbAxTmPhVeKwohVjOTrPW5XytD3epbp44cilv+nwfZC9G6zOdBQ34SnAJdoNwgRY2+lPGxPHdiLkoOZ5CqJxY+hSPHfyo/PeD8KGwzc1bH4XrbgQ0g1PpIR9Akb1bkYHdHvSx/Liu3b1id2LHJgmgUXT76C09hyrjG0b1Pp1ApdLHwT/SmnDEBNWsyOxL2BEmKG18VFhUTmMy/BnT+K+V3gcTJcgyXl+x1953bn1iSO1houp6zjd87LXr9P6LSGU/yl/PrU5luCi+iEE7cJZSjP5sq69bHz2INyomDaeLDSM8saM6txojOLkt8M0Pv0YjcKmpEOMNzNHn8G93hXwFtE479qb00cDoQFN4faGuYGOETpfHok+ofrco0wlo68bbPR93L44S4KSijP2Q5x+Csx1rH/l48gV5MFOLyaZz/Dw2ywShGhvqj5/xoaS/g8hjF7dQE0blAkfa8WwFxJf6zyjfbdNwcX5BJnH6GPKKTExM1JcSvC78OQHiYCb3YkMvGtY+9lrBmaN2bIsZzxkEb+mFwpkgU06EDlids/95gzgjqHznAOcKJA26xtXqpZtiEXAfc01EnaLqtU+wEx+iYPndNYjwQ6qsc4ESoJlGTyZHxAqXuuzOhtGxaC8dcwO97V2BFF0oWnZkyB5nQWW35vqGCKd+3ybBMB+tBILAi4QChazCX7+OXbfTYtTuvMZ9JD0eqdXZ1PJaEy4d+1fBmukhSaZoJVwo+wVrDOyWKivgiZNydiKPGtOesFqGoU1SdWjoTX29vAHGmX0zJ9fm4nWwTQtfSOeqdp7sQEBFtOomW5GY6syzP4LqFI9mij3turJZ8TalpaWJPb03LGwNUTny3t9peD3xwHuzny6uSM1bhkSmgVJWF5Lola/G/BXkPcVMUTflk7rgRRb6Ishv/Ot9CXvJV3ZTYHsIlTDM8uIyQ1G7cC4y+aw8Jrpd8wXhjhSIqnn3xKW8y1Cyatdnzt6kFaoAOZp2Z3gF0cy4Znt2h7W32bCVmK9cmefArWQdNzDhzREBug/Cy2VJ/ShdKCRnPxPnuQj0d88VeWKMNw5of8ihGds4fCmd7p5Dfxvb5Nxw/jyXytUYkvjXVzycdP6t1Pyj9aG794vrQ/zHi7Qma+w6m8XMNSB9h+k1sKqkgCC6813KoW/9/P5fE8D+1eoLrrnUNAxAPcizOpIo3yC7+SOEMB99hr08peXYzHbYALVdS1Ys/b0njlnm6VUQuD+jKLeBm5vbq/2VmbExP1/fY/Ehm0YPy53N3ra2O9uLfbGsJ30cOW6gHXJ4adBCW9y8kWmwqBk2cKdq2D7e/a5xupkGS58O+13V95OBOtR1jKFcjw7TzqYfIKYLcJePjo7mHlpavmyEwWDlL2Vc3BjBOQ+REhndix2haCVEb01FhXQ6wKLa3bonrr5W+05KGXBpdnZWWNWUz9lJciD9k6alyQMhcXXOQlZNMlJ5x5V0wIV+97uZyoweCcu3JU1JBEwvjadIlVvou88Q23RFoXWRJeM1jBmNg7VDdkV9FpQB8XZP/Z9kNKIbgOmjXq7Wbt6S+gvaOpbhXMPp8R1lc+qyH4zPuuAkQ0CnY0BeG4/bZix9w+mkKHqO+h9vmSnEUXAX6z6bjhAF1sgVg60v7+qadr/evgzCpWeQ/cjnnriVKXIYcbW9En68IbzNI4FcacoE9fwSkqzPyct7Eyj2Is9AKQW6ml2bRlE7Rp+uxyBSg25KJK+AKSoq4gmEFDEcqMde8v8warI5/2VujJBUT+UjC5Xjov8j05j9q/xfgbPvL/N/N0hmQeMdqU9/OOsU26HOtrL7496+siX7YCWTaZZ9vU9Nm4pYanOF2ltx690wMJmQndo/aWrFAwRjkD1bEqhHh3OZ2Wj2Sgy7N/M5+kUegPB8nRbnsUTcyV8B8+ZpJowu9sexqYuKxWbnHIXKQK5gWACq3sfL1EXKwb9k9Ks1aVhLmDsOqVTxK3SO/1phT07s74JpIv6fYWScDDTkz8A/k/+qegYuKFHn/bJsIum15K8sBVILpVmtYY/7D1BLBwjkG4C46A4AAPEOAABQSwMEFAAIAAgAxIpzQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAAIAMSKc0MAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vv5btvIHf579ykGKrD/dEXPfWTtXThOnBjIHqjTomhRFBQ1khlTpEJSthzsA/R5ij5HH6JP0t/MkDqsw5a8TuxdrMNrOMf3/Y5vhqPDH6ajDF3ZskqL/KhDItxBNk+KfpoPjzqTetDVnR++//pwaIuh7ZUxGhTlKK6POtyVTPtHnWTAEiWo7Io+1l3OYtvVwpqu1ETiWJmB1bSD0LRKX+TFT/HIVuM4sefJhR3F74okrn3DF3U9fnFwcH19HbVNRUU5PBgOe9G06ncQdDOvjjrNyQuobumla+aLU4zJwV9/fBeq76Z5Vcd5YjvIDWGSfv/1V4fXad4vrtF12q8vYMBUwzgubDq8gEHBODrowJUaAyJjm9Tpla3g3YVLP+h6NO74YnHunn8VzlA2G08H9dOrtG/Low6OoBGDJRUdVJSpzeumDGnaOmhrObxK7XWozp35lngH1UWR9WJXE/r1V0QxxehbdyDhQOEgZXiEwz3MwoGGAw8HEcrw8DoPRXkow0MZzjroKq3SXmaPOoM4qwC6NB+UQNvsuqpvMuv709yYj5p8C2Oq0k9QmGHANWAN9zH+1v1J+OPuwcHyIMlCq3U52bHRtklCMLt/m/QhbbJZm1KsNknFhmHKLeiGPtxrnGIBWmjK/+//VlpkdIcWw/XDGpT8swzx8KB1lcPGO1B14co2TNZ2VDl/YQYJ48yeIAG+IRVYuUDEwEFRBN6AiEBcwCXRSLqjQkzBA44Y0siVIwx55xAa/uHKVyaRgMrcXQU+iQg0xJFgiHif4gg8CXm/BB+lDEoIgQS85Jon1FXBJOISrphGHProXFIRKMjgRbiG5iliBDH3MlGISiRdfYQ7V5fadR2qpEhiJImrELwaPDp4M5TXiLnRyAauNB9P6iWIklG/Pa2L8YwLKA3xaB7tQnxaCoZfHWZxz2aQIM4dkwhdxZnzCN/QoMhr1JJIw71hGY8v0qQ6t3UNb1XoQ3wVv4trOz2F0lXbti+bFHn1S1nUJ0U2GeUVQkmR4Vmfi4wsnNNZr+GCLTzgiw/EwgO5cK7WtlvAEzSpLLRflFVbPO73z1yJeWgAJH/Os5uXpY0vx0W6PIzDA59rDu0kydJ+Gud/AWN1rThc0Cz1+HDVph5hdNuTouyf31Rgwmj6N1sWgK1REaeUSY6JUVpJoPUmPKKMREpgeMIVNwz+g84lsfM+SiIttILco4jWCruXNjziKrRtr2YcxVM7H+6wdL69cHFWvSyy+S2PwEk8riel1w3QidIN6zgfZtZbifdtSMrJZa+YngfzYKGu9zdjuMKhB72hRx5BdKACQuuwOfbC0ZdxXZuVwr4M9iVwa29pf/acGOpL+GMvHH0pMODQtWaopB0mwW0zaeVjGu40ntPGK2f+LsVP8rR+117UaXI5H6p74afJqGfnRuQKvEqDIAlKa7kZ8ojNHB7cssXDS1vmNmtMHyifFJMqePKCV/Rtko7gMjxogIsdqX+GPoW7fTssbVM+zrxyC7D6p3jRqFdu+6pOy2J0ll+9B4u51YHDg7aXh1VSpmNnmagH6eLSzm2vn1YxZJv+4nvOVwGNxGUVAKR2aIEXT+qLovTaDIIPHJ2LZnYEigzV3gjzyciWaTLDPvYiDzo1afotIx567oBHRe8DRMVZ4gzv+AtfBh5vMFMUZ+OL2EvDxhjjG1suQeNr+7HoNw035arMaUo0SkOyHMXTo46B6noVxMsaVDVQkc9VdehYG28wdpod3pDKq/cbODPuZJBO7SwbAETpJzCJeGksc2+pIZRfgl6tvISqG+f1J2/Tft/ms87GORiPpwCC2TiMFkEiscHYZ6+OYfQ+bCwQ3/CywpCPNDOsjzsP5cIHlxkb+J5s4PUDXDM8sm54jT9UjouujIxiWEpiGNFEUeOJgb4wzjgWTFLJBDZEQ0c/LcQNj4SLpEv5N9y95WiLcCbFaBTnfZR7RXaSlklmO3OJEGOHKoqJM/6A3KRuHyShsqaKFW7A6xZ8J7mDmwU0FsmBOcgiPe5qX3rW2izfbrOQjW1+Bb2F7A+TVtxMiW9waB99au9MAaGuv3VDmlufyAI9YBhlOkXHbfnjttQxyBYVSck1IxxLQ7nSGLg9Zk0Tx9zFmRWjOBahwVWzCB3/mIexViE5OMGWDtJkO/+/eHdapj/YxN+PQW2Kf6zYwMvtNrDsny/38k9CQ+L3x9/aR9cGoTu9FOK+4MRIRhUIMGGCk8pIUayME3JcQ3iVWz3UrPdQsZ2hczt099e76MsVenrb6ama2loCeqsELauP3bLZfbmha6Kg1JILLKSiBJSs8gATBrpXUUkFJURiRrVHuMtVhLUkkijjvEOa/ZPUbb9JR+MsTdJ6hmzmzOIsr0FiWS8oVmXSpbVjp2J/zt+XcV65JbJQpkVvM73vQQKt0vsy0Jus0NsPD+x2lh0OMwb7d1G8IRA/lGN8m2McUa00RCwGjBGDBZWe5C6wLCQDR6IwfeFSNn6kTUSNFIRoDK8wLB6H5M1aYwlG+2U8ZQVFgiMJbsKlYUZwzgwJIOqIY3AVrYjUFNJDUAtdQiMqlYJrzoiUmn0GFJctfOY6t2w8CabsLJrOmlgw9ZNdEs3JXolGBqnhDr1weDg/XRURrLWmxiVpjbFqUgWH6GUMlZISQzB5BDF3B9J2E9KvdkH61dNBmkSGa8EoA7i5VM7knSewyFCjhNAMIgljmj8C1Lvrpte7gPz696KbuoRDXNKGE6UE1hiyeRPzaQTOoAUFOSsFhYC2lSWxniX+AO30eoWiwW7aafBUEivkTwj9BOBUxhAhJA0YK4g5QjtPINpoaYJ4MoAx+A3DFBIrBCj1O9NOrzdpp2F4cLGDdho+FYqBS6VBI2E3C1GYuAjq9DGBZGOIBClgsFHSBC9iNCJcMSUgC3GQzuyLKqeLJwOiE5pUYEjNkJkVgRl0QDHCAsSo+4hNAFulWaOdNMCrIGZhxWHa98SE03BTOj/dJdOcPp10zkDuG6WUJsJoqlggpysiiqUQEKxA2UIg+/zC6WIT0m92QfrN00Ea/ICBOFWccpiPYcrbNUcQU0RJmFqARqX4UbD2n4TWh+zjgPPqosZ///1Psh1q/yFhBqUv7+pYWLmnEdgQd/qbCEYop83ntv0WjwnedSn/58GgsrWDX4egI7etjPRtUpRBfoUByv2jT1wmc9JoK++yrLj+kx1kduoZuW/OXS+pTgKBr1aYS3eTVOmD1/PvnyjmhLSalKptlCxNwd3yK9gTplSDD4WJh4jcEhXMzQkIWmdh3ns4jriCCaGUwsBEXG4j8q616S8rt9ZT/yZQf7pC/YfdqP/wRajvshD6uvx+1ItIMffdnBtuMEiv8DYYBEz2tZEwxzdUCRIWsBSJwDxcwIFJP+aCPFvqNyXIXiA/XSH/7S6Z8e3TyYwgsiNmOAOdYUCE4LBCCUkxYoxgRRRnjIFKDIlRsUhyKYghBIheyoePpEgGAfAPK4Cf7QL42dMBnHAuIoMlTFwJx1ySRvVxLCLNOcxTGZZYC7oWcaJ+Q8y3rha8XUH8crf4dvkZ49u2Dy0Qk4gC5GCaowmHdBUWC2gEYDOhBZcw22G8CWFdHQmwegXXQkgjFN8Sw572asFWes9W6M12ozd7GvTSiCkiqMYGc7c4SpqlIOIFP8yrGChgrkS7mUBGwnmYgjvwDjGP9HXgUei103EJHXMauQXZTmvSQfDgqPPNx0lRf/e+8FukYBhxjV5/nMQZSi48WMUAxSjxS7YoLi2yHydp32+bqtGgLEbwikUJtFTaUJVvftkIXHud5ca3W8GmPQ/NTrdgCKAT9o6sfvtlZct0MN+q2OxT7rTEtFuJ6ris/To2CoEBcpxQhkFIkBhz3ny4MBFhGjqIBVUGdKxanBPeTQddouPEYY9OXqEjFG6gP6IU/sJFgzO6B9B0P6B/oyWl/VF2X+84xoy7VVm3k7PxTycgwXElNm4PPjVaLm8muBtotgboN6eLQH/YB2j2fIHWUsN8i4EA58Kv6YVA6Pa7wnRMaKIMF1zvBjNfgvl///pPsOY3p/cPEvz5BgmiIwNzGYgEzG29oO0nNx5BtlGcCskNBePeMUiIJVDbzav7h2HxfI2WEaOM01oau+3cAV4Zaf8F32DI63hXk5VL6B6fLcaEbJ+YIJ8rvCSShlIOMgjmGgqLdueEJBSA1W5mD0ZtdoNXLcP7dhHey33gVc8XXpg2Y8IFhVxmZIsvWDXoCio1BAbmdv6I3QDWq/Z7/Pb+wUA/33BLcQTRgAimhMtUmM0/njPJHM7GMPd1fceIYJYQ/amo7Qv0Y3FlfbA9D1vM6wKUsvvA6m+WcT+deNHs47GXzdE3fyD4u9l7UK8tcxDY4ecwtyrwC/QIRPg8nkf359Dsx6FjbRgOD90OsZFEfLdXwHRMEEIExzD3Iu1iMcyxCefGbf7VTNJNDB4s/pbB/7So+Xns9/8HUEsHCM2Hg2sODQAAuzsAAFBLAQIUABQACAAIAMSKc0PkG4C46A4AAPEOAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAxIpzQ0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAALA8AAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADEinNDzYeDaw4NAAC7OwAADAAAAAAAAAAAAAAAAACKDwAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAANIcAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
*Process:
 
# The teacher can reiterate the prior knowledge on circles.
 
# Revise the procedure of drawing chords of given length accurately in a circle.
 
# Revise what congruent chords mean.
 
# Show geogebra file and explain to help them understand the theorem.
 
*Developmental Questions:
 
# What is a chord ?
 
# Name the centre of the circle.
 
# How do you draw congruent chords in a circle ?
 
# How many chords do you see in the figure ? Name them.
 
# If  both the chords are congruent, what can you say about the length of both the chords ?
 
# How can we measure the length of the chord ?
 
# What is the procedure to draw perpendicular bisector ?
 
# What does theorem 1 say ? Do you all remember ?
 
# What is the length of both chords here ?
 
# What can you conclude ?
 
# Repeat this for circles of different radii and for different lengths of congruent chords.
 
*Evaluation:
 
# Were the students able to comprehend the drawing of congruent chords in a circle ?
 
# Were the students able to comprehend why congruent chords are always equal for a given circle. Let any student explain the analogy.
 
