Difference between revisions of "Math Formula on Wiki"

From Karnataka Open Educational Resources
Jump to navigation Jump to search
 
(43 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<mm>[[KOERStructure.mm|flash]]</mm>
+
[http://en.wikibooks.org/wiki/LaTeX/Mathematics '''Use this website for formula''']
 +
<math>
 +
  \operatorname{erfc}(x) =
 +
  \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
 +
  \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 +
</math>
  
==Test==
 
  
This is to test if the nodes in the mindmaps can be hyperlinked to the content in the same page where the mindmaps are embedded.
+
<math>{\pi}=\frac{3}{4}{\sqrt{3}}+24{\int_0^{1/4}}{\sqrt{x-x^2}dx}</math>
  
 +
<math>\sqrt{3x-1}+(1+x)^2</math>
  
<ggb_applet width="0" height="18" version="3.2" ggbBase64="UEsDBBQACAgIAHOeTUEAAAAAAAAAAAAAAAAZAAAARTpcR0VPR0VCUkFcU2l0ZVxsb2dvLmdpZiWUezzT+x/Hvy7TcmtpZVFKym2WNMevhWLut8UMNXeOS2eicreT6xAtSSuXJtfJbS5poZ1x/GKSrFxaUobEji7GUX3r4Hx/8/g9P6/36/N+vN//fj6vPHeCg4qihiIAACpOjrZE6Y2WliFcTur7Z4g+ACAHuLuS7Hg8HgyOUNMy0D6oZ6F5CH7I7YDhKSOMqYmJJQaHx1mc1rEgHrUm4fDOOAcSHk+wdyXKYii7zKNV7dMUThdibChY4gUdQpalS+o+7yKd8JJfAjOxYQx7MsUhONEuuNAqtoSiivztkFmJKvK6zgmiKZno4x+L8yzGepIJiT7+YeTQCO+w+Fx02DWbmNAISuKFi2TsVT/SdWJcTmgM7aJZzpXg7FgqjUpN88kopVxhpNJy0q4W0ugM+haMQgZDzr5JntCrHNSxPWRY1kcECxbBIj+oxM8BEetwCginQPBYEEFdg8dCKkkQggYdPttkQHmwL7ETQ+3SihHoZwv2pC8ezp13JnTbUVusae22eQMUPDMkvCosn03Nr0fRwX0MEF30l0nlmnWpwKZq3rJ2zZm9hqJDKAakzYCOlEAGTMiECZndh/Bs6GxZe8LtthxGRc6dRgaDWcJkFjLZpTUtxIphYt1CcP1g5v1+cvci6QEUOLBOG55hAwAHjuABwJg8XARIhRADgBiAs1F4HspAiNAe2G0qhiNECJQQYfAesU8CABIALoEjJAipUBKUNggAIAAH4XAQgQARKBCFggAAgsMhBAJCodjaJn+ij/INDF6i0e0Ycrut67CZxaStrVhbW2JgAGlrr5uYgDgchMOJ8XgIj2cRA1rP+HCDzrPS0qa8vcVE0nBY2GhsnIRIBInEdTIZCg1dolLXKRQoNhai0Vh0OquQwWKxOMwKFovNZknPFiw2h835PzyO9J1tuUBAp4vodAGHI2lo4EuHPD6Pz+fzBCCdvnHzJshkQkwmyGJBbDbE4UC8raWQz4f4fA5fwBdsIRQIQIEAkjZCISgUQkIhTygSCkUCoVgo2gISiYQisUgkFktdvIVELAbFYkjaSCSgRAJJHQQhqSDIszKlRvolZOKIBE/AanEyHABgOk621qSkqXISJQrphTyVGLAezuVGDydMLde4ufjejNgp3/zjKu3HwdEDuroWyDHbTbme3fJp6Vawfv1MPOlgUf4hBXS1u2ODSuYeX0UMcWrMZzKa68I1N+d2YGN52Lf4axt/h9+iiu/F9K6Xr5VTd74zybwQM4IHfrS2Hh9JpL388QL7whML6NfiNzNVP75ejUx5frLab4lya8NIhaFy+/Kd//p4e8f0mJv5JR/s9VhxgJzgm24Xa2R+TqfRVGO6lRLc/607OYFxy1SVONzQ0nhK5NqMChYLkipXT08KtrkmhwQGCxY0m8X9qwl9+oMTAa2BS3FuXFjd2HjFmqIOR51eUIkdJ6Uv/J4ww5ppvM723a+0WYcT89e8i481eyYkjGDKi4zPbrrlqfskP+8SCOfNyH/oaQ4GZX2zqC/hjoY/G7Gij7Sk4CMKRpB3fKlRg62uLDW/FyiRNUsbZWB8p9+vjHVw+31dI8PI6fg2Fg7b4JqbtCiw7Gzb5dVdEzXFFXmLFJVhzRZNNPuHnWFPnLLmTeRsn1Q9Hn0X4FKvPnoOLLjggRV+V5s6wKip1/06cKQ98La1Suve1R9j27LyTlopl4Va36vNU2DI6+VLPNKHe96T37xBWd/Q21HbPpwy0ds+R03haBbqZTwnqQ2kBkkGrNBfX3o1Be1kRgbDzu9SmI0b6q63zN3BCWv8kJSe2mAd9tPQyvSqud3ykHUcg6j6KeXFIIKC+mfSS6Fasb3ixrdxXo/hvfi1NwVGMx3H7Ew11TH81/Gf89ePrakNjIk9bjULj2Le31rwSla+WLn5Z/guEzNZx+myHGRYG2F4qbv02dWgSlUFLa26MmIrvsB5Zxr+oQ5d5hrq1KvL6NLfzZrw6DzOmODX9IbncLX/TB1VK560vGsn+xH9xt7U/WNm1cNk3yxxmob7q69zS30Zl8JwasAT8WP1uTLnKxXt5tkPMk4O6x/BOx7qwPmhNXTca5M/P/rKTHFXejZa1mesfnv70h4nu2suC4myyG1Rq4l73J9RnKJLyi9d70dqCBPe5758/JlR63H/ezShv+H6hpJWWwd8+EGdtffeI7DZoi5Q7+3iAZOsyr/6v9+vWOkKT/6uFoFGZuvralxWidzfTpn2I6c2fvxYJL+7Qp/yx5B2dkWIwRVfAqCq+yUlmkv2NBrqQ8JgNsZN6YpFBLqJ6qvxo+Y/Qy72LL+NSvMsMpJXdiVF+Zw40Xb+Ybjzxr3xAbrMpPfdxlBz8fPAVpheEWpWP12/7uYDI/+NZlaG3tDhiZGTws7J/siGKEZwoaau86PeYn7j2SHsGUXApZ/qsDyw0SN/03QIKdeBV0s40fUwAJFb8I6+11Fm5W9xXMdTTPSOb0XZNz4vtKRmVenSk4x2QJEp40KLwpCuIazD8mIu5cmlwgJOcWn9THHZ+YVvyWXxRLfYmeUv/o/OEF58KFz/tDNgZbP6lyEsLPj83tJp1fLXbeFKGA6SNPfJH7j3NobxiP5F/YigXMWZcNufyjj3qXO9azI1YLfj/OXOdnt/kRp7cfbps+O/fbO3kHDdGTPc6rtylFkz7/mqQp3qmF/r1tVtVv6dWHa7QcMCx8fig+3bpTnw6kx+34IqT8+4uVcBPeGVUJQWpOz9+ve6nmuOtwwv7Db+RPhqjB30ULgku/ozMQgzq1kQ6o4oZoGHB8/1NTowPQd7X5UVfAaW7MCWaou7qdn2Mt3j08dyihMyFlPm8lCuK1ohZZ7pHv/AOMdOnd6oWDXeJlEC1TRm86XZCTjZEWxb8EGZ/wNQSwcIqAfJRXEIAAB1CAAAUEsDBBQACAgIAHOeTUEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ21XZ1TTDa9nlFFGBRSEllGWICD6lL0tgqUsQUpFQJDtIwWhsqGCf6bsskFlV6rIlCUgKrMgQ3aFylAQygYRmXp57/1wP9z74ZecJOckJzlJTvLEwhzFzQHlYGBg4EYbGdw85ZRTuLCzntKZyBtvGBggbmgDJCZoav15KCbDH9pzVObfiDDEFC5ciItjlwPYuZi/FRYW0h50EK56S5K5kimGeaZdnHLFwEWWLB4hxeVtxQpsHnlhqldFzuvLnQralfXXQp6zi7832gEE+8NrOUsPBx92lrQxVw0tnZzkz64TNn4MxAbtsuMP/hyp7kb/+OHos2QOE9U9Tjoi3JhcW63HdE86MusdMwAWGUt7G+8iB56+v4bu/U0Z/APTPVjw2DgDEWv7JK1hctj24c8j477Gu+1oqUvqAWsyGyHx9iZurX91feh8qdlsrq4MCKGt1Sqdv19dej7zCMZBRc/IXiIgVlYWTIJONBd0+eM+XorDHmcQcIa2VfYfn9xpOQxcj2R7fC02olgCLsNm05BYe58Mbl/ajGgJ1dj5+XfGJSN7lj7a9cL8K6vdtFpmGwSpbQWUksYLmw9NSJexGExsusz7ohZji/MJcCMeAI5k/2+AxNn5ov5HUfeMxSGfTFPojgytc0gEiTdbOjqm5F0Cq7c8giIEcuF6waLeYY9ivLnA+nX19eLXBYEGTWTLRW972isfwPRefN1VO+GLjtEN4fUjSRLIuvSdHbxyay71ImrynhYFtS7nWXoALbFZSZh471AMuw7cu7UqHg9mhgTvyhpNNjV/FR25KukaM11EXzafawwf5ZZCxqh2dXWp3yLuYDSauyOZK6m5zo9LWdzJtNQ4tsC/SLU0kFCIdtAWA3q7XbdedAeQXzkPlXBcSIQtyT1GnaF3p8FfSaurC5qZmTGPhChjpWQVUJPLCisEM99SBREvvXoL1XR4n2R6L0/oFQHAlLEBN11cM+Tl5WV43TjxZgWqyvAE8JXN6jdczZa5WI7m6VL3/QbiU5X+sN4MOw8QmKKkoubYuIXXPnTiKvnLMZC3hoQtKWWRKQbtVhMhc2A36ej3pqSmBvTnH0SVFY/ARkGzS8A+7pkmwfhdBSrNYrGiZzT+0NBbIGNeymg27kkKcqGL4o334y6zNqcoUn7EOFmbmZtDbCHxyhIo1NiSGdLMEOymDt7xC9ic4R7WJdpraLaXzDADPIzetKai2qE2/1WB0n/noZmR49L/tI2OS2iBEZ1NIb/kom7rB4XRtzFIm628IJ8ngR///N4rX/hJGuG/F3zZogTIuFx/vWOYOeOrlNFmtcw9Iwx7q97vjXThOx0kCst27rb9erHswMAA5caZ4aBV8Z0CdK4ZoP3cWqOcJxhRO4v3a7jArb3VcdDkd7vml4UQ3bluQnGEDO9CZ6n/LpPM+PIfr4sLNVrO/FklkvuOW/PVY4zRdpxHvw4mK+9E4oJzri/eLbmFLgrru8+3QI+ucUwUc3d8WlEHf15i/0DLCUkDdIdyS0kXvj96XuBul3LOU/lR2LPaPBD9+XLnvSDHPWyusMh82IyQkr773DK95N0jXbvumxkiRZYatuX2qbyrZkJmwC7EbvNcrZ7BIt4v6aV8mf6zy1laiXkZVAfa5OAoGV4rKK/s+BdA5IGIQ28fLsHDzMjY0+rOp0DmWH5ujas5+h+JQqFQizZVh58VqH77Pnc+A13cxWALHA9oEgTlLXUZ7FTtFiBZk57PxsoqQr1ilzwxqcLzrnW0ey9wF5AL6Xn5HLOsjkm9wyovcDlM8whx3f05ZkxlyjhZGPelRVk6DpELIt4wM+MG+gBWg+RkH+31uKVYnRSDTbB9NsoKMLomU7xoF7IIAkuwNXjL3UV/iOj7qO+RBcGyBZW4SpwZ5dr90BjC4jE5ZFEuPOCmRCzgNb9tClBkrqjzeKswy/cE9QapN5uDaHxa3+MJDNq73E4uZM5cHya1J2X3kQgmheFDyXf1CSA6i+qY3CBvR9EHp6sLPodUsKaA5FbJrTA1pOa3x57Cpd0N1cOwSLiHEo22+ppPo3LdL0JBKR6RA6LDepLFIq3qzqrllqGRDsoE3h4m/dCM79vk+r2okhn5arXxa9YTfiQQ+mdj+0lonUsqiM6GE4qr+ny+NTAYSrwWTtTVJ7jvoZMrh1f4Iq8QHtrQ6RK9n4pnDQmjE0KyIZee12aDLBOBXyw+Q/glAegrE8gqn2eO6fBmo3AKqhd03nRUhPlPqa96C3FWBpkmYF48EQmyhDSI9qlQ+b3FXjlAJssrg3qXDcNWRU6b62v84fD3uy5XWGt95E8ntwNmZdkm/RRxGiI/ORJKC2wqx6QSAyRrvg7dcsNrW47BzKKTKhUB4QHfN62h5RI7uYkNjuFF/dJITE9+vM6WzTfGxqGM7A6pcZDoBvY+saSn2GGSYa/7kJymPke5D8NsBCXVZoEsdXD6w/LtnN6/4j85OXqkWHZLbinpYSUBP/mVX/3bsbPcHfZ/3bZSKPqATcyxConq+BAk9vwocZr5Wirc+OMP01r8mzlFq9efVGg4dd2nYkUWabMBfZ0pikIcJu2jsJSXolWN4cHPOR1wZ4U7zF3yNltytD1gCnc47y62giAAySe/kYvpvel+jLu4NjZeOtcTbvfXMbfS/kCp1+B0SLSchuUHE7SUK6vwib+gCW5Mbe3gR/3unJVaC3K7DyaTAqOiSbfKhE+SetzyLqR+zCoYfKLsMYxffu+c2NSkHmcgUVpa6iMukFDj/VUTN1UH5ufnJ5eXf284W23lbON5vDwsyecq2/HD9FjypKY6ZN5qMWf/0MC0Xsla9u30vgTG7kBeYcJLRjyxO6ddZeNVO7AroFk1CFyRg8DUvNcEoqOjKQMDhgEBqjImeDyiuLiYh4+PSU9PLygkJKD7+OAnLy/vxxON061nc6sJMnPzwdujyTvQO1OrycT94IBWffCfPwuGW58vYmx40omHOUIWZQIa3UMZd5t1/oI1DmEkEinVSIoZ76wLLmakhr8OJKuBxHTffrnfWZrteze56nrCTjK7Wu3Hc0uYesq81LGgC1d/zSNC0QhQPRHjpVGoiA1/S4DdO5gNla909JB5yRiYPzBehhuU+keFl9Htr6PmA0GPOB61FkZiJPc2NPnpCwENGy4xt/jX/PKZWSWvXnEICQlhImUNCDo8UA4cNWKvh2tq2nnu+MDjMAaDxbbrdYjtPfjSQXFei6B8vMDJfR36QfqF5SW8oM2+U9uNwhF8Rmamrz/b9IYpsBvZHTiDjDRVvXdUel7R/kP1LPe1CJLSHzqx1Bfpvpzr1Bz4xHahek/h8ReQJ2mR2uwvPzIy0vTd+t9z5QXK1PpAk/xQCPfR7zPNsBEqlb3oatz9RyppMlIdx25KVJhpN/i3ehKlZiTsggLu2rgEGwwMK/KMU/GcsbDl2TOOnZqyhf6wlu1VfXD92k2+PN0TP4uviYTFo+qcRkG2AzbLTeysUNdeV/V4TfTb5IuICoJvQUGhgAYV6BouSRxTLS0/eiUicNnc0jb5TkuAuJ5ewQ9k3ROAn8VmvrX4qWBKD+MkM7syRxTd52xQnuY85xBXJoez8n3h04Z/aQg524LZ2mc6zamNoMXHx5eh+SsfJGRQzWR1TqH9QpnZu77tIFc7j44dNxPTkecRN9vY3w+YY40hs7dknNKsXpwW5Qy5Y7kmhtbfhMDjvDeFDFCoEpJh6Ay5fByoVkH/0Q5fW1xfzxa+U9JH4gjT0U2MhYn3G0dsao8eXkLl1rMldv8cP01ByV0b/3Mn01uH6rNBlJz6dZ+lgn/hGLXEizvfL91UjNcWfU1Wg3nH0F1eW67mxaAq0QTbl+VqUzZe/rFtB9oKO5xYW8jEYbWAwfRnY+TM1IHAt/VvBbLd1vwihu/oJt1GjXuo8habSvjZqcWctjmveso/w7/8bab7LWyTuWGqcF1dB/nZYPU54F4z9ZPDM+4n7wwuOVPkV8wcEI9ji84qDqUHpEv6F0v2l3W9MoSo9pK1JnLsWItfw3HiEqGZ9aqIQqBaZjRN2kQZm/jmIEm/RT+JIl5FbhzLjXB24DMfYI9qe1w/tZJsGZJlhDaztk0e2/N8phOK9VwdY+SPSoqJio7+d+ENFeGFTgN54IfmqpfmGYmlJeQClQABh/0TzrjkG6i1b5lxJkRx3XeCaHnP1GeBUPBBNi/xJ3dr5wBHr5MrLEGD6QFpMdWYRHPg8XL/0GKzRoDmAZcIvf39UeroRBGTwLkgim8Sp8TDbHENubd22dH+Sl8uSO2Vupc7B27Qes06ayi9pwf9vxA+qze8vDKGTWQGy5fT8DSMpOaqlL4SbL7gwL9MGGc1pi7JSVqUlZWdU7X4V8tW2ugWFQFuyJKV1GQ++rb38p21EzNTTXIN9Z1L44jKU+1cKXm8kysuvrOzy+jGjU2aCAXg/4KbhCdQKEaVlctxhYVwECsrvsZnXn9/f9/n/f1PrnDwCOca2gGDiYqighYMfxRNldku4td8aczh58Ptm33AIDCCDKJzhPq/8Ys+58voS11uJMKib2KTW+nBPJxdu8oXkKzv4SLV249UXRTiz4kHOyACtgMvjpHic849TquXznCTonzmK5Vf84lN85Jm32WP6rw9UpYbOEHayV2L/LSkaBVDhMdb3fQFYcXdIt1d+Kfla7V9NQB3VqeK71OiHt9uTb++3k8TpLWEptQmgCyTE85fxl9ucz15OJFWfffGmoeIKt3G+na07KZslF1sCc5dSMYk57ZgfG18HR7NCi52phpP5Td41k5EPUHY2PLvPTyncCkiu+L84Fh+UaIEEtMxmnWZqwEbDUdi5GJb069gqxy+upTzQaF94wygf0pZnB5yxwvn90u9rKoSG0H189gqsq+q1jCnggFQMJfqdvfg05X9PLhRqmJ1ZhGOKIJMhev4VdT5o6BIgAcE1ueRYkf+B6lw0P8q/o/w/1g74T/0sBXaXj2UlZrTv5MBbWhuUKl/F/gvUEsHCKBsHwafDgAAng4AAFBLAwQUAAgICABznk1BAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1d63LbSHb+nX0KFn9s2ZuQ0/dL1t4tyePxVbZmNJedyaZcJAVRtCiSJilZmidIniL5kark777IPsQ+Sc5Bo8ELQAogBRLQ+IdNEWyQjXP9zunTp5/8+eayX7sOxpPecPC0TpukXgsGneFpb9B9Wr+anjVM/c9/+t2TbjDsBu1xq3Y2HF+2pk/rvMnqeP2q96ff/dOTyfnwc63VD4f82As+P62ftfqToF6bjMZB63RyHgTTheutq5tev9ca375vfww608nsA/clrwajq2l8sXN5+rY3gffT8VVQ/wp/sd9qB32Y5Mn0th/Uatet/tM6cx+dDQfTWm3S+zWABwqvPfkqnOeT4KrT7532WgOcSzhvGFSrfe6dTs9xrBL12nnQ657DTylO3Nd1hsPx6cntZBpc1m5+CcbDp3VJaFNLzRQh1ghBjarXbt1HTPMmYVxyo6XgRHGgQafVh6kY2TRSS2O5EsIqauGelR+FvxxcnwTTKTzkpNa6CWY06o57pwtvXk0Oh/3ZpdGwN5g+a42mV+OQjTS6FNLqaR1YPMZnPBh0+0F0DYZ0zoPORXt4c+IIx91Xf387Cm8JJ9TuPhv2h+PaGJ5TShgQvbbdazgGZxqPQoJ23Us7fAmH4PfGQ6hl4Zjwte1eHYd7Aze76OGpf3BK/C/1JjW8AA+EAhg/fygbT+v12tWgN33r30x7nYvZ0+IN764u2yD582IVfye9r+988tWS1D25CMaDoO9EawDsvRpeTZwAu98KJ3IadHqX8HZBslvIsR9gAu7qadAdB37iTm8cwcJPF8R36fKTr/wkcA4TmGtnCgYAnmeKz/K8H1wHg9qoNYVRk9rwrDY9D2qdq3aoudPzIfDt69agF/RrR8FgOm6NT+u1UxgNNEE16weXcLk2DWUnFL2YgIcfaD22GMNQ+SNa+RFzRIDPYzkhTkoIi8UNbMXovAWfNIm3CbfBeOHhw688Gp4ukgRmDjYMnxeUeoRfgMwbBcFpZAGnkdDXRvCVoQrNTSok6KR287Te4E2hDOFKasEpZxJVGi6zJqFCWSIIo0oypky99qv76vAbnDKi6QlnxSMxcVS7g34oQ/zrO0g4k+d5CnqVJSEFSQnoJ5qMciGVtUSC6WPU0Y80DTeccUO0oZxIItbSTyXodwNeZ4IezRPkpgVu7QamevPIEfBxvfZVgtKDq8tg3OvU5+7Cn4MfuYp+KmXGKwQ1SWR69zQnvcHovBdNFd48umllmmh039JkgYzaECuIZYpZ+E/f62Q7w8lssvAm62Sj+5YpS5pCG2G0tYYBeS239zrbWy8Bt3kk4DYpASnCec8iALZ22poTgtvMQuDuTM4YzJNknAF9Ocit2EoO1s7hl+Hwcvn3Y7XNa6/m58TQBizOKoO9isZNwP3CwMueR7iXLbA+Ev9qtSfD/tU0OOmAJx28HXZCu+anFwFDiRYSDRZl+MctmlL846x3E8xQF3jF3q/g0FsLDzRDMdNzAAsD4DZarNhEbm1Q7zB8t5EgNR4hbx7X/lBz+gd/zEQtgym8TRErLqVWyipJlRZCqcLEqptNphah2t1ClZjRZiLVkBvIFCVeqLSykVRRQrcSK7YzsfpLJFWPbh4BoHtc++caSpeTKRCuf6nd+us3t4/ri0AmKWyLCOcvSXCThbGJUGNjeDMHUFgTgjIrmDBUGc458wCPayKk5krDNfgvHz7pDC8vW4PT2qB1CU//IzzicBw+dA+j3lqLOJhca1GkhnvSq6n/6Mp9XfQlCWJeu6/zxLqqZxaXbexzdjT5/uxsEkxD6lLhxN5m40YCzxgPF5cMkXB4cTaTLE8/FydNXETXaY2nwQTitog8U3h/jKx1so8symXFLh6yFZPUWzGuKmLEwBHOQy2EsBmhVnxnAnErZTQQRTKpDdPyfrHhL4tWd87KRtbXzyuvyf2lRCZ3RUxNmxB2WfhAWGmUlbRAm/tLwuZ+zmVzP5fY5vLIg2VkB4mUOkWy92NiF/n4fjw9H3aHg1b/LUxgiZ9RqiRk6e3BTW+SYGvLf/8qxuJjxRxpRamr/IzdxqRvrkmed43QTP66JnbN9ETBp8EC73qXo36v05veE4duUjnUzsWhdsU4RGPtihi0Ir10r/xJcYRo+HL7wIjWu3N/P68KOlxEm3SHLhiZi3Tz+sWfS+UXrVCSQdTBJOiw9IYcaK4hEjGEgFfkVhfnFn9OaOd1Lrd4XWK36DLPVGU2rYvJShFnroFFBiJFayQnVBNeikgEEHR3RsJRr+NU96wHP+E4//xf//ri+fsXzw+/O/jrSW8a/LUPRrvZ7Z25X+wNDludi+54eAWysrxUNTedQbj6FfIgjCMkY5ZqqRgjHCLpmEhUa2m1IEJouC4XZXZb6712AWmvix9ZF3neb7S+s5AvLcP6GGlqTkE3wF5xISidaYkAS6WUIODpNKiQ3WZ9bNkxJaKyhxRma+VT0JyXM8xey5v2g+YN93hOlTQFspY3p8u8YQ+IN8aYOMleUuYk8O6bCO++B0TbAhR7Ba9teL3OiWLflAfF0iblVAqttNYE3L/SPkIViimqtLLcSmmtyukREsR7GxOvsRXx3paHeAicmECvSbSU0pBZAlxLSgwz3BJFNFHrg4AM1DtKUK+xEfWOykM90uSccS6FMdYIaqLFB9KUUiignAQwbxUg921p9y6htpvR7l15aAeewBjJuNKCCQFQ3ssdlcoIazUSNkzVbg7jwtq2+Nn+/rdkcoEDlzQTwEIsrmQy6SRI7CNoU2qigZ9MaSsMgM28a/0gIt5jZF6VzV3U5kuyJA25hS+bOstshQbjzhxDVnowiFwBoTPLJIXYFv6QG7m0xeTC8bB/2x0OlrILb11uAXxdi4W60+JoNpYzDSO4OUpD9N3QizAtAYMH8CKe1i/X5yJG0a/HQXD4hZkJtzFnSZKxWubRw9UaMwm6+C6eSX/14+htH+fec59ABkolmFtOIDg0lrnkANZVK2oMNWhPjOQ+N6AVrvyAoRGYN/ClbJkedl1iNBSyPsrwq8E0GE+CsA42WY57EQQjLIV+P/h+3BpMsArejZkr883Ipot1SeryMQpX3ggur2sLyIJwIH7kOC1G74jVIJi3xrgVIdY0WjOmJNPMSMoTxdzVYdSgUmxaoVCNhEb5YmRGibQaICOT8GmVGXVZJUatUKdGQp+YTx1bZZSSRgkNIF9bWWpGJeDw8aooFl5P3eLNo7//7XH0yalbrYmufM4JmY/LBJk1apsmxCgILWbaqBjlHIJgRgBbUSm3DTe+XRVuFEDfb8tDXw7mDkvyCAGMqnGRIS4GA6IqBVGClQAYhFq/eSADhb9blUqA9/dN4e/KQ+EGazLJrLCGG4lGyPLI8Qt4JyC0YsoQS+jWInyyKttQAIFPSkRg8MEWXbAR1ILpJ9RDYCoF5RTkWlAmWD7yZgm63rhI6thFUt+6OOpdatDF3NCLD8wNHrnBn1zQNbirPCMt7GIFhl1kPpxe3DRQVNiFpKkQ/sCkjQHbyQ1TTHB8E4mdYoYTCybVAkiM4AfYAPRTmmtLhOBCVjjwGlWJTcmwy6SHXS7XK4GrkhMlJZgO4FaF2fSpUmxKqJMSM6S3oE9xKYhWBAYLC2DegGZVl1ODamUyMkdeDjE2KpXKyJFrPXKe/MR58u9S3T6Pcq1hkhUGX/ps68Q5/nF+t8/v2e13hoPTnktbw/D30ehHx+Gm9do//vO/a6pJHtf+8R//W5u/iNn8x6ukLUQMS/JWWLq2WtqTOQ/IfK1xtRIX6zNM986rIqT3frlNFdHMUkUhCkGPtdatQShjjBUGl6UNxOV0XWV5yZk9+W2xOqdb5E3OeVj7yoQAEKOqy+jxb43RqSqd0GifzwF1JpyD9TZGWaPKrdGJpNL3mfPO11snlb4vT1KJNEEtmRTWCEkEI9r4fQIUsKxVTFNLiDJ5W9Ik6PvDyqzo/dP3h/LQFxygpBSUhRGswlJitkFRgHYpxgXEgBLRzpYE/nFlYn85K7o9gX8sD4FZE3yOgYAat3Jzo6M94limZQQDG8Ug3GY5k6JJ6v6UOee8PXV/2oy664qDtnACjIIVMNQwagRhxK2bsCZTiqP4WtyskTennyX6fOdCyh9dQPnTukof4YYOfNL52kefn8M/sNrnA8sfgYqdRKCxZ/+vGtAPvP3/1eYuyeQllbxEScq1mBtpQkJxQ9iOItfBvWe8y0DJImIoTamyDLQNlIobGgXMxgAKY8pyanFxzUS4WlNBsM+IlpoA8io13ForH9c7iparLh+ZS3acNRZNI7QF9AZY3eJiTHUl5PMXCcnmrNMMSGPZgtg44wZhvIGQ3AguKdxTYQm5rNqqarZyVmfrG9WqvstRUvC9A2w/OLj2NhXdSV9SwN3gqRt85bFdfxNsJ3eL7f6nJlKNR1LUQmAWC1v4bgclCWsWWwpKbcm01JZOu2jSLtrUzBjZZ74M+EOsgkgedJRIEiZA08yvsX69kBIAbpIrKeAvVeH1jukX8dk5vGvwphLg7iWm15