# Are the students able to understand that this theorem can be very useful in solving problems related to circles and triangles ?
 
*Question Corner:
 
# What is a chord ?
 
# What are congruent chords ?
 
# Why do you think congruent chords are always equal for a circle of given radius ?
 
 
 
===Activity No # ===
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time
 
*Materials/ Resources needed
 
*Prerequisites/Instructions, if any
 
*Multimedia resources
 
*Website interactives/ links/ / Geogebra Applets
 
 
 
*Process/ Developmental Questions
 
*Evaluation
 
*Question Corner
 
 
 
===Activity No # ===
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time
 
*Materials/ Resources needed
 
*Prerequisites/Instructions, if any
 
*Multimedia resources
 
*Website interactives/ links/ / Geogebra Applets
 
 
 
*Process/ Developmental Questions
 
*Evaluation
 
*Question Corner
 
 
 
==Concept #2.Secant and Tangent==
 
===Learning objectives===
 
# The secant is a line passing through a circle touching it at any two points on the circumference.
 
# A tangent is a line toucing the circle at only one point on the circumference.
 
===Notes for teachers===
 
===Activity No # ===
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time: 15 minutes
 
*Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
 
*Prerequisites/Instructions, if any:
 
# The students should have a prior knowledge about a circle and its basic parts and terms.
 
# They should know the clear distinction between radius, diameter, chord, secant and tangent.
 
*Multimedia resources : Laptop and projector
 
*Website interactives/ links/ / Geogebra Applets
 
<ggb_applet width="1282" height="601" version="4.0" ggbBase64="UEsDBBQACAAIADJ/g0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ22VfzjTCRzHhy+G0uwoqdlXvsoIYX5FmLBREoYo/ZZuheSmHy6riSLaEB13E4ZG+VGxPIzS+bWKC0OYSRhWy9qapHDVPXfPPc/d+3k+r9c/7+f97ydl9y78SnU9dRgMttKL4O7/1R1fbx9c5StNqxaewWAqql7uOOLZITHDhQAFr2+3MzgFrcdAl7G2Dh3ozbNIpEUS9Au2eRKkb7SMUDzDJRmkJE3s/KC5yrbdzX3zPwE0vkdZQ0ONutp0z549HAlKOiHmVw66PLCWHXNB6/IYg4PkuQuC2Y9LncIVMB7UbgRzRcAAhf/iL9ON6z5/ccyK/+nh0rWg9ntzuos1ewPQu7On5MthW6oWv8SMtNt9HroIKizf8K3S6L7daiCbi14srfrQwZHO75e8jKc4weceyd+s0UkSIAWUKa+mw5TG9qGBSnnox3wK+uS7I1tvVc8OjEw5H/tjJbyHaHZhuQqdOOoS/z5A8lD9ZkKC/afOHcqzWa+3y0TjNOroHTHl48dL5VSi41x6xmehfEyQ+m2rEnz36e6Ksal62mCsEvXspqnfWzHmABUGwmHf8bf/jaPB9JQUNWsXl2g2m/2cy1ULBsD1uOs0Wmdbmyf4lMcjtrKrqy86oR43N+OqcYmYnOyIqKgu46GXPtLNZma5YnFkbFxcWzZnbMjM3DxvZmYmNfX2ns0qtOioqNIi6Vo9PavExMQByq38fKkCe0jFwckJ++bNm0tOYx29ZdLpPJaElp4ehh9lMg1jyeTAGP7kZLikDsjNzVWrzE0QffKio3W3JD2xGKCcIZNzZbLY3t7eI9JPHO7k6dKGhnW4osMUyujdigpldP06MjHL3MLiVwYDFWB+0zrWINAv7fp1FX/sXsz0ufNL8/N1ISEhhQtd98Ha3T6ip+OeKPRk9/IGS4hww/j+NCf1yQsclX+553pj47YH9fUk75KeHQ4NpL6RkbDYmJiM+fjsaWToTLj9hVRkSXmqcY0MUXzo3EmR8ClzfCgdCBTrB8c3N+UX6YCEAGXCaQKS+9pTnwuVQcHPpPx6nQ/26WlpLfuZw1d1yCaqKJBgKK0L68vERxr0PZcXe6XqlnPHr/rblewjdShRa1BkgLXdFaU0FqNOBuuknLMLPG31JDbbTi/jMoEKlmXgu4Vd4mGhTCB4dcbmeaBrlt4DBDLPVo1arFiCFcXVshYL3wX3TYwp9NRN+EEB9fjZ1VQotfQaq8LfIkjfa1KTTurdZ+ezrduBSTpQpqGLgCyJMCbpxh3VnQG+kK+9FGtKY/QowZGO3lk3rFp1yt6mkexEPGtmaFm/DfoLV/UKuORBY03EtGYQMiPi4vq/SF4NEz9UGxCuFAyFhjU6uzuQ1TnLQkfhnSWLXL908H1BXkhv94Xzj8byH0hOA2foROnRSE8bastV9QxfY2/euvf3bZl6uMOeYk0d7dHdCtHZ1U62r1nbcthr++CZCBKiQSmxqUBxpGuywdkM70q3LfptpD25oniX90lTmiOG6LdJ+q2YTjRS45UVrMMVp7/MMQQJccBa/Shfs0rF6R8y2xl+Ys3M5AiiIUEVLn07mIa5WcXJcTQnmeHp7jHcRNByzf2mpqrOiaNquFCo8tvcPbd+DBVrQhNXsqU8R4w2zorY8baezPJhWpdrQdupxbVrnuHPnWzB0U3mt2oWrQq2AV8Qok1FKL9DspV9P/tVBAFAWQptXM3N7rkKkKKMjpAtGNtQz3rXynU4B4BLy5Jwj8KSw2FbQcK+H3NWXUvGSloZq7WgDOPMOY5A4KqJgLQgQt6jx8QjtnyqNg65HRMUOruf5ekQsAMBxdR4W0QecCiICisJ4mto4PwvCe1LwvWuqFjJjZwZp8cB4D0gJxkxZoc9z+UNe8B7ClmnvDOLN6QsLtipAFqQfCaIH4msTeSFuIYmgQIsP/DgMEPEaix0pEgaL8Nfo0SK/fYpbBaeb5TcZg8ZBLzUajmh7fGWYRsaiT4eWNBlaHn8BEgQut97ZqMTWDMtWg7aSHrUYxPva7ztlr4JwHXyzqix6k6Qu1b4fO4zFQ6bOWgBMAQAw/0vvhtUXFJu3kWCft57u/zrZ4B5eexyr3Q7SP0TUEsHCLHxfzQmBgAAQAYAAFBLAwQUAAgACAAyf4NDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgACAAyf4NDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVY3W7jNha+nj4FoYu9Gtv81c/UniIJUOwA6Q+Q6WLRO0qibTaypEq04wz6An2Kfbd9kh6Skiw5M9nMpGmxwWQokofn8HznfIdklt8cdwU6qKbVVbkKyBwHSJVZletyswr2Zj2Lg2/efrXcqGqj0kaiddXspFkF3ErqfBXkPMyJyqMZT2M245TlM8k5m8UqXyvO12makwChY6vflNX3cqfaWmbqJtuqnbyuMmmc4a0x9ZvF4u7ubt6bmlfNZrHZpPNjmwcItlm2q6D7eAPqJovumBOnGJPFv7+79upnumyNLDMVIOvCXr/96tXyTpd5dYfudG624DCNaYC2Sm+24FQkWIAWVqoGRGqVGX1QLawddZ3TZlcHTkyWdv6V/0LF4E+Acn3QuWpWAZ4TkRAaslBgwUNMSRygqtGqNJ0w6YwuenXLg1Z3Xq/9ciZ5gExVFam0KtFvvyGKKUavbUN8Q6EJQz+F/RhmvqG+4b4RXob75dyLci/DvQwHIA661WmhVsFaFi1gqMt1A/Eb+q25L5TbTzdwcp+8Bp9a/QGEGYZE8aDDOMav7W8Iv9xOLKZOkpFV0+w/02hvEoL6GTbpszxlvVHA7KFNKj7hZ/iIUe/4kxwVIz/BlPvnfh9YZI+5eW7R959nMOR/iYvLRc+VZUcP1G6tbJc+Ru1aSxiWIJHYvCdIADnCCNJcIJJAE1EEdEBEIC6gS2IU2jZCLIIJjhiKkZUjDDl2iBj+45FTFiIByuxoBKREBAxxJBgijlQcAZWQIyaQlDKQEAIJWGTNE2pVsBDxEHosRhz2aDkZERBksBD6YJ4iRhCzi0mEaIhCq49wy/UwtlsHlRSFGIXEKgRaA6U9nUE+Rsx6E3Zw6bLemwlE2S7vP01VD7EAaShIp7rnC9SkLL5aFjJVBRwVNzaSCB1kYRnhDK2r0qCBkH5s08h6q7P2RhkDq1r0izzIa2nU8VuQbnvbTjaryvbHpjJXVbHflS1CWVXgYc9VQUbfdNg1dNhogo8nxGgiHH1HH7VbwQzatwrsV03bi8s8f2clTqUBkPyhLO4vGyVv60pP3Vgu3KmzVPus0LmW5b8gWa0ViwsaHUL4dAiJOOl3UjX5zX0LKYyOP6umgiJDhD13732PET5Pxj9AuTaTlnACO7mux5OpXGdAHYZAyKM6+bRpLIFHnXftZVWchpybV7I2+8ZdE6AGNnbvF+WmUC4VHIHhDM5u0+p443OAeV3v72voYb+DdOPgRVACqBAg0LWpb52M3doghZ0MdhK4TyqdD/MkoU7CtalvnRRkqd9a5yrp3SS4N6NbV7hw0NGjL0o2x+2Jvi+1ue47Rme3J1ftgu/3u1QNmTLVSf4sncvFWSotb1VTqqLLXAjmvtq3noijpM5VpnfQ9RMdJNKG6yfYgB/N1aZR/cYLdwXzgLlZPM7JB8NO1bdNtXtXHt5DLpxtYLnod7lss0bXNudQCtX+Vp2yKtethMMiH6+zVAPXM3soADzGQgMk3Jtt1bhLFtQOaC3DCrWDGxUyLr1chg4wX7i7msUTVekvUL6GE87PnwIG0x9NNZeUsqi30t7nOqcLea+aCQxO33dVfg4OYO88ACrXPra1Uj4t/H7howZ1jk2TWgRot+gIN9M5FPD7VTDD8whY/sFf1f1V1fpqOTYpv370LFCQPR4mB+1uJ8scle5AvtJNVqjgdEJIbHFDkgwaq73pJzKvrFPxAH2Ims4GdLP/gf7I30/Bj78c/BPvDZw8t3C/bt2Vz3RlyH38U+e5crcOXxf1RpUH2CkUfni54O5ddI+9ffShHzkSFxE7R7qhD2QUGgh7o4/oope/6KUuqCvKDEcQ1gvW6b2A42rmIn0h7BBE2u/n19K70PriYI9gvdbZ4yH90XFgGtHsQSgvHw/llEiXX0SkvrJ/bix/WK9bZWz2zwj22Z+8NM/EnEYE84RyeMnSJGHCGSbwhiOYxiwhnPGIxy9AwafF6+pz4nX1J8QL3P57Sx/BcxbBC1pweEfHFBNfCWE0icIIU0G5ICEPXyAk11A8ziJy6Wvi1YPAyMcDY+vQgLt8ekmEWpprj6C9aXbS6YvVyxPuUH8EYyImLE5iBmlAHO5iDvyIw5BEJOIJplQ44GfJPOZhzFjEIxpDpNgz6u9ZvdO7utCZNufBUse6AX0WnD6h1dHANmFiFfzj131lvr5RmYQg2Ji+h1uKDUi1RhJl7sDzMk7vNFxWUTDV+oxTzHEI4iLIlwdmrY8q9yMn2rpHVqsavT49SPxtOwx69Lr1rZGNcTUG2eiyeULx+Ie76PI5nRBpAvcEoRRe20qWAwCpAwj2t1fnu3zOzetLjouYxr5qD0n48VSHF4zNHTfm8+RpGUYnGdal1dNTiT6X/Zfov7//B129WA04SxVC53HYHYPR9B1JP5krHwWOPQ849v8GHJtH8ZhjpEORkulr/BMgLsbPH/fHhO5P42//AFBLBwh0qpTKOAcAALcXAABQSwECFAAUAAgACAAyf4NDsfF/NCYGAABABgAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIADJ/g0PWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAGoGAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAMn+DQ3SqlMo4BwAAtxcAAAwAAAAAAAAAAAAAAAAAxwYAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAMIAAAA5DgAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
*Process:
 
# The teacher can show the geogebra file.
 
# Move the points on circumference and explain secant.
 
# When both endpoints of secant meet, it becomes a tangent.
 
Developmental Questions:
 
# Name the points on the circumference of the circle.
 
# At how many points is the line touching the circle ?
 
# What is the line called ?
 
*Evaluation
 
# What is the difference between the secant and a tangent?
 
# What is the difference between the chord and a secant ?
 
*Question Corner
 
# Can you draw a secant touching 3 points on the circle ?
 
# At how many points does a tangent touch a circle ?
 
# How many tangents can be drawn to a circle ?
 
# How many tangents can be drawn to a circle at any one given point ?
 
# How many parallel tangents can a circle have at the most ?
 
 
 
===Activity No # ===
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time
 
*Materials/ Resources needed
 
*Prerequisites/Instructions, if any
 
*Multimedia resources
 
*Website interactives/ links/ / Geogebra Applets
 
*Process/ Developmental Questions
 
*Evaluation
 
*Question Corner
 
 
 
==Concept # Construction of tangent==
 
===Learning objectives===
 
# The students should know that tangent is a straight line touching the circle at one and only point.
 
# They should understand that a tangent is perpendicular to the radius of the circle.
 
# The construction protocol of a tangent.
 
# Constructing a tangent to a point on the circle.
 
# Constructing tangents to a circle from external point at a given distance.
 
# A tangent that is common to two circles is called a common tangent.
 
# A common tangent with both centres on the same side of the tangent is called a direct common tangent.
 
# A common tangent with both centres on either side of the tangent is called a transverse common tangent.
 
 
 
===Notes for teachers===
 
===Activity No # Construction of Direct common tangent ===
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time: 90 minutes
 
*Materials/ Resources needed:
 
# Laptop, geogebra file, projector and a pointer.
 
# Students' individual construction materials.
 
*Prerequisites/Instructions, if any
 
# The students should have prior knowledge of a circle , tangent and the limiting case of a secant as a tangent.
 
# They should understand that a tangent is always perpendicular to the radius of the circle.
 
# They should know construction of a tangent to a given point.
 
# If the same straight line is a tangent to two or more circles, then it is called a common tangent.
 
# If the centres of the circles lie on the same side of the common tangent, then the tangent is called a direct common tangent.
 
# Note: In general,
 
*The two circles are named as C1 and C2
 
* The distance between the centre of two circles is 'd'
 
* Radius of one circle is taken as 'R' and other as 'r'
 
* The length of tangent is 't'
 
*Multimedia resources:Laptop
 
*Website interactives/ links/ / Geogebra Applets
 
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAEhUV0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwHsExPsiVBORw0KGgoAAAANSUhEUgAAAMgAAABcCAYAAAArr/rLAAATs0lEQVR42u2deVBU157HO25REqOJSwwqyL4IyNLSbDbQzaYszS4GZFEEZVEE0SgYcMkzyIsGFRBNND5NzGTeZBnzylRMxqSm6r1KTcyrl0pNKpVJ1dT7Y1JTM6lKVZaaSWbmO+d3m4uX29ttZBN/VH3rnr47fc+nf+d3z+/8jk6n08GVMDQ0ajmjVPfUzPufWOMp1zulhYTYAEJl0n+eOsWAsB5sQGa0GBDWvQIyZ/ZsBoTFgKiVEhiIrpwcWNatQ4yXl1Re7OEhfXZWpmPXLFnCgLDuCrhb/stfHG+biU2s+9p5Z0AmBoZFi6xLHx/o/vrX0RDI5ZUr736Wj/niC+v+tJ7Kyv3tnYP2ffvtu9eSryufY6oACXrySbuAZIeHjzjwc2bNYkBYD6aTLkOgth7v7d59f4DBgLAmEpDH5s+3u37RggXcxGLNbEBk59yRE04Q5EZEwBQUdP865wwIi/tBGBDWBAEyI8NKGBDWvQKijrtSOuP3fVgJAzItRH+ffvqpVO7v78dPP/2EgYEBKP+U+3711VdS+ZNPPsG3337LTSwGZOYDcufOHan8888/Iy0tDT/++KPDfa9evSqVu7q6cPjw4akFJNHfHznCAdfSY6520Kvi4yUHnwFhuQJELpPl+OWXX1BXV2djQebMmSOVf/jhB+nz119/jS/kzsOpAmT1E0/gkYcfZgvCmjTp9XrU19fzWywGhMWveRkQFgPCgLAYEAaExWJAGBAWA8KAsBgQBuT+U5PQWaG6cdpvygE5fF2Hf/g/1/vdhvZ9tOzb+74OH/xq3ffUh66PU25zes9uAELnlDWWL1t5nPocynPPmq1D8Hrn3729exjrfU2lHhYqE5o9/DmAosmHleBkv2kLyPv/pYOnn7V8/p+sogfz9n9Y1/V9PPphKyGQy6dvWx+0ch9751JfQ9atX2zPee6POrz177bndnbPt/5bh99/P2vkXNLnf3P8v6kr4dWvRm9/9V9s70e53d73IV9HXnftax1e/1frUnkf6v/D0fcpX1d+DvcDJMeVI1WF0oa1wcl+0xaQrr+5+yumrrzyg6MH3P8nsd//3l3/99+NfqBUVu5j71zqa8jnV1oQef2Zf7SW1ed2dc/qCit/dnQ/cvmVf7YF8b2fhH4efT/K7cp7kstqQJr7dDAWWZdqQJT/hxoQ+bPyuvQcuBnHPsi08UGoUh64zJWKAWFAWAwIA8Iag+zluHKU98pZ/gKtubLkc7i6Lu2n3kedn8v+tRkQrthu6ssvR1ektLS7ualkUY4q2ibnxKJ8VfRZmevq++/vbifJObFoXzqnfLyjvFfyOSiLjrNcXPJ+6ntTbleX6ZoMCAPC4iYWA8JiQBgQFgPCgLAYEAaExYAwICwGhAFhMSAMCOse5eHhgaioqCkTXZ8BYUDuC82aNQtFRUXw8/Nzup+3t/eYr+Hl5aX5OgwIAzKuooqbn58/5uMvX76M6Oho5AwnI7SnXbt2ITQ0VCq/9dZbSEpKwvnz5/Gwxnxu4eHhKC4udnkdBoQBGf+xHcePY8OGDdbBTwEBSElJkZSQkOD0uJqaGpjNZhw7dgxDQ0PYtGmTtP7QoUMj2RY/++wzad3HH388ctybb74pVfK9e/eOrLN3TG1tLfbs2SPBRJ8//PDDUddhQBiQSVFHR4fUrpcGPwUFSXl3STI0jtTZ2SlZnubmZpfXeOedd6QmkslkwoULF6RK/9xzz2GRHO9lb8huUxOWL18ulSmlKZ2DnXQGZEaKmlfp6eljPj4rK0uL78GAMCAsBoQBYc1kQFYLlQq1CPXQWO/h9C/9w4P4G4TyhZaqjps7dy4DwpqZgBiFfiN0QeiE0BahVKEQoUCFwofXVwq9IDQgVG7ZgPiwZcIRm8WAsGYWIIVC14TahPQqGLTI6L8aWaYkvJzhhz/3xuHkgUisWvXIyPkXL1yIyMBAbM7IQM6GDXh2xw74dMfg+eZmxIWHo76wEKuWL8ejzntWWQzI5CpL6Dp1AI0BCqX2d2xDxKMeUjlS6PTiefigeR2uDWbg5tW9yIiLRWFqKoLXrEGgl5ekJe3B0jJg9WpEBwfDvH49isxmPFNdjTA/P8yfN48rCQMyNZoj9KJQ6z2CIau7d89IOVJYgarYWFzYvh03hHXosISj/4wZp3tTkZoQZAOIWgTMWl9f9O3bB39RnjN7NlcWBmTytEroVaHMcYIjSx+KLZZkqVwvmk9NJpMESIao7KQhoWeEIkN88ezBRLw0lIGWRgM8D4baBWQEFCGyKmR5wrS/O2cxIGNXvNDLw82gwHFSx7FdiHhkASpFZT5ksYyAoVSXUI+i8luy1qLn/UzJqmSnr3UKSpBolrVXVmKNpydXmnuQr7DK9iJqY2JisE9Y69zc3CmN7FXex+OPPz75gAQLvTSOYMj69X9+xY7ERDQKy2EPDiUkzygqPjWxwgPW4EBrvGRVaEmfHVmT/JQUZMbHc2WfgChejcGD9xTJqyXKV3Ufk/clrBB6Zfj1rNaKHyza/saAAJRmZ2NnXR1qysulZVVZGWqFI12ycSOMieuRV16A8rJ8ZPj6OAWEdF6o1IEPkpUaIlkU8lcKc8LtghIbFoa2igqO2h1D1C7FRJ09e1aa9lm5/t1338XNmzddBg8qI3nnzZsnRf9SmX75N4q6EO/ix8vHx0eKAFauu3HjhgQERfmWlpaqgxgnzyG/RP+IRjDWLliAiqIi7NyxA1vFTW80GGAMDLRRpl6PP/75Fory8tBQW4OkU+0w5ZiQFhPhFJLfCyU4cdLJipCPQqCQz0K+i3K757JlqNLwa/cgRO26E7lLIell4sdttuKlx0MPPSQdQ80a5b6uInmpSfTRRx9J5ZUrVyIiImIk2NHesbLkY+xd+4MPPpgaH4R6wnO1WIy5c1G1eTPqtm2DSRBtDwqlWkuLcf53PSg3GlEr/smjBw+i3JIDc4JegiU9MsyuVdksdNEJIErRW68zp0wY6k9DqSV8pLlFTa2lixc/8FG77kbuElxSv1dhoTSaj6xRhbDIAwMDmiN5g4ODUVJSgm+++QYNDQ3SNd944w3JQjl9ObRqFe7cuSMt6fp0HvnaDqJ8J/7LXDocIuIKjgThCO/evVsTGKRkodcvncL+xioJEFJFaioOiC+sSjwoAsGcGo/UUtEM626wAYWaWn4aAJEV4rsGddUxEihHOpMQG+mPF1tb2Ye4jyJ5xxDlO/H/VK+QwQUcYeKXhOhPj4zUBAfpte5uDL3aOwKHUgdEW7VB/MLIMKSHBMFkSUNKdQFSt+RIsOSJ9UVuAKKU0RCI3hMpONuXgiP78uy/rWNnnl/zaunvOO4CjoiFC6UmlVYwSBbhezy7rRp9F4/aBYS0T/gvWxITbZpX5iyj5Kek1Jci66gB6WMARBZ1Ina2ZqLneQPa2iKwYgWHqTAgbmiPUKwLQAgOR064I/UKC3H6hQ60bCtzCAipo6XFqbO+7lo1WosyESosi7twBHl7IdniheaTBnSdy0Dhbz3QfysMW6pzsNJnKVcuBsS1elzAsSk21vqq1g04SH3CV+m/csIpHKTmp59GtWizOgKEfJCrVOFFE2xtew1ChHUJFtbFFRwphV6oPOWFnEYvRBs9kZkZiUVeOvjFLYE+LRyGPToYD+sw14MrGQPipHl1wJX12L7dbTg2CT/l+aadePF8t0tAXFkRAuQlsTTIViHATwIkdHeFBAuBo4ajpNML+Xu9EBN3Vx1NFVjiMxslrTkINa6WYPE26pB2giFhQByoSijZaXi6PwozMtwG5OTOnejvP4KG0nxNgBwUzn9eSIhDQNrEcpc9S0FWpbUKoY1PIyhBbw1PabGFg5SUHIgkYyBazuyS4JC1IkqHhDauaAyIHXXRazkngGyxWJAiKq67gLTk52PwWo8mOEg7i4pQ5yA+a91hPQ5lZuKFuDhEinsJ8va2BcXXB0GRYYjqaUDxNRNissJsAIlL9MXGTdE2gJAMu3VY6MmVTVOXwNKlUh/FRMrDvfE+E/fPnqbgNCeAUNiIu3CQ/jDYh9+e6dQMCKlNNOUcWZAcsaQ/V35HQbtwyuuiELM5HjEX20eBEhr9JPr6DiJta7wNIJ56HSIquPJr0WOPPSZBohal7KmuroZer7e73ZWUx2tNMDfhgPS68D9qhAM9FkBeufoCanM3ugdIba1DQGh5VcNbq22DqqZVjbAm9ZmIOd2ACL0njlzcj2UB82wAISW2c+WfrGDGcT5+6gDZVlHhNhxRQUFoaW7GOe/n3NJ7mz9Ez6L2UdocbEGJqVQq3xQ66EJnze3oXmWrQ+GdyCzYitq2Rly4cs4uIPRGi4MZJz6YUR20KJ9vp/BbNWZSnD6AlOXmum9BBCDlWwtRk5nulgXZL75wtfXIFudabfaWylc0WJCyoyoLUmywWpHzrTCYQrC5Oh9P+M62C0j8A+aoT1Uwozpo0d75phUg/k4AKRU0j6WJde7wfpzoaXcLkH1OmlgbxXJQAyDFnV6ITfdDTF6U1QchQIx+EixhMU+h+0QTjKUxNnAsDdEhtpGDGScjmHH9+vUjQYvy8fL5ph0gx4YHSDkCpNBslsLV3QVkqL0d56/3aoaD3mA1lpY6BGSrWB51BUhIEOL6apE1ZEFMgd7mLVZw1HLxQBLQ0LvNBpDwLTo8FcV+BL/mValeKMkJIHGrV6O8oMBtQNqKi3GqrxM78rM1AdJeX49Sg8EhIHvFstleKEmAH0K2WqROw+DUeOlzRa+wIsm2/SAVJSnIy4lFW3+TDSDJ3VzRGBA78h8eB+Jw7MecOdKoQHcB2ZGZiZePdmp+1fvsvn1Oe9JpXIhRAUawIcoKRY4JwUbDKGgio72w9QVbQEymUHgGeaD8YCH8DMtH4FhXqcMqA1c0BsRJX4gzR71QtEndDVQkdVVVaYrFokFUbTU1rmOxhKjHPMSS5jJwMd5shUS2JNGG1RjobpWACErwRFm7RSqHFOoQXcuVjAFxomc0ZEncISqwu4BcEU7gyd4DaNxS6BSQLuGvZPn6OgQkot+CDoJCwGEv7sqR1kV5obzHC5Y9XtiUuw7hek88GTAbW+t9ULY1FyHpCxG2hSuYVtGbJ3oFO9kazlwydYBQM6vTBSDZcXEodjMmKyM8HIOH9jsNWKwR52wuL7eBgobh0pgQGg9i7tuEbF+fMY8HiU/zwsCVIly5FYfLt/SoObUMvusXw+MJTuigdf8FCxYgOzv7wc2LNaDBilBcVrHwLdyB5Pi2bRj83fP24RDnOrRnz+iBUulJ0ojC5NYqZAiHm17vbh7jiEI5VdDVS7kY6C3E/Pm279mXLVvGCR009IFYxLOXs/HLGUZoaK1RPEd6PWyvA1DeT2uHo/p4mvKN1ml4RhP/ha3R0GlIDrs0cCo2VjMgBWLfWzeu2AyaonHph5qbUSq2U3YTshYbeluRHjY6ovccOeRuAkIJ5iiBA4nKGcL6OUp2/d1333FCBwd9IAbhd7a0tIyyHsoOwdu3b0uAyOPPlR2A6o5Dex2G6g5CdQcizVlIgLWLJvi0yKx4VChNQ+KGytJSlLjRgbjTkotrb5wZgaPSbMaBpkYUJCdJWU3MRoM1s4mqmVUodE1jVhN1ulI5sRzBkT08KSTLfV26dEnqzJOth7JD8OTJk9K2ixcvSp19yg5ArR2Hyg5HddaTctH0bmtrk+KzpgUg83XWDO5aksZt8PNDjfgCcsU/pSWzyd/+4SUkCZPcuqMWZX83IGUxoWwmzobavka+iAtAKMUPWQpKJJduHL0fgVFsMnFFvwdlCB+xsrKSc/OOtEWFLutsJ8Kxmzhu/nxkCzNK/SRb8vIcZjsxh4WhuCQfheUlyK/ZbNOMsqdeoZ0OMivqw+5ai+b69VKqHzU46aJ5kLhuHWd859e8468EnXUKNc2pR4VvkrhmDYrErw31ulNSuV319VJTjMLlKVwlYY03Oo7sxJAwnyVhYU7hoNGDp1W5eWlZURop5buiVD6U0seRVUkSoBYJy8FwMCATJppTsE+jJdGib778Es+eaIJ+0WPYLZy6A8L5sgfHXlXUriHSH4feMUvpRSkhnD1roVSEvz86t29nOBiQidd6odeHLcp4QGJJiRHWJFYqkxW53NICS1DQCBwnhc7KA5+2RktNqOePGRFyNMKlkx67di0qNm5EFieCY0AmU08IvaazTtI5HpCQFZHLKStWoFb4MIOiOXbNxwddotlEQFAzippTrmaYIm2IipImz3muoYGnYmNApkYP6axTsBEoFt29T6Kzdv48qUzNt2fmzMLtwgD86e0qvHyuAEebqhEZNDqcRA0IvZ0iS3G4tlZKTr1iyRKuJNNAZuFruhtG4jc+M4JNjy/gUargQlfvwaKkRwYiJswPh70X4vOuGFw7pkdc3PKRa9AkndRcOr5rFyzJydhuscB0MQ8lwm+hdYkREdhRUMDWYpppikNRpteXsXB4HAlN0UYzUTXrrPOmOwWDelOHj6mvKkaZyReLF2us5DxP+rSP1VKGosiT5lBPfWpq6qj9KHyEpkTIy8sbCVGZcYCM+uXQWaeI7hYaFOoXuiB0cRiGczrrtAoHh/P/yiEGbl2HAZnSWC1HcVr2QlFI8qQ5169fx5UrV6SwE3kbhY98/vnnGBwcHM8pEh7wB8aATGmslrOx6upQFOWkOQRPY2Oj1BMvJ4Kj8BGK4aJJOF1NpPNAA+KWeWVAOBSFLQgDwmJAGBDWuOv/ATStANXfGCYwAAAAAElFTkSuQmCCUEsHCPTtjTDxEwAA7BMAAFBLAwQUAAgACABIVFdDAAAAAAAAAAAAAAAAEgAAAGdlb2dlYnJhX21hY3JvLnhtbNVXTVPbMBA9l1+h0d12/JUPJoYhYQLMQJkpHHpVbCVRsSXXUgjh13cl2ZA0EJqWMCUHW16v3q7ek9ab/vFDkaN7WkkmeIJ9t4UR5anIGJ8meK4mThcfHx30p1RM6bgiaCKqgqgER9oTPUh2yMVXUlBZkpTepDNakEuREmXgZkqVh563WCzcBsAV1dSbTpX7IDOMIDiXCa4HhwC3NmkRGveg1fK971eXFt5hXCrCU4oRJFaQtBIoLTKdRIJTylUlGEArIfKXbOc0L3VElgo+YjnVYzkTiwt+C28HpEqwquYAnopyOSSlXomsbU28C17OFSKtBJ9gRPwED+AWJHiIvcbleq4anzNjhXASQFKNhxRTNjKZq5mo9CgjSlvAk+a0gJSRWpZgKQXjCqOcjGmu4x0dfOnrfJEY/6CparKt35sHT/vA66HIRYUAHaSamus4wUEcQ9i8nBGwgIjGOSdLWqF7kmuv2gJ4VyKja1bCWWG0RVJRoNEH7kpKMzOy+cKgBDizfyYkl3U6qRBVJtGD3jmdCKMlZOKC76PddMbHLPWGPdYxw1WrWuarqfS9mqU3+Bp8KF/Xk4mkSi/SCQKzRr+9bzodc2YhlBO7wd75HH7+/ef7brchrN19F8ZSURSEZ4ibenPFMkuansueSsXAlophTc9zfTi1cDXIGwKcbgpgV7ldgXZkJNC3sb3tvKVje2h72/R5Zjl2o4bkKOyt/uKPo/zkNcpHu1A++mDKt7DadYOOpdV3O901Wvexk7+R5cuMnm4wmm1ntAKkhq7sLT5Xju1rVaT1Hmx23Hh9axpqW2673Vr92a+UE3ZcP4ibes44tTyqGUvvOJXQIwRNDWrZwTnLMqq7KjuH/uR2itTXBLOizFnK1BOXua5aF1xBN0ZNnyBt4it83FFa3gL0Nb+tCJe6G7M+zR7cRcy6Io02xKR/Lib9X8R0QjfyjYA9c0hAsghajV70aQV7Av5NtszKRjdkO9ulqp391Zd8H0Ut7IRux++GsW2ZnAC+0H7UjdrN4QyNmh3oF6N29E/lzVvtwvWz6dX1oPl/cvQLUEsHCKaxR5IdAwAAEg0AAFBLAwQUAAgACABIVFdDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgASFRXQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzlnHlv20YWwP9uP8VAKBYJNqLnHrK1Wzguig2QNI6dXRTbbQuKomTGEqmQlI9s97vvm4MSqSuiLcdKY8ShyBnO8X7vmhHpwx9uxiN0FedFkqVHHeLhDorTKOsn6fCoMy0HXb/zw/dfHw7jbBj38hANsnwclkcdrmsm/aOOH8YDxjHvyp4YdLmKBt0QR7Ib9Eg/GPAIDyjtIHRTJN+m2c/hOC4mYRSfRxfxOHyZRWFpOr4oy8m3BwfX19de1ZWX5cOD4bDn3RT9DoJhpsVRx334Fppr3HTNTHWKMTn45dVL23w3SYsyTKO4g/QUpsn3X391eJ2k/ewaXSf98gImTH2Yx0WcDC9gUkrAUA90rQlIZBJHZXIVF3Bv7dRMuhxPOqZamOryr+wnNJrNp4P6yVXSj/OjDvag0SxP4rR0hcR1clDdfniVxNe2Hf3JdME7qMyyUS/UTaA//0QUU4ye6QOxBwoHKW0RttcwswdqD9wehK3D7e3cVuW2Drd1OOugq6RIeqP4qDMIRwXILEkHOfCanRfl7Sg243EX5tMlz2BORfIBKjMMArVChusYP9O/En65LjhoTpLUei3zactOqy4JVf72fdJ7zZRVnVIhl/ukYs085YZO7cS3mqioyRa6Mv/M71KPbNM0F3u05/frUPJPMsXDg8pWDp15oOJC13XqU8bjQhsMC5AItN4TJMA4pAI1F4gEcFAUgTkgIhAXcEp8JPVRIaaggCOGfKTrEYaMdQgf/uPKNCaRgMb0VQVGiQh0xJFgiBij4ghMCRnDBCOlDGoIgQTcpLsnVDfBJOISzpiPOIxR26QiUJHBjXAO3VPECGL6ZqIQlUjq9gjXti59PXRokiKJkSS6QTBrMGlrzlDfR0zPRprRwU/lbJJ0Mi0bsorG/epjmU1mUKA2eKa5w7OequEPvzochb14BDHiXCNF6CocadMwHQ2ytEQzy7TXhnk4uUii4jwuS7irQO/Cq/BlWMY3P0Htourb1I2ytDjNs/IkG03HaYFQlI3wbMzZiNQ+09mo4YTVCni9QNQKZO2zWtlvBiVoWsTQf5YXVfWw33+ha8x9BEjydTq6fZ7H4eUkS5rTODww4eYwnkajpJ+E6b9Aa3UvWi5oHn2046qij/D9aiRZ3j+/LUCX0c2/4zyDmkp4gnAsGYWPPAB/cmtLmCQeF0LhQDEfA3IoKqJQWyGjHg04FxJTwTlRcM/qEtdvfDXjE97E86kOc23gtZMXxfNsNL9kZn8STsppbtIG8JG5ntJxOhzFRkOMgUNMji572c25VQ1m23p7O4EzbEfQGxqpIx3zoNj835uV6kFtKtfNzcpJQE0Nc+zZo6kFamsH5SZJqgmSWTdJYVwa7jh7qdyVVnod26dpUr6sTsokupxPUt/w83Tci2eq02yT7KrNw4MF3Tq8jPM0HjlVBozTbFpYy6xpeT+OkjGc2gInklCD+icMwF7tx8M8rgY+MsmYFZgpxXUlXbpsmvopz8Yv0qu3oAULAzg8qEZ5WER5MtHahnoQBy7juT71kyKEMNKv36dtD6Ye6XAB4im1aMAqp+VFlpt0C5wJHLXJjeIx5FqoNIqVTsdxnkQzQfdN3gaDmrpxK0/YkWspo6z3DrzcLCLae+YYoXimYFQIq2CCWQXTx3A0uQh1zkecsoW3cd4QkGnzVdZ33bt6xUgni2icQCwEOx2HN0YfUdgrwA2WkC8DkXSeL9vxVW4EY52Nwy1c6A+3MLhAfxgkN/HMx4Ogkg+gGGFjRnNrKMFBX0I+CjoGLsRKjwj76R9Jvx+ns9GGKeiQIQE+amKniyA+xFbBS2fSaALTNx6hxt/h+Siosz/IIiru0T1DxRwq0ZoUeGBLSuLPnVS+yInsnUnpEVlSrD0p4kgF8nMjZQLzTOavO/dhYo49d5wxwRuZvB4MirjUQuzqTYDbeYxdQIZbyICskoGLR4UBpmHf6j41rw92V8Ou6rU8dPrh/En96kIkqws1ysbjMO2j1KxlTo1Q5yl1CMnpSZJHo/jX189Q/zcnwmlZFR7b9lwrH4F0/IiQHCLaBtFdAJHKoh6I0Hk81NcXGL0GiRBHo8En3MyncK1VBMKPEKpNuYEI81rGas62BLTEYC5J7ASpkxgjRzFra5UPEjU/ssIFxe9Te0thU89kPBklUVLOJDbSUF+kJSSiscnElvPLyzie6JT+dfo2D9NCbxfaOrW8dQ02a0SrqelsYJFbtJkbZIy1IBXdkZozrGqdUYtGoh20lUDUR4Akwzi9gsHCQhShG+w2aG+xI/+hunIDIupaZSDu0gdSMysw2Ty5QcdV/eOq1jGsoLvEYwGu/0CsOmauj2NYSneNSz2GdTStWlzUFb07kAyS6A6Ijy3ifAlw3AZwfDfABNtlojHIvyxiQqmnxCJV64cfCuvcclEXLcMdtIE7uJ/PXR0Wd4uXPiZf3wtEUP95KAN+CTJ4nhRmPgu8wyXEvc2ItTxnBHt3I4wbxivILoJqV7kEErvsRHCPKbFBCejd4+p6Uc/i7IKce9aulsX9qk2e+eqT55kbJM6x8nxCXdpOCHXpjJAeFTtMDFf6qVfr8sJhGw81vF9+UWlwMy/crYcij+mhuGHadEpK092FV1pnKgOLdggHOptvjfDzNhbz/DGXz4TbtdmW9uRxRerhoPJngviBIpT4QjH9fcDOl17bkaBLJE7akDh51I0Mt8HK74Wiyx+exepl8PN17u6i3TL44m4OT4foOoTdrIPpkjT1zqonqF9f1tigArbkSUGlr59aYZj70t9mybzOez7umnk145N1jJN2jJN9YtxtA5ljT0k+Z6zk58v4LLxdvbR6vsT33Wa+ObRUsXu3zLb5leTGjHt5P2THXLEXLPlN7SE1V8yCgEqBscQBe5i0/DGxnixhvdwe6+W+YG1DtSs9X9Ea1QdabH0CqusSoMiyfbcuFT1tkwCd7tPiTXiYuG8OvID4QFEqxpjEnH7CBNPJ93KdfM/ayPfsMRNMaylUbS/9hkXZ9FJ8AhQbv2Y5XSIwapd7jHa05bej5IMtC9RovGhKX1o5S08xqO37QkolCd/kz/b7S5mNkM+WII/bQR7vFeTtGPvKLSOwJwM8h/z5Mn6dlxfZMEvDkd7eXf3tzMUS6nQz6sbubrovWUl31XrhdlW2AogVpCVcBJxypgiXbG+2gGPLJF23m/KmTbB7s0/JBAFrs1tdXTAvoKOI4IKC/KkvP1kMczr/Zkmwk3bubbJX7s18zwvaDDrNlaS+0o/g2m1B1vjyiFRBjCsQPMMYUnMifP6XdnDJEuz3LRzc+313cCtW2cBYQqKitJUJ0AfBpNozD/d+XTp/3sbDnT/qfrGNL34L/1enRyw9tmC6ny6fd+ZxvoSgaOcLi73yhYuukJLKFTakj4PZljEjNV8YfLaucDXk03UBr2wHubznt6AOsnkoZ/dbULi2ZWy5UuERDim/9InAVHKyaTvxcwR7ts56Q/tAXYvHHt3z+PsCd7uvA6yfFMSjete4wrz0JtAeU45vJjkMTD9xWxlZfFOCu4KCo87f3k+z8rvTN+gInZ3bE9NAk6W+o9O8fSco75X0mwfpm/N2Lw8WcZ4M5i/a2dfFZKcSefV8fxnmpXkYGxlj1y/ICQKrdtAI/V6z0QffowGs5v0AVup6Ud+Imx8XM22I+Rtkj+jv6MnL8G38y68/JvYF819Pn6E3v/32FEpclaP1dc+eofNG3W8cOLQFObrr51h3QS0pzBQ3wXRvAG/JUnpEMikYDyjwk26hojyqKFZCYEXA7jXiNjBZA2YJiP5TvM/L//Z/p90nZ9386e/0f9ubENtXE9o5DOYp3yfS12+ZUqmso2VewH3MiYRFeiAoaWlYfMGw5jQWzaZfsxQNarH87A9Sq9FdLM5rhRpwK2PjXwxj6iksuOQ+FYz6PpNu6xPiqlJM+IFPuVDSb0dZ3JXyCsj6IeJGpXYoxReDEpYqmHIGoVAyJhzJLmRA8ANwMeTBjBNB2qGU26P8/Ql9uskknziaTxcqtgMqvyCgmEuTu1JfMkWrHQEsAwEWyyAcKkFlO55qgefHgAKw3XBTXww3SEgVpoEMAsJ8370A2RUehcAJUdMPGPATqh03f4UdLgIra3BakPEfObXcOQDIF/U3N+AI4UfxwH2xoDysIK9U2KdEcZ+3CGontb9C0ACB6iUoG6AfkxwkCJfHY7jwNkyHRvIZenudIfscerFdstno8y4bmSRoPo+36+x/mzUbXklIv5ZCYXWmRMCABCzehFvFE8FhTS8DqlcBfstYpR/jq7F5GafD8qIGJbJQSgulxaoZ3+sllQfzXKtfaDcSDtw6mKktRdfcWAD1nYT6j7qg8iJGs7/BAUOohBdOsuK7Ao2sjKeFrqs3NKajsIVg77gf8dCCXc6SGWcYC8wxk5L51qWDRxc+eBifgq4KGrRclhK6IPLK3EGSIeqvUlntR0rwI1EbP+L6uoeg7+3hF+SpPJ+TQICPBqkq32U20lOCUCwYEZJwSda654P634TR59VfDvz+/1BLBwiWuiZtRg0AANZQAABQSwECFAAUAAgACABIVFdD9O2NMPETAADsEwAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIAEhUV0OmsUeSHQMAABINAAASAAAAAAAAAAAAAAAAADUUAABnZW9nZWJyYV9tYWNyby54bWxQSwECFAAUAAgACABIVFdDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAACSFwAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAEhUV0OWuiZtRg0AANZQAAAMAAAAAAAAAAAAAAAAAPAXAABnZW9nZWJyYS54bWxQSwUGAAAAAAQABAACAQAAcCUAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
 
 
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAGBkhEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZyVXCTgUzhtWKUcKS+4zdyvsunKzrDtn5b53FyHlbIvl54gctbmyWHJ2uSVlZRVy7VpU5CYsclvXOv+r/zzPzDzzzcz7vTPPPPN971MrC6NLzHzMdHR0l0yMDWxofSetBjJeoLVv9Z7TBmwaJgZ6tx6OrGD9ym+3X+lYFKtXTou+Xa0Xx/yVp+/ilqcMCMJ+K6mzNXrTRqyP7oW0oavpr8R2I2VT8VQm0z6fSP5UlEiqNQfgyF33Ol+uu2eRCkrhrW+KsnH31jG5Vi6YTFieRwas7ktp7I4F7+Rr+e0cDpXXIwaXzxgWWhmAdHN1C61ipDnbGWu9SUKUX3ZuvmbSnKIxAuohnZqH662IpcEK8sTjNeU1/EnzxyQIO7im+WjHibJcR8oh5qo6fVsexw1FnBztjpgySxgzHuys1BUzxyGXazoI3G4RhdfLrGLi1oe9CzBYjXDHWt2c3YnHlk6WhfRMZ2yX27ndlMInkK+V212jjkIPsBCaeWo8fFI5fDKyQdBFKHLLWrmd0xTNI8Ig/p8s+sKmNG1AlxjtgfJ48sA9660MDdwg2kveGiSAEoiKhzABQO2Mgj30EqJzYkbPFjispfUgZTzpaej4/vgu039QjPar396c9bC/0BrEE18UxQFrCXzEyuoWdVTvoScBm95tmHgE9E86X1lBDSA7eqEe6W0epXVLi5mVjxmOy1s6pDa9BpS005+Z4eav2676bm4fdNgAovhpuJLOeOQ/+itDwfcH+0U5VX/NXnzfKji49qFwrZEr4aniPeu1+WHVHaEWraEj2bluZd/toB5O2YN0kM7fSrzUPOuJ/mH+8fTLKzYsA81JzCkizzWHDhTCtYcOjtpKt1l3f587Xvt8cTkwLGSRekCKElAil0zyUmZMFos5TmxXp4Xv4meOgweHCoDFJJLk7v+97Kb77Qm8ezk2ed12nZJPYY10jbK049rNt+HCH90v2dFskHVDNEReuSLSiT/xIrzy/RL1FVN3t77kAE+hJrwFEvvzGSLXx4Z3cKoTD2c+yXCJdaYo12Pv9OZ+0NSOITgOPe7cDao8GRbW47r3riqW5kZRKWZvN2RUf1UGfn6krIwGv6sJVc7bqo3mYTOQlAa1r8Nz7k0CM0RuxxVwhq1P6UVunr6YyQhKqqA1LMSjpL9EIR4g7pnEroKwloD1H0ZAvTnaQrVHp7jFyfOqf1C+8L3LD/s3a7PY1eVJY1ZAcniGSIdumxTnj/B51rQ/VBPKhTg1I9L7yOjj8AllI1Le7fQCt2CdcFdDsvjYPi40jPSgh0ftdcNlAXy+rXzDY6z880kLUNFneAmRlRqaIZ3nhlrgvb83mbD6ml7mvwLzd1HrbZRxamzJQ9RIk96IuId/pV5fMB5/iMRRh3jxDQUBNtmP852iGnpX1e5h7cbghA86fIqhmSBgg6DOEJaEXvIMpYy2vPVz4TWhKIgO9O9UmheGhZG28azjlkw2Z724nygXa0ShOUmWuarGYsY0eJFdDZXAlqBINRJ5/iSoEYTPtnHzbpBt6I0a9SO44B6xavd8Xo144jw/SMQ2rI+2VPmVC6b3BuvgSOK+9EyRwo0FgJITvU3KIgtDI/kuqll9MUncB9UMMHjBnlNQRW8NiyPPA/U41V5RqaZs0Mu25hRKpkhSSln2qdnxie+PstuNxw6blBfWl6E6Ep1SBRGe3By1wtWP+5D2WP6LryudPw8cl3o90OoX3310PL9vsXUmAqN6b8yHTMz1LrMsuMcla++eH3WMrIs82HmjdgeKyRRRazlH9pgI6rnez5BkAjGC4DzT1l9KrERnfmZLXKrZkCGtmR+Sdg97kXmTvVe+OMCPp2JZCSP1fsSpr7HEvkJ9YuTuuPdcZRHBFJ035eFhwzbelfv+qzHY/7dC8Ijva8x0a0KuPP4QPLQdAlZnSWCrsIVLAlT8BmUp5NzAnIvyTX2AOdpv9bGYbCQc+XMDDNRjpqtwIOuBcswx4Pa02SRgZTVf2jOjCaMXl5Nbx96CveRAfCKUS6pj7q4oKrwOQeSj7M08d+JgGXBGUefIGO/8Ls4rfqX/+JzxdMxA3ogzCsQfhQVTiKqjJ0+Pddk+yGBiwcXYea2UEFecQk0rzFClEkq+mauyza4Le6I09cNSR1l1PCT9Nt+NjYbxMKd3ar/MaTd1XoMZayd01zpIc73l3GBlWHCvDH+FNNyr2bj7+ry3A1CiqsgvgYDGPGq0UEENfgwYJdBO5x5FKbZrJlSubbZxWGb3yOEIz+TsXJGltwUq0hyYbNg0t8CzumIDwwt0h5dCDT+80SlosZDyMVXnaDMFP1hQSP35zhdcxwkNgzH9Otj6YdnQAaxqAmw5eIJxe+utrMTtIbdJ1UbNvalY5XlVR/K1/6YYlxZGLNi+oUHXs25zmBnp5n6HvIQUlSywD3nlt6kLYuvZd5BphM7/NE0CYmT37GVRTTsjfgEM+JPjgyWy8QBsZ+2iHqOoYqNu3jmGy0rm5Gt08SLAmrnS+nMjRBt1+HCvoRLDyvM7Fmcd1ZLrLJCbx9CTiObkVKXJyF2sVlK3eYLk2UyV4Gdiz5Bzrg3+w7U5ma21zhLvCdoTqIOAOp/+q2baV700wpZvTGfhjeWelzu6g95W8YyasoGSu1OEfCJ0X3fWqgmMqFlSm4PlKSzaz4S07pJGa+HJR3l2iGanL49Cr6m9+THblR47ezVNAl64LVGA6s1TK816H3G40REpdrFjf3upguIG/cQf/OrNwFmVADHGK/oHLwW10tQDGLMtoUrvlsZI+VqjOcKi+Ku+nGZpmKA6epZPqF/vbvdvIve0FxiBd8qlt5sfh4Nf9PsdH1Kz3hzCDSeFXTYJrUoadLO5FkhJ6Kghm7rBsOjoqkqQOXC+Hx3kYq15tPUDcbi3QS5KlgMrevd+oLD+XoPCe4tlFarsW7JLxRJgWbvjDA0qptHmkvsPN7ukiLQI69+rviSr6NMnws/rp/oGGBCXIi1r+KMoqzs6rEb9PSUbprPZwgOmGDomAeiJyU+/M4qXjR8fHRCzQV4EtKg+QNk2jZCRCXUQUSTbpMnwUtohYNv8lCRn27rp8JL8wo9sebQQjqBuzoXFZIGdMAXyelmGgfKjXDF9b+BX7f7cnzH3XnEu9KNEo2V3ATfbrK6zK2rjKb0agwyJausgzOKyaJ30nUDzUqVOlsdCGH1+1AHWCbYzChkxMtSDzQUrUihwO3NYacSq3d3YTYurjKl3BpuKPB5OQQ95TKy6KQqVzft/c9SLa2BDD/t/o1t/1TrAyo4d3EBGHaV5Sn39kTrAKoKPezhGq+1VvrnSfoBoM9ZMV4enP/EwYkSdlGjnEFMS71WX1f+rvur+5TinBL/Kz5IbzkJJge97wOxCgyZSgidCdVdL3nqB50G7lbhV9dENHM6u5AInxCBoCf16PM6ZljO851W9l7etAWlmFevtkoqaUC1qiyjVpFIzYhfpa/acEJDPk2ywgZLJnd+HYgFi3FA7u5ef5/Mfg8PNhflV761uaCHsN/famFLvgjB1H9vjmLizv8ZGwTXswsNrVLRPDikrcZ68VheK4wmCU3TPhXW6WPhV/mZbhh2OlZcV5xac9OmzDqtkJrovhuO2jGKa9v9qK96f4g3tskVeRhSBEmrzkj9u43Eb369rCYaZIqjdANjuKj7X1oI3x6HZCvsCE58KHwmY7XyhfMJRzwfyNLUcf8KZddP1J7OevU+jR+sFDcdQCAoFvymLQPbc2Ef+jV7Jq2dxuDbgE0MnuVT7BEhBK7HKfdkaaB72fkD2MnOE/QETO76GMFM9sOgCN1/hOAarW7jZt+cEv4Vfa2dgogJ9viDY4ratHTIg5fegoy5F1j7bTBySWykI3FLv17ygm6IREkOHIRoaRi968yV0TuJEjcWK7JXs8ztT6FK5+a94tggEz6s9vHFsyFR0hdIp61vjoFtplmVx+WnE1bkXvK+dJ27K+2UsENJmVhvO68p80hZNT/gzdrDUyncG1CNedF401yOpPl6kkCGb20eEETIzT2xr7SLwIzJC3Qiv0pOnw/wxcAvHh7zpaiRNRnBHFqbkBcgE8UEjNF3tfCLn1YrcGQsnq0AQVaQvhVeRYCb/BZZ5QfHYfOojpMfsyKWuyvpta2aBiVE6HMMvzee4rVfbv9BfvEKgSrx09tRgMhrZzxfH1MmNGJAlzLLEewEdg6VUcI8hN1KpWqdDjJnZM4VPuZtF4Eafed6NmgprKd4u+B1B3p64J6MfuZKfBPx0LM9OHzKOcRfq/Gv/Qfy9I2WkD4R5+3iwPcv/KD1EDnujRIuqPes8D/KdbS6fhUOrxB2nc0P+VkqvzhY1fVC2xPP3WWRxbwhHpMc+S94hNqZgv3ffdfXQ7+FSz5YeqIY2dJmkqfn94QHPlHfAgtNz2z4j5CtClwbnXF1nPBcHSsPaDEAErMaQXF+5I8rYR+3miM/QYAS6ZLa4nM3zleAP9excnTQYaeC+p9fBJWkqPRGN6c2LF7d9bVHxnrvN48+P8Mr0LHyJ74TG6qdWQBEON1rpXHn3sjHLsZmTfpmfE5PN1vTnVxzGW+LXl5MpvE4TKzlWNcHSOHMftWRCyH2hO2mWtX5Dldocz1+k9uLuT397FYwVr2OtZXTwhg6ncDmbaXV3O59fd46wZRkezU+fSEw9AzsXV1IduKAN4ri2ok3MwljI4Qy+RwDDbgmAPONcXIWcJHLDhNXpkLJ77HscaQkTLJj3iCT2D+4Ga4kuNxWeHyrfRJ6H9BRa63u4qaMN0APmb3gY6eMk6XJlFENj1wslhOfzgp85ND18oGQ11b0cgzXvfOyd4T7rEXCnPMWwxxkaQvj+wGcd3DOF7EQbDADP+xh1RlPRCEh791wjIiQDDNYX2pmBko9Wmb969X6e7XrFlk3lYuDnuEYk+ZbRMo00Cw7WpoVZgODZle7NUHVGPjRLU7lkBmuRNv2ZHN5vsmKK2L316VYV+cP6IdcligcjDvAEqqZgWq0L8qu1AcLuxGTQ8bHiMAluGdIGLtX9Hc8EnXwGktgv2PQPO07ncWXyamCq5VD0yapdTN7fnlXLHWyQu1rv1dNcXwjlc1jBkKUbNewSmUSfHjioSKHz6HsD7aS6gIriN7Z/2q58lfzVBCi8S0ut+Ogwl2522zIG7M+N/AzJK1nSWKmoE8U4lBtvcpWlL1uG/rptd37J5TQvTPpm4AsX+ghhGuj3Cf/XPzjOklVdi9P0jweUiJlL0fwjvj2HMNnwwrpa70jr7Wcu3lJhdSqkVytsYQmp26y+Yoo2jWFSNdnwv/1/nDIOjvTaPWupsQyRI6HC6/40wYe61LWIyPDZ2jmiiY05EZlyQOifuhyL0wmk8Mfy6OubE8zxgNk4yELkb2YoXsI4a9cDyHmUJHJ8UN3jn0NTmLeE4JMJFVZ59+l9Zw+qryRxxIgQHwl/hFibxHz4e7oJzliE/M0skchAPGUp4HPKBaCAVTql+uDVvylvdd9T6x9dCo00G2sODS/mYVk62YMmhy7/W7hxujBen+0UA/APEHouL4SmaYuspDNEaBQN/sl0U7b/m/Q4k5KmTxjdXfxZx77Y0tGKCdTCoBLiHvM/UEsHCAoc/x5nEAAAdBAAAFBLAwQUAAgACABgZIRDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgAYGSEQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWztXVlz27YWfm5/BUZ3pk8RjZ1ga7fjbG0ax0nrNL1zX+5QIiQxpkiFpLxk+uN7AJCyZEpy6NgKnYmdBCJxiOX7zgZQZPZ/uZgm6EznRZylBz3i4R7S6TCL4nR80JuXo77q/fLz9/tjnY31IA/RKMunYXnQ40Yyjg56ckSigRqF/VBw1eehT/oh8Xl/SHRARjjwA+33ELoo4h/T7Dic6mIWDvXJcKKn4VE2DEvb8aQsZz/u7Z2fn3t1V16Wj/fG44F3UUQ9BMNMi4Ne9eFHaG7lonNmxSnGZO+/r45c8/04LcowHeoeMlOYxz9//93+eZxG2Tk6j6NyAhOmCuYx0fF4ApPyBe2hPSM1A0RmeljGZ7qAa5cO7aTL6axnxcLU1H/nPqFkMZ8eiuKzONL5QQ97REgqeijLY52WlQCpOtqrm9g/i/W5a8t8st3wHiqzLBmEphn0zz+IYorRI1MQV1AopHRV2J3DzBXUFdwVwslwdzl3otzJcCfDWQ+dxUU8SPRBbxQmBeAWp6McOFscF+Vlou14qhNXUyaPYE5F/BGEob8eckDDwB/hRxzbv27OSxMkSz2W+bxlh3V3BEv1af3Rz+mPbZwe3TQ9uQVR1/8nzU8s9SfwI/vH/m30yGiLHt3x53Uo+U6muL9Xm8d+ZRGomBjZisVSTwtjIyxAIjCqTpAAe5A+aLZAJIDCpwgsABGBuIBDopA0pY+YDxUcMaSQkSMMWYMQCv7hvm1MIgGNmbM+2CEi0BFHgiFi7YgjsB5kbRHskjKQEAIJuMh0T6hpgknEJRwxhTiM0ZihT0CQwYVwDN1TxAhi5mLiIyqRNO0RbsxbKjN0aJIiiZEkpkGwZLBiZ8EgrxAzs5EVXHE6m5crEA2nUf2xzGYLLkAafNCVe3M+acX7fbefhAOdQEQ4MUwidBYmxhpsR6MsLVFNInXnxnk4m8TD4kSXJVxVoPfhWXgUlvriOUgXdd9WdpilxZs8K59kyXyaFggNswQvxpwlZOkzXYwaDthSBV+uEEsVcumzv7bfDGrQvNDQf5YXtXgYRS+MxJVbACRfp8nl41yHp7MsXp3G/p4NLvt6PkziKA7Td6CspheDC1rEGuum6lgjAlWPJMujk8sCVBhd/E/nmbEG31M+l0JI7jNFA4gel66KceoJFQhGpALHjaHFYhga46OBJwlnVEA3yseCgGVerq/jQcWUPltwFF7oq+mOc2PbSwcvisdZcnXKIvAknJXz3CYK4BpzM63DdJxoqyXWtiEKD08H2cWJUw/m2np7OYMj7EYwGFvkEXgHKmCa46ocuNLKmKEtpLCVwVYC1/oWR4t6AnMzErYcuNJKgQK7oVVTJfU0Ca67iQvr03CvspzaXxn1NzF9nsblUX1QxsPTaqrUXXA8nw70lRIZgaexy0BcarXaDbnHbvb3runi/qnOU51Uqg+Uz7N54Sx5ySoiPYyncOgqKuBCQ+pfMCZ3NtLjXFfyYWJTNQerrcXLSt04bZt6nmfTF+nZW9CYawPY36tHuV8M83hmNBMNIFyc6ivdi+IihGgTLV9nbBXQGJqoAoCUBi2w4nk5yXKbjIHzgdKYaKKnkIWh0iqh1eMF8oc2pzMQo2zwHvzfIkS6entg5wHVaxXSqm6YzCahyfuqSSfhpc5XYLDtvcqi6+AA9nYG4AtmNnEEwmdaO11xI4YPM2jQWt2KOwO8C3QBpmgS80sYiik/LumdnauxxBX/7c5eIwq0x8FkoZ1OwzRCqY3oT+J8mOjeVYgJscENhWTRYjYv64qha6xqooE+sBYPF+gOb0B/abab4Me3B//KO5QQuk4hJy+swZWVs7IffoujSNu0xXnPeKzTMxgpRA5Y4eBq/XSJXf/oY33mAtDp21OXpDr1kSxRA7Tn8QU6rOUPa6lDWq20DlnV5iHEur7l+BACXZ/WTegPqRt+4XyFid/xKB5ep3Ob/j/ulv7fRvuD3Wv/Y6f9pKH9URvtj75p/1rtV2vUP7i9+q/yeaLH5vx6d/a4QWi4ndCiaq2mLPyilF7ZBK5sQlY20ScL2G7F+zWo4+ksiYdxuYArMfb5Ii0hR9E2IjfzjFOtZyYNfJ2+zcO0MJtKTqZ2MZs5WzR8jbWhYy2Egq6zxifbyVv1hE9u5QnNWnjsioErPp88uXuH9qRCEu0h2oBRt3Fq+ptTW+vUGGk6NXlXTu0GA9ENSp+6imfOcuBfGFcbY3naGWPhnrDGAmWgsC8pIUwwZrbh7sB0tmHwrHMYgHKugiCCe3Agm5RN3+CNn7dRsOedAfd+F1c3Wu4GMH9tA+avnQHzfq21Rab3tIHooF2mN+hIpgehowHlpYFSWEi55wecUiUZxyIIuHqwSeBWOp816By1o3PUETq3s9kn+Kvhc5Pni27wfC/aeL4XnfF8ylNs+YdXxGLCAiV9TBWRPpzfmSN85nB+0QD4fTvLed8Ry+kTTxKKJQ0IJz7GPGBVqGHXgf9oNo0UFwGXMoALJBUPyY62KfzvD38/j/Ddr39/37Sdfdpm7Xv6be27du1LgjWLX0fz3e9ov3z4FkDJ7i3g5aYt7VkbC5h9s4D1N3T4mj1tR/Nd7P9s82nN/bwPbRj98I3RDT5N3q1P+5ScraL0ZYPSpF3OlnQkZ6tvU/iL2xT8K7xNcepYSzataI7arGiOOrOiIf4X2RmbOTRPGzC+chW33dJ+1Rlgj8Nji6stP7rynqP/0ab8N28TK/JvsWJtrKDr7mg787nPuz8fHKn5Jr9z3MY8jjtjHhAj5OqPtRbmKSUkUVgxIjmhXOzQKa1C3Uy5XreB+nXXocYeIZwpWNZJxYTyhfR3tm1VpUDHDYin7VKgaUdSoD5Zo7cW42vIEwsxFR6WgpFAMRxIzsmDzZa20vu6QW/ajt60I/Q22GXb2O1T3/MNuZIHvmQE++zB8nsEQ16/xzBtkFtsJ9fMfsFc0WR29cvUHbVcpjwqufkljBBG72nH+dYJddFg5Y2r+KNN7HpzEzu7C170OhGLWy7CJwEOhOLED+gdxa5toPzRmYBOibfmLhT1Ak4VDjAnQlHs7/B2/MslHVtRvrKdvy874u9hjdDE0jqF1btQAa3S08ADX2B+sXn0R1H5YB3+Jv+SOIrLBsV/tnEsf3bGhgh4chFQ+CWECsnNA8TGrzCPBAGjEmgnPMCYWoIlyAZSMpDGPheY3KFJbQ6xaQPs8P+kRZA10h0Jsy0zKA4GyCDCMuwHvh8EvGNh1iC7YZF40sYeTjpjD9djClsXZrnku44pJw2ABzfZQONLXuvM4AvtlK+EFcHWhhWqZLWOwB6XwvyyQKnAV40HIh9MWFnj5DbuAQxbOblhd5xcN3cBbkNKc+UetSIl6g4pHV273/oG1HBz6HnbJvS87UzoIaK6BcU9RRWnPpDkc2mfA9/dV7UtrGSh6CvA/tUG2L86AywTkMwq87YYCOGSSerCDcBNwRi4Uoozv1o5U08QiEo+5yCtwCPJHYB+egX5BpV+1wb5d51BfqHSsJJc0WmAfGcZ1PGm7xnothmU7kwGtSHCyrVfD+0LupPdui+2z/52077LqC3Do84yvJbfoOJXeRCoIXvyIaNWvv+13Ud5vcmCx235HXeG32aSzLaYMJXXNgLuaSfgi1H8btMyd9KW4klnKWbcX0cxdVbMmCeMCUvmYyW44A9383TNgmqji45bLajizpDbQf/cipCNBve+FSHvO0NIN62tFSfVm1gGzTjXgpFxV3YcbniYk2KPKSqVCDAlfqDuK6TdcrnwtkHCadtIdNod27i24yrBBa27kVc5LALMmXs/QUAEV5T6/oMNRVsTyncNjpO2HCed4fg6xXwbw33CICQJc4uPK0WEkOLBUtzGkU5aONLJN0f6mVu11dPPkwYNv7mKv9vsav3WmV0tVb33gXgE7MnnIgBmhEk97v3LN393BoSgAoGCH5GYCo6ZD6rH7gaDT3Hij5eUaHVJ0c6Fxx1x4GaPdAVKP6hcuKi+fLH6toSvbZfn6SY+p22D8rQzQZl4PqNYYPDewry5WNV3HlwUZtgDpiUOZIDBhYuH9AVZfTHLYWDm4eDa+eiLEvJKqDjo/fBhnpU/PYOr52GpUTxCcYniAs2ywr5rHZUZWrz0FoU//Ifgn6I4h5Ehw7J5C26Yjg3F53E5geEjwMLikUdoaJ/6cV3YYa2qgxlHb3VQt9KG+n3OTh8Eub1CjOILHa1CWb15vNB5PLp6S7d7z7Ts1SxW1xdlmJdvjNNELtWTfrD0I2n14GGwcpqsPDSyzN3e8vuGzXH9f1b8/C9QSwcIy54KlpAMAABQYwAAUEsBAhQAFAAIAAgAYGSEQwoc/x5nEAAAdBAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACABgZIRDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAACrEAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAGBkhEPLngqWkAwAAFBjAAAMAAAAAAAAAAAAAAAAAAkRAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAA0x0AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
*Process:
 
The teacher can explain the step by step construction of Direct common tangent  and with an example.
 
[Note for  teachers : Evaluate if it is possible to construct a direct common tangent without the third circle.]
 
Developmental Questions:
 
#What is a tangent
 
# What is a common tangent ?
 
# What is a direct common tangent ?
 
# What is R and r  ?
 
# What does the length OA represent here ?
 
# Why was a third circle constructed ?
 
# Let us try to construct direct common tangent without the third circle and see.
 
# What should be the radius of the third circle ?
 
# Why was OA bisected and semi circle constructed ?
 
# What were OB and OC extended ?
 
# What can you say about lines AB and AC ?
 
# Name the direct common tangents .
 
# At what points is the tangent touching the circles ?
 
# Identify the two right angled triangles formed from the figure ? What do you understand ?
 
*Evaluation:
 
# Is the student able to comprehend the sequence of steps in constructing the tangent.
 
# Is the student able to identify error areas while constructing ?
 
# Is the student observing that the angle between the tangent and radius at the point of intersection is 90º ?
 
# Is the student able to appreciate that the direct common tangents from the same external point are equal and subtend equal angles at the center.
 
*Question Corner:
 
# What do you think are the applications of tangent constructions ?
 
# What is the formula to find the length of direct common tangent ?
 
# Can a direct common tangent be drawn to two circles one inside the other ? 
 
# Observe the point of intersection of extended tangents in relation with the centres of two circles. Infer.
 
# What are properties of direct common tangents ?
 
 
 
===Activity No # Construction of Transverse common tangent===
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time: 45 minutes
 
*Materials/ Resources needed:
 
# Laptop, geogebra file, projector and a pointer.
 
# Students' individual construction materials.
 
*Prerequisites/Instructions, if any
 
# The students should have prior knowledge of a circle , tangent and direct and transverse common tangents .
 
# They should understand that a tangent is always perpendicular to the radius of the circle.
 
# They should know construction of a tangent to a given point.
 
# If the same straight line is a tangent to two or more circles, then it is called a common tangent.
 
# If the centres of the circles lie on opposite side of the common tangent, then the tangent is called a transverse common tangent.
 
# Note: In general,
 
*The two circles are named as C1 and C2
 
* The distance between the centre of two circles is 'd'
 
* Radius of one circle is taken as 'R' and other as 'r'
 
* The length of tangent is 't'
 
*Multimedia resources: Laptop
 
*Website interactives/ links/ / Geogebra Applets
 
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAOmLc0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ22XV1AT6haFkyAt9BZAEUInoctRkBJCT0CEIC1SlQBSlX4o0lGKSEgogiKINKUG6UgHaQE0iIA0adIUlA4BuZw7c+/ch/vw7zWzZ38z/94va1aC6U0DFvBFMAAAYEGjdM3Ote/8eTHQndelBLkuAICNHq2rZf731585HiUWvTy9P2MQrQUW0herHCn6ZZChPZ9auGW5hRPMPSEbwa2p++kekVvmasd3IBweHZX47DA+2szoKod7eQ0pOpzdXTF24iIGVRJt+kr4sOMaZ9GfR2WD041UReradddKTYHhxoMfLSM/WlaUPcqxSu+o/BY264WZ9pQk05jjNXFT5NdWzoON4sgSbnaHnZWRLZq+cpv6H3M09KzmSG729ErYraISWsxVevxib8qUX3KIcY7q2BOB6xTySw21wEvBPgK0ukC3NO/Z924QGWtH77nWcsV4Q2Cj/GVACOM5D8qPLMmm7Zsd7B2ysj+rWDtYb6jiGmqwW93P3zr7Dds50pjRoA6UjgJgiy/evpcD9xUff+3Yymo7pQrt77D92X3ysL/n7Hg+eH/n2WvNTYv51/arrhGntUfk0kWqJ2+QbepZS+ji6cj2wS9RJqfBo9WWAxbewKwKJ03S2dmn3Ag3lz93LCqd+uoAC+HyviM98nOZ++G9YTv1TCHpg2cOX68X5wzWR7Q1rIS2nVQbjyUb5BoKpqKYf7J6eyD/hG/k7u/w7t+olj9bOPtO2SKzmZx2hhdRTraIKT+DhCJ868cDzQmlQqelI4E+vTxHc721hO3nTimnNWzx3teDV6g5B7OfeLfSN95VGq8GME9CkNNbepuNuumaYNuDCLcVmXHJTVtEUKX69qR824nDU0ztbOhWi33kLzl5zsTLLH0emXOrPiRBtSM/6vb9C1tcs9bumiOqpK+zMkfeq696RWTjm+2mffT+HKAjD9v4LYbPTg5Ed8bGi6eCalbl29YXt/v/WVvIWSt/IJcO9fX64F6CWmYUvWu2/NZzAWz4kUyvKa/RWAP0MkNGrltytV1z4JDnTJMFEIPMLm/wpP6a7/Iq0pAdfJnmZYW8bYtLmgunevmtf4b5fWuPevn8+sNjf2qrz6I+9ax+NmTwPXWzuaO11lAWZZN4h6sGd+maZ1XlTHPQVNtIrub92YizUwRkaXOmef9sZThHySBF8Kpa0OaPSd57m9ONr3ktgG73P61vzTSPW7rLdMYx8YKbrSNp/hIgerFdVjVfeyZOq2vRhDj5pfPOeRBCbQrZcy9UZNjkpb7fHpBOroEHS1rAoLA/mhVDCVySnkxCPBPzZ1xC7JKm8zq6tD08dyPCXw9DL7OT4GmXpEe5FfJ9hcEo/QQb7aSb4vmct458gisc2gQb2f5osnNIes61zmz2UpcHM0Xr52o9MrFt4Q9dkjAQqEhk+P6kq+wJnFYM4zr8gpSeMcDCrmfHLsOIaDs823q/8zTuKZif0+EzMD4e+dJvy9yjM0De1/s0m1V/rFyqKvmy2hdmPgXoQVkdHKhl3VvrMf498OC2sbc9rg8vXNTcrKbCu9B2kZFhs6cpYMOwvAotu7vQkzREcuol5+slkWvcRsmT71xtwOy6bLzJtOP6Y6ZM2uIlSkjxqpX6kr+9PYbcBZh45WogZRYADg7NsU8PpKCyEtFrqjMMoDBAXrVeFPJJte+yIZOJoOlbAXftSW4CHVD7m3HcdvmHEsxrciwjF/xIA87vW/5YPqSNAe/TVh1ttmctI5PQZMMCiO1+Zv5FVfegwnxWZWOevq/Usrw6I/mnjtNrVTppkFfxhU0w6slzHfvXcp9ajAo5jdJxGicTDCic5pqdEaiQFSnF6+3GxZmYTBMbFWrwVABWSPh2RdyZ8uaj/4pZFu79rfi9X7KMmxmlYqbrFzcFLeRoC4bi7qd4pFs18FgLwekSJJ5mpqGLpYNm3wdD2KevOzLWCoY3Htk5REZv9JAKr1b6IRhWxj8/Ce0Fijglb0dr9dAkyrQqV6SfSET9/NYRM3T4ezEUruSnrE17wbpMCv2HrnSvk0n+c4id3TgG6Oa03Jhac8isRP/kI/BxRViefoqgVxS/sveL84ObfF+800gYAEoRJU0qAtqF2/q3YFAvmdsO02kynXoiyKd+r7TLWO3yRZT387Yr7Fu+kp8pit5S71SMkkNbq5Kkug0CmO/QHxexpG/xIRt8sDH9DSeoL4aLdfsYEr2GG7Ny8PFacYwW2m9nmi+2wnk457BwAPyEelus7hZy83WJKbYMoCU5ihWVN/z2AliWcslccs+WJKtAMkaZfUz2oAB8pB+M5f1qNs7OmuCIBOhnGy2AlckBSYnILBeNMCMRZJwY7eQ171mUmbxlep6CEmm4uxRkRthjKGegEDLHsh9Zs1kRlDnEl1VVilXYtZuCgXohy9v+CBzJHoxikjb6gbF04StdPl7EbgtiNLx88ro7PFfgF25eCmiuTIrWztwjZymFSsT8Xl/ysfFiY1CW+LzElda7zFed+FI0IbjaZYjYdOO0ALp1Yd7blptH9PdHwz/hS6kGP0LNRfG83JxxOo9Za/2w8TM3cxFeZ5IiEnc+g5blnHajQWb5fQ6xF5LN+coMeCylTb68OCVOa691OrNS67ymDAP8AHEbGXX3LiiOJvJIk6cb/bxml5f6iRrjV4arSSlqS/rAxhFwsuS9yQFfmoYjCgw/FoKrDfNUdqMUINAdVxYA2MA+er1v0/X3c8t/gKqn2MXsgp5Sl4gmgRfEvFgYtO6VhPawyBvJvIc6EbetU8rSBYRy3Zq8zarISCxS+I7hXS6+U44P8bOajbO7eHFZvwHFwZoJMIqVwyQWN9w42cDtzKgSKVa598BmHs9KE25QlitGyy+AteSt2Bj2mn0/2WkweSL3nUNUf+Lw0Ub/PbemMGJs89imItqGRttopcLqkqS3C3bwZwMwhGNDuOM+g+NfoPAVEPYov/Fpg95SFTOArzY8Ezf65sQ7z/7xsiUS7oupEnRmXScWbidZs12YFqYBvK4j+o0QuW9MGUAGM3igD00bXvLK2zPDQ7NIuSAzDqizZJ2KPWYDsytw0qZDiH6lcNQbqNVRvnA4onkWhp9KVLP8UEJLW5AMCF5IkATbpFQDsHWe2Mozg2VVnKVjSXqCNBf17tUHz1UEvQVDjpZDKttAlM5I9R1yyE47jV2j1fqOwzb0hcxUKpHvmqf1wr753brQw/nHVFxrUkZC/+2uRw8HmS/uJlMpSBhUlqEv++r30S+HRcGrrwyMdkp3XnQlX1ImdydwOdUHlPelS1tFn3/RWUSlt8WWtAAbHbuKOTeq40RITSIwRe8uXuXAkDuTm1mW2GxbSm5hhKlNufC7lUf6o/Av/+LWMO+m8+dfmRzWkHxz4t9WlEwCA+NweUsq08G/KFyoj8nijGs9Iq7mKxQjcLxoULsjYdX9hpG7MwdXOeLwW0zn4LzusnL+ksumHbLaOk7MNOzjkfeQRi6FXqcsrWyX0yxwKGbaAK2vZizWmp8x2i/d7+lHFpFmM/uk/UH6SJSupP2dyxB8NxY+Tuvrd5mgjhM/LvlgUMTXPHmq8kkqzhpFWyDiE9NHGP/pgt5A68F8p02ZxKBNKd7Szc6t/muELI3Quoe/r7vL8HTZ4rKvbKEfmFlGyGSCfIXSCgnLdo1iAxqpS1ZfrtbYWol/fotmjQniv30L8it8+2Ot1P3WI5fKYYagfCszybgbsquxAQ/V7iJQKGme6rSbEDQtMEOdRlinPb96c4LU9V38ROWVFNStXwcNlnNonZbQx0YJ1htCOpJoYn0hWH00EIZlfsbE/5dki7xwzCUd3ZRU5gM6vIzSLsVWKbI37hVoa65Ns5pXSh5K4SHXMvS/vQXRP/rnhC7DL65fq8CnklunJhNSsrxDkQSXer3aRGfZ7htGMOA9yw1uVw0V3tteQQ8cp/GHZZHcOZnnq5s9zytgekZWdyJN/1Bt91/wRV4m3dPJGOhkkfMQSGcq8m9+1HCt1UjCkf1vqoaOD/LxS78spmu6OUHFpaKAflXFx5dsH5UuDz9mY2wCAs9sbfFiCuwzEz4KxUCRYFbbN1cyT3xki0EU/XxCXCDMUN4IkwmImB6SKJbtRhZCFHzQEwhYJv6vAgQrXqS/y/RAwe1tOYiSn+88SGBeksgEJjDpmfEzNPXnxMppZF8THqQvcFfY7r4NRiX1O6BUuQkimxlstO0NGU+8MdMCA5DjvJv7JkYXwNB29Agm3RGX/I4bD7F4CbkZ0pGIeGcLf9osJdArodSC6yfc6HU9q7kjkDZpIlhHiLNE3jZvuBKsn0JpTq+vPnK8gnEbLTJ2OXea7+fmlpWS/tlILGvzza1iiKDxi/F0c6Rq+9jArU9vAA06WKFCaIc09eP2wdbcnFwq0QKdQx+2wgov8+PkTOiQQNi9dQLCvhqJ29Vd2RJ1K1Fv06O9O1VRIed3+OsOtU2dEV2fOajRmqv+BEwpJah/bXqzPtGLNALYf/DpI3UPjUjwdsbfdfQXyrpBTt39kSLFO5LjkJoh+oYGX93UxYOH8MhGzGAdDjg+v5KVVyT+INLp50TqlleURPpDxQLqo++y8OlmXdtg3VjSDIDjtOLfAoGUj1p5YNTjBpsA/8eJD1qeOabh9KouNri+6u9qArwSML54k/I3sjugw7nEAwgMZ0PZh/3uQfA4DFQHbHwhO5qzMHypTDh6+oFGRMTEbF+JSoELdHXp4b4IRZz4qHG8uedb7Zl33QVr8s0M+dWa8OR1YZnT8K7fiIYr8RGZvOhm7GzeeQUojOgizHO+5cYLftK5tee3h0IEBgU914qhw6oMZCfehkCRWmFfahQtwSg6jsw+HafVRpi7xb1U59XE5+mZFnSDD34ngkQsuTPfzVgJYpDuzEvA2G/ZA7Jss2iPvbXLxF4iZm1C802ppcsRT/ChsT0Sp5ehuqhAW6CjJ+5qKWT3El2aQ1SCVvRlmxPFg5ayIi1AIGYAY3tOlUAKiAJNJXevmwZHKeI+2DNArRFZ0tE9JUpsBZEl8A2VPDMapgr2DEaj7/XHCGg71OMQRJMB8/95Nx1EyeiUFakTHr2pkLOLv+SIr018rt5gCsTwgCkW4HhQvtl53jsPcxgYFHye4DBI8/80/x3i/iu0uoWRUlD4f+X/A//D/TP5v9x/ALfEP2wPEZ1VI+MXd86TMQCtd1O3Qtsx+l9QSwcIHmj99zQPAABADwAAUEsDBBQACAAIAOmLc0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACADpi3NDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1bW3PbNhZ+Tn8FRg/7shGFO4iu3I7j3DyTNp0mu7OzO/tAUZDMmCJVkrLlTH/8HgCkRJmSazpxqmSaiQWSOMTlfOc75wAkxz+uFym6MkWZ5NnJgAR4gEwW59Mkm58MVtVsGA5+/OG78dzkczMpIjTLi0VUnQy4lUymJ4MJZ7OpCs2Q64kachVOhiEzYkixjDWf4lCFaoDQuky+z/Kfo4Upl1Fs3sUXZhG9yeOoch1fVNXy+9Ho+vo6aLoK8mI+ms8nwbqcDhAMMytPBvXB99Dczk3XzIlTjMno3z+98c0Pk6ysoiw2A2SnsEp++O7J+DrJpvk1uk6m1QVMmIYwjwuTzC9gUkrQARpZqSVoZGniKrkyJdzbOnWTrhbLgROLMlv/xB+hdDOfAZomV8nUFCcDHBCmsaRigPIiMVlVi5C6q1HTyPgqMde+NXvkOuIDVOV5OolsQ+j33xHFFKOntiC+oFBI6auwv4aZL6gvuC+El+H+du5FuZfhXoazAbpKymSSmpPBLEpL0FySzQpAbXNeVjepceOpL2wnTZ7CnMrkIwgzDGr1qobrGD+1fxL+uK0Y7U6StHqtilXPTpsuCdY9+qSf0ifb9KnCbpdUHJimvEO7fgz3mqdoTRO6cv/dX6dHRnv06M8/rUPJv8gUx6OGKuOaHai8sLI1kpVZlJYvTCOhrdkTJIAbUoGVC0Q0FIoiYAMiAnEBpyRE0pYKMQUVHDEUIitHGHLkECH8cOUak0hAY/aqAk4iAh1xJBgijlMcAZOQ4yVwlDKQEAIJuMl2T6htgknEJZyxEHEYo6WkIiDI4EY4h+4pYgQxezNRiEokbXuEW6rL0A4dmqRIYiSJbRBYDYz2bAb5EDE7G1mrK8mWq2pHRfFi2hxW+XKDBUiDP9o6O++fdnzhk3EaTUwK8eGdRRKhqyi1jHAdzfKsQg2I1F+bF9HyIonLd6aq4K4SfYiuojdRZdYvQbps+naycZ6VvxR5dZanq0VWIhTnKd6MOU9J65huRg0nrFXB2xWiVSFbx2pvvznUoFVpoP+8KBvxaDo9txJb1wCafJulN88KE10u82R3GuORCzVjs4rTZJpE2b/AWG0vVi9oE3mcu2oij9BhM5K8mL67KcGE0fo/psgtG1iABaGCc4WJFhRgvfFVXMkgDLWQjFEisWbWM8WRZZ8QAQMvRLkUTDPOCFDz5kBd3be52mAUrc12uvPCcrt1cl4+y9PtJaeBs2hZrQqXNsAgCjut02yeGmcljtsQk+PLSb5+582D+bbe3yzhDPsRTOZO8wi8AxUQMOd1OfGlk7FD20hhJ4OdBG7sLZlu6ommTsKVE186KTBgP7R6qqSZJsFNN0npfBoe1Mxp/JU1fxvhV1lSvWlOqiS+3E7V3vDzajExGyPabZN8rjbHo1tWNr40RWbS2qgBzFW+Kj1HW/Y+NXGygFNfUasksnD9Ewbgr07NvDDNwFOXknmFuVrcNtfOZdfUyyJfnGdX78EWbg1gPGpGOS7jIllam0MTCASXZmtV06SMII5M2/dZFsLUYxsvQD2VVQ3wc1Vd5IVLusCtQGnJl5oF5FqocuaVrRamSOKNoiOXvcGgVvW4ZVBbl9UyyicfwN9tQqK/ZwsjVB8wQBSly4vI5Xy1mUU3pthRjWvtp3xad1zLlalNFtEiyfzNaBGtLfOhxUkJzrCCjBnQyLYZsx/bxplgm4/DLZpoe3QDqIb2YJaszcbVg5aSj2AV0c50tlSowE9fQjJauvyoqpnpDl4n06nJNuONMrAfhwJ4qmU9ZogSxhv35tYlKMD5hBb2NTQdkJwb2aj7dPCpcDjPsQEE3wnI29msNJVV4JASpz5C9uKF989/z+zJvtnXjCltTzwImZICsBOChUq5blkQEq65pIrC+MHrD9BHvy7z6xKrI+tAd8Kuv3qLhW1Fx/liEWVTlLlE7Ben6G1iEEGIPUuKODX/PX2Kov/Val1VTeUz317dyh8A9+xBwBHq3b0re4L3KOgQErA/B553Zm6v3wLoFNRBaih2wJncDU5Zt9aof/IH8LSUcR8/1xOZrX5x7abA8+L2P+I0OqQ8UFrBQkBJLSUO2cN9lfkt87eUPpYmi2WaxEm10WRqzeA8qyCyGhdaugHz0pilzVTeZu+LKCvtLoiXaQXiA27tduz59XbsIYE+wtjzgNAjZY2pOv7Qs0s57/32M+7XDuNicjflIEtp4Q3SnxPcnoR7EGGSucmuYKCwBkJojet9wRtcs/Zjc2UN6hl6IpP60kfScoeAU5Gs0Wkjf9pIncLijXFYhEgZUkaICCXY2ymrOziFJdywGx5PYTE37HrgvSS3K9ZkBjD04mbR5Sb+NripG39LKPsWyPnMk7PokPOM9iEnSP9Fzj3kJJwGWEvCgXpMaNxh55706HPQs4dbRn9HXfRj1ss1s7/Q34c+1YFouWbA88s4513034B+niWlm+x9k+HZ3fBblW8z3SPJhId7UuCbBk9w9jQQUitGBJMYU9zZwPo8mfBhHDaZ8S0QZh6ESdcF91kunj2IgvZBw9wXE198Og6Mk0BhRgXXIcfE75jaxzYkIGDWISBDlRacO1jAQdI2bCD9+ZaAex3fmdd3hEaIdnQ+7+P35n+q5R+v35M6AOA5YSFXIgwFue32YF0TPrbbO0Q3CFYO/zkUdKOYlgk870O750dDOxlYqtm1vga9a8rrbQFOMCOahyGlkjzCNss99dyl2os+en5x5HomASVaKIaFpPXVz67pX6Ob/fH7RUe307t1W0BLjeamXc3uPk35UvEb4rMWTDEKmlVYgINoNGsVLSFuu18e+p0togKuCZeMY82VxPSRAvqjbG3dZ6fyuQf3tJuc99upjI8kP7uNb+jgHR7CVwUSGGXpJCE/0GH4jcH74hC8ph+85kjgHR7g7yGAvyH+HgyBxGMcH0o1XvYJgS+/bAjcPsoj9ROG+9mBCGQoGGeMMFj3YuVpLgJhF16MYqiVmj1GJnKnG+2ucS/68eziSHi2342KADTbMMz+eifKdQD+E9SuhQZpyeVXS7I7vWgX3aQfusmRoHvIi+7HVwdCcspCwZmksOQSXy26dpPqFrQvPbQXHWgve2xOXR5rdns3bVnApeZEEetBCX4kXPtHtDPqQbk8FNHO+0S086NZ1BEchLq7qqOBJlqHWmschpCpPMaqbr9fq43/vKPg92fv+3k2e8ND1PwwBrRfAPKvegz5/jeAyD3Xf/ekCP9qXd8fZY/mENde9eHaq6Ph2u0EUdVUI4QLWCnY5yGwJGDqEbi2J8q88kpOOtr90CPKfDiWKNMvfWCB4goWXopwRTkn9JFI9PA48+GQ7b/uY/uvj8b2D8QZHigMMYYKYfM4GX651+Fq83/dUXDaL8qkx5o/78+z1D77x/qrjSH7wX19aHGU9QM3OxJwLXm4tluChElNpA7rJ7yc7zg3JuotYhKEPFSCaybcxtPXu8W0H+DzQwAv+wG8PBKAh7cRvhvgEK5zyTVmxD5tJF8Ruma9LGBg9g2vJgiZdQUZH1ScDP722yqv/nHW/kojnyHXrP3G2CALrP10I8rm0J4Xd13s4mzbHOx28AlAg+4d1PZ57kOxdl+2laZIZtuvwPx3THLQKL95VbCKisq9Y49c6AwkkwpjgcFAYCnGfehUAdWCC6EgqaQCzKAdOtsaH7U/enFfl9UfSP/wf1BLBwgJ8aF+1AoAAL09AABQSwECFAAUAAgACADpi3NDHmj99zQPAABADwAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIAOmLc0NFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAHgPAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgA6YtzQwnxoX7UCgAAvT0AAAwAAAAAAAAAAAAAAAAA1g8AAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAMIAAADkGgAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
*Process:
 
# The teacher can explain the step by step construction of Transverse common tangent.
 
Developmental Questions
 
# What is a transverse common tangent ?
 
# What is the radius of the third circle ?
 
# What is the difference in finding the radius of the third circle in constructing Dct and that of Tct ?
 
# Why was a third circle constructed ?
 
# Let us try to construct transverse common tangent without the third circle and see.
 
# Name the transverse common tangents .
 
# At what points is the tangent touching the circles ?
 
*Evaluation:
 
# Is the student able to comprehend the sequence of steps in constructing the tangent.
 
# Is the student able to identify error areas while constructing ?
 
# Is the student observing that the angle between the tangent and radius at the point of intersection is 90º ?
 
# Is the student able to understand the difference in the construction protocol between direct common tangent and transverse common tangent ?
 
*Question Corner:# What do you think are the applications of tangent constructions ?
 
# What is the formula to find the length of transverse common tangent ?
 
# Can a direct common tangent be drawn to two circles one inside the other ? 
 
# What are properties of transverse common tangents ?
 
*Evaluation:
 
# Were the students able to comprehend the steps in transverse common tangent construction ?
 
 
 
*Question Corner:
 
# Can you construct a transverse common tangent without the third circle ?
 
 
 
==Concept # Cyclic quadrilateral==
 
===Learning objectives===
 
# The students should learn that a quadrilateral ABCD is called cyclic if all four vertices of it lie on a circle.
 
# The sum of either pair of opposite angles of a cyclic quadrilateral is 180 degrees.
 
# If the sum of a pair of opposite angles of a quadrilateral is 180, the quadrilateral is cyclic.
 
 
 
===Notes for teachers===
 
*Activity No # Construction of cyclic quadrilateral                                                                                                               
 
*Estimated Time
 
*Materials/ Resources needed
 
*Prerequisites/Instructions, if any
 
*Multimedia resources
 
*Website interactives/ links/ / Geogebra Applets
 
<ggb_applet width="1282" height="601" version="4.0" ggbBase64="UEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ21WeTTUixf/YrzGMgyZLBONsdQgKiFZMjWYIUuDMCGlxCDFpAlDDT2ylGd9xvYajKUsyTLWNFmSaLEVUVMyg0YYGmN5Pf3zzu+c9/vj3nvu/ePeez7n3Pv53HF2tIVIqkgCAADBYTH47fh824LBv217g5EtfwCQ2IXDoF3J47yCoGCXi0q98/sNY9RP+R2WvCXruFOI0En2UiClke0VxPt2HwRlTiTpnbhIU4bv859LSQ7mkrqQiib5R7zemPbYldd1quhkVul3XyvOS1YIbmzW+8byKxrL/zJ78fHroR/5Mz/tHVvaKFERkcub61Mf/RBAJ1PpihRwEwFYQQEEGICCALAoABIBqACA/lW+SVIoeettn9GRb/t70o7en3VPBdqRxxjwXT+EAZyU1diuqP0Atetlldnj2S7h6ZYn2gmFoeS4wrVz7dizoysy3i5LztgDukOajFg+fXctG13k2RDwwfxFG94SlVrzZanFSI7jOiMG1QykHtkMqeedNPL+ab2rQfwoZj016/Hzoev6mtisQPkxiqVhJUI2Ok+3X6HwEjkYM/jgZW9NTs/vKI212GpIjE3u2VxZqlVayVJz1BOvbgKF9CBfLUgi7GOHVljnVMNGX3msLj++v+RlU2fL6cRH068ZiZsvoqEgqmZBXsTL+0OKFpX1BoCVwa7/AvAvLgCaKi0t7WLff6OO0Fpe99ZBO0Pjc63HeEXHlK0jR1xFRcW63ipthdF03fm5s+vwcX8+Tn2H/Wf+lqrRk7EJp4GBWHxIlTv4WdFE+8SJW51aGBkQTtbGpgeD63zqTZhD3iszqOY3eylWMN+hBt1dhm6BqYj127FCPv/eHR08svZ9ZJdQCLOCTqZ963SoTwSo5Ta4PtQbR6y1W/XDbynlgyJguinT3U7qyefU1Ek6hcUCwHQJZlNfwKbnCj5QZAH8aX5pIwF6Dqq5+nRtfX6AttE9Iw9Jt4I6gO6ffmB4qqamFX5qBzp9aN+McS93UqDZfJQDS+j/iswb0L5Lo9F8v3xA3hXv3/V6M1942OBS4ZG6wjx7wVSEVNbl8czFIL4wevj9e+VVj45oIfO7tdmal1UZVRokmrmxZncwgLPRb9swSDhECaXfk6XocSRAfOzT4KYJa4SJsfGLW14Egp12Bmp6n45OElbKKcfyrJublhSrDvtz3mI+angnV8J0If9glk6jmXzM2SO1Wja2P/NU/A4oTWuYW2SHo6EFj7i5OYHrqhn75m/rvRgcYHxoaK5nD0AOb83OhiEeA/gDY2NjyVb+p0qsfmxsSTQbZw/fGFRGPs8XKCbrf8IIanHogpwc24y9ToyOjg6o8hEKm3U7MzdXGZmIR4Dp4Wgm8eKHK/H+savU3TcNBwy753socJcYyq2nAMxV8fmYcdUVlclaf0lln4OJfnOMCpJw+WtJNsJOmTV0ilqSizCHXpLIBtsTx/rR3LmIPpF9qs+Kn6Fae3iNPNKnMbHl1QFK7B0sR06AubvQi++mYdV+DSW/uHGOfVVn/c3JM7T+rwCJdPQ5s7e8ImgyggzPMsnKGPte+r47+StpwQNrA0t+gFdWVpaTx35vnlxIFGQi0VBVSeRAj/f6qu5KASdtn+mUxaJ+SPXESQ0/DVqrT2uvY0+7TeS34pzpw/poeSMpMl0nO92j0hOKSaAuKsjMvK+E1bdEWoQ8uiynlTh6cMQNs6VGHBoZuWbt3bxTNVr/Lw00096dFh8Q5sqd006QYs3jarmS1PKkQ+VJhMb5md92/LZRUXJujFknBqYTV+1CtRIFx2U97444rFEA0B0pH8NBsZBZTXDN1V4bKBQDI29amUpWlemMkqnxsXsBdDXtlWVQxljkWoKoawSDIKAuXka1lUJvIq4+G5GT4NyOqFxVezMAaYzKH+ZaqqHuNu3pD1dPXKfW7t7POXMtPC6EJ3N186NAdLs1mhnZPaIHFkVgM63sSLKjKcpBXa43wKIkFJYeVZvSE62ipOTMix4diiDOBt9GQDUt7KANbDW9hT4qYvtLeN1CmK/1wQPFwPIm5kn6IUUZ+lTsPR8AqnmZvAVyWuT/EDiXthrvB/2h1g4gsB8Wkajqu++iCjJdGuz00olbJ/b4qc/EmQVc0AsbhB0rihcM/FqK/GO+OkK3qpywN/vd8vkKKkWc5oVTehtT+UBJsLF9u1MGVxcVr6865c0OFcOWCSuMjzQubyt03hFagQFBMUbksI9xF03pK86XBS6XdRU3nGdxUJ8zNVmpjWgamHXS+JhcnTo8dNxX2E3P5cWch4FGdMHp0DrGSfpLzvfikdHj4+x3J1T/lqH9ZEdX1rvPMUBsI8Sf3VLo4b0acaPVBFvxUDVG6LjM2yCIdiRJgI98V5dY+NATV1rdPvyO4hW+U/mZOJvyaPGKKjj9APn1gfEMoljOet/oFyh90Rf56v1nd/uoAo8Thw7T2rwxzEupJsMzC9wyS09UGb/Qoy0dapUWr86rVtIt7Ag/D7kjnJbxzD9fZl2y1Fk8VyDxxCR54LMKAY4xm/1D1kcaZQGAcEe8Epomomp86nwDWcnVZFcfz/FFwk61lOm3XGLAUuPr0bgzJ47Ka6LJeXvM9VWomhB9azKriHZlo3TqeoqdI09Srmzum9N0C9l4LpHp1Q2Xdo65FtP1GK22daUi4E/+0HUREI7olrwnNDtlVkXP1qH3nHqypoz9BV6dy/dPT8wy/qzyP/rVDIbccWy9c3FOFXdjReQmQm7RF36s0xAmLS2L5xeVWTeklPaNC3cPCIkH2ze3bNZXuhyJvGsuZzihpI1nAt9BGAinaq6RXXY/QGShnWgelTlF1GF8s+jnzjxEHQ4a3594CJweiWNqvnlhYFTjzZ47W78QAKDxpyc//+Xayo7p5sHGrN8UwJFBPmpICDWgmD3YfmaJJNIrJiu6rL+ihEpA0H7vxXlkXnC7yoTn2EP07t9GtOg4kAmSr/IdhofDdqVZX1A/RbSCerNkJ9lE2WSW219k+HK0pRqMw19qkTFnAdQSSBs3qTXelHnDeo9JeekkXpu4GQ6z00n1MP57901EIMT9HrlJQSZ66npQW9ye9k4tp8qo3v+S5n859F9q/X9S43+Y9lda3nMMxN1IMsYnZW8LJQBn7YipPu5L/QdQSwcIRnoUezEJAABPCQAAUEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vrvcts2Ev+cPgWGN5MvjSX8B5jK6cjOdC4zadOp05ub+0aRkIyaIhWSsuVMX6pp2sfwM90CICnJcnxW3DqXu2bigACWWGB/+9td0Bl9vZrn6NxUtS2Lw4gMcIRMkZaZLWaH0bKZHujo62dfjGamnJlJlaBpWc2T5jDiTtJmhxGTMplMM3wQC54ccJziA50ochBTIlSG6WRidITQqrZPi/K7ZG7qRZKak/TUzJOXZZo0XvFp0yyeDocXFxeDTtWgrGbD2WwyWNVZhGCbRX0YtQ9PYbmtly6YF6cYk+E/v30Zlj+wRd0kRWoi5I6wtM++eDS6sEVWXqALmzWncGCqaYROjZ2dwqGUYBEaOqkFWGRh0saemxre3ej6QzfzReTFksLNPwpPKO/PE6HMntvMVIcRHoAShQXhmmIRg0IeobKypmhaYdIqHXbLjc6tuQjruievEl5qyjKfJG5J9PPPiGKK0RPXkNBQaKQMUziMYRYaGhoeGhFkeHidB1EeZHiQ4WCIc1vbSW4Oo2mS12BDW0wrwK/v181lbvx+2oH18ckTOFNt34Iww+AowegwjvET9yPhh7uJ4fYhyYbWplruqbRTSQgWd9dJ76OT9TrlDSqp+MAx5S3WDXu40znFhmlBlf/rf3Y0MrqHxtC/n0LJH+SIo2FHlVHLDlSfOtkWycbMa8cXFiMRO7cnSAA3pAIvF4jE0CiKgA2ICMQFdIlG0rUKMQUTHDGkkZMjDHlyCA3/cOUXk0jAYm5UAScRAUUcCYaI5xRHwCTkeQkcpQwkhEACXnLqCXVLMIm4hB7TiMMeHSUVAUEGL0If1FPECGLuZaIQlUi69Qh3VJfabR2WpEhiJIlbEFgNjA5sBnmNmDuNbM1li8Wy2TJROs+6x6Zc9FiANMSjddgL8WkrKj4a5cnE5JApThySCJ0nuWOEVzQtiwZ1INIwNquSxalN6xPTNPBWjX5KzpOXSWNW34B03en2smlZ1N9XZXNc5st5USOUljnu91zmZOOZ9ruGDtuY4JsTYmNCbjyrG/WWMIOWtQH9ZVV34kmWvXAS69AAlnxV5JdHlUnOFqXdPsZo6JPOyCzT3GY2Kf4Bzuq0OLugPgf5cNXlIBHH3U7KKju5rMGF0epfpiohVBHh0u5l6LHQq9PEcUxgP7XZ88uY897cycqsdz6rHE03Oi/qozJfD/nDHCeLZln5WgAiXeV2OC5mufGAe5pCok3PJuXqJCDNwlqvLxfQa3cwmXkjIiA6FXDSWdtOQutl3NZ6KexlsJfAnevYrJ8nMfUSvp2E1kuBL4attUcl3TEJ7tTY2ocnHLUk6EKP82SXtpeFbV52ncamZ+ujuhe+W84npveH7TXJH7XmaHjNYUZnpipM3vongLksl3Wg24brZia1c+iGidYkiYPrR9hAGM3MrDLdxnNfZwWD+Vm86Xk7w36pb6py/qI4fw2+cG0Do2G3y1GdVnbhfA5NIKafmbVXZbZOICVkm+85QsHRUxf6wTyNMw1QbdmclpWvpCBCQOt4lJs5lE2o8e7lPbQ38ytfkDl7onLyEwSpPo+F+TVgMH2jq3mnTPLFaeKKtvbQeXJpqi0z+PW+LbPrxgHb+xMAYRe+6gN0F8YExwg7hocFLOj5tBVzwN41WgHJBhSK5Uv3OoOHt6EiDxWpO61j2VaYDaPXoAL/CYbyxp3PkyJDhU+8x7ZKcxOtM0GCneVQQvoVy2XTTaRhsXaJHfsDbjbt7Zv+B/tvnPdDABBXfn8sAGvuN5BjzqCQrn1t17ShyD/83WaZ8fVFiI12Zopz2CuEeLii4PYCdImDfvS2G1mBfQ5CgCXt0FuyAQ5AX9kVGnfy405qTN1DjKmK+z8aTjlmrYox5KiDAPtYeCUAfNjcmyKcpw7RwmVeO7Xp7Qh/70mxDXC6g+zx7chuM+v4o5jVhfoujH9iZuEB3L4YYYJLIpWkLuUCz+gAx3Dri6XSsYyJpOJPYN3dMDnaB5OjB8Xk1XRam8aZ8YDE3m5wg3kAyASTsSCaESwBu4AYMEQzrpTmimsiCeD5J0B2YmZu/BpoxyFSHu1gl9yOXd2u1qGT3CdW+igJ8Any8ZxaG5kOYkYZ0bCq0oJh3VuZasYkUUQQrBgWQnkzH5CBdgWr0pJSzWOt2D3i77UQZ+eL3Ka26e2bO/d4UTRQHhlfH+xWPWfGLFy5+ap4XSVF7b5PBZmNaupevHy+Dy+f/y/ESjGQAD0ESaYxjWPeRkrKMZFAPc05w0TJTxYpx/sgMv5kkTKYjTwEXhAEMYu5UJLDvzRQmAykit2Xx1jrmBAeswcLlM9DoBzvQDfZL1BO7hUoMf0DAyUbxO57KsdKMcahhujiJFFUAls0BrZwrZ1SFycpmD9WXGpKGcNYyc82TN4M8dGHIM72gzj778mFUFlwgWNKINIpAWAHInFAnmMN8VAKIBILiZANpJBQgohYMK45+XzT4K21zvMdfM1++Jr73wvvkRDX4Dqmcgo5DW5iXDEtBJYtvJpAuqNQ/kNNw1r6xoNYxUBdDNQFdrPPl77+g93N5HUY05swvvrldpD9p6AeQpB278N+lq31XeyTcK9ikH2EhrKh/Rr1cZ9nCN71A3JHP9j5Mnh33JIq3ciOXcbO8/LiBzPNzcob9j4o9BTzKOxG0qt3e6HwbhcFHiso2VyxpiBnCf4XCrso9LWKR2H3bnf1614o/HoDCpxrFsN9Ci6xSqm/QNgFYdzdrD0Ix7sgvN8LhPc3BCRAgcaSiRgY8X+JglktKlDjbhvdGc2qgcoJJg6jx2+WZfPV8WUKuQm9WSZZZfMEUlKShxm/2rbR3evR9lqfuJbzv3WsTWWn69/Qtb+ej7r024rWTVI1/r6JXHlABqStBuTWxfZ2A1791lrv6hf0JQLuo10rXXPN3667JoO6hIgYiksG5aWK2f1xvfq929Y7t633d9jW7w+wLecidMvdHufNV2P0pWuO0SEiGj/+G8F++Ah27trn7fidnZB+0oJzalcm2zbKjq/pQfjIRgax/pCvDTd/K+Z/k9z+t6hn/wZQSwcIahw98e0IAACzJQAAUEsBAhQAFAAIAAgA64WEQ0Z6FHsxCQAATwkAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADrhYRD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAB1CQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAOuFhENqHD3x7QgAALMlAAAMAAAAAAAAAAAAAAAAANIJAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAA+RIAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
*Process/ Developmental Questions
 
*Evaluation
 
*Question Corner
 
 
 
*Activity No #                                                                                                             
 
*Estimated Time
 
*Materials/ Resources needed
 
*Prerequisites/Instructions, if any
 
*Multimedia resources
 
*Website interactives/ links/ / Geogebra Applets
 
*Process/ Developmental Questions
 
*Evaluation
 
*Question Corner
 
 
 
= Hints for difficult problems =
 
 
 
= Project Ideas =
 
 
 
= Math Fun =
 
 
 
'''Usage'''
 
 
 
Create a new page and type <nowiki>{{subst:Math-Content}}</nowiki> to use this template
 

Latest revision as of 21:47, 4 November 2019

Investigating the diameter is the longest chord of a circle.

Objectives

To understand longest chord passes through the centre and it is the diameter

Estimated Time

30 minutes

Prerequisites/Instructions, prior preparations, if any

Prior knowledge of point, lines, angles, polygons

Materials/ Resources needed

  • Digital : Computer, geogebra application, projector.
  • Non digital : Worksheet and pencil, compass, strings
  • Geogebra files : Diameter is longest chord.ggb


Download this geogebra file from this link.


Process (How to do the activity)

Use the geogebra file to show how diameter is the longest chord.

Move the points on the circle to show the changes in the triangle.

What is the condition with respect to sides for formation of a triangle. Sum of two sides is larger than the third side.

Compare the chord length with sum of two radii. When is the triangle reduced to a line segment.

What can you conclude about the chord? When is it the largest?