UGrFdhAbraw4LZwxShNBOUDgBJEzAi5VJLIjCNU2kB6j9M/FfJ7UyJ5OnBNjX9cIUBdvpDeCeOdO9m49vR+PnreVOuB+VJaAs8D4RicZ5GZZXxOroySjBtKSi4onrrfceH22wE2AlTDsvEFGsIZRArcwjCQgsa7R5QzOCat7BEM51zI32WQOnQRT/futjn2MU+B6mBknJD2z4N/smnwUc+VGptEiqpnRdibe9aw3M/5s7/CF8Lj6PaO0p0lx+GEKE5IBEOiqE12DMdmzGmOLOKSANBj2XRwlEDsQgzlGpQMlAkRsvt4dYXJFerUG9F4XiynscZt8YDKh0f7SHqKKG+JtRV8AiNLimrL/ShGrhvuaWCc2krnDVufTHYeTaPWCcBqmkkoZJoC+znksoKxY3LXcwctatyBo1rLZP3EBoVNaZhYqtOZnedQhPObeu2L0e9UxcFLMLg7/xehGXg+/VdgHY+okg5CG2P3bnAsnKiqRZauQ7pbreswVPgqEA1ZGq7kCJUjz6I+BI1T6LamrDh7r81oijt+vG/J8h78vvWaDj5Yx4i+1vKRGrOjbXaCCmY1ZS5LYx48iZATmupguBOGrZ1H7RnUUwdkWAhSp5Fz8l4Om+vr2elIi7hFksZDTZEMwYXlOMaMSmMxNwVVeqOExjukOSTyHOnyvGzhNgG6wV2GQcEu64uYMnVQJ28ZJKX7K5KTaQkEIgpwZWWXBOfn2RSceAlNlGAeI3FO99AgwA+cA0QgpsKrU6vspBHSQsZKmrSQh7lt5BHZbOQuB3HckpxQw4DZbUqYrdRRITtIwmAQC22LlJ+HhnIo4IN5PMy0VZC7EyoEgTRtOW+QplC1CWVgk806JrI2cI0i3mMhPh5QmbP8pnHsy/m8Q7zqNeZRxgNcE5rAc4RIJ+uUvVOumA9X+V3z/MJ1vkXwVoOxJf2XMm12yixBIBZrsH5WiJNqTMx2fzuu8x+911+v/uubH4XIhAISQA2gwXB3RUz3yAMRiVMaCaxyLuIIPDbzKT+1tHt7uY9C82/4ptKQ27RVHjyjSWEhh1q4h3pljDwwIJRgiWx24KcbyKQE1Og1lgJc9q1r2oS284n1le3A0DflIfqYKTwcD5rKITbUlutI7Jr7AemjTUSj6/Ke6pHFj8Vifg3CYnu5fNTvV37Kb4rd0MM4BXBJAdAQ8msKx7B/D6exmINo9QaGm0pIKA9uF8RXg14njI7nKRivogUM/IDe1DLF+VRS3h0wBkcghDLFLVUemPIlKEC0Ss4IZF3428WrYx8/IuEVn7Mp5UffytaaVK1khGINnzXNcmtYIpBjEEl/FFmvcwiIi9WGe7Tu0DIspCc7n7r0G7EJHNjPu33kBjsEamkpZoIJcrdX6coCHtn/VMahGXlsdqFQNhsxD7MTOzDTeKFw/LFC7IJsTUlkijC8Nw5D1zB1BpLDMJZThTfOiv6cilgYDEyad8z/nhZHuIK7LyMvgx8neUs6oMomhLkGBfrODY7JPR5Y2vyvorIe5iIx+6bvK/KQ17ZlNooKgENMNzdOUP2AvOWEI8h8lO8iLxzZCleJQxDkNd7B7v33mJXKWRs/kkpnswFqI5y6QG4tAC7sY0SuGgu4lOStDFWMSXD5trKVMh7pwvJKyckLxNCcpZXSM4esJCkV+Yl62j9jh4i8LwAPDUP/gEurLqUvPTl78tS0s0rJd2HKiUJSxI35Fu0JIr7QIBDvM81OAGQEhCTUmdxsmHTNwvYNCpnSgLTN/nXDN6Ubc0A4j4tJJ5mQXFNGXjOfMs2rQw3XColJJblFhADHGej8/EmAcBx+QIAiJkJM4YSGhaKxb0uWdMyTWy47cdgGiZnbVMSo76OMOrxnWsGjS0x6usykVcSjiSUCGhAnOeaD1IQbY0FE5KZ7ZdkDnAHVEjgN3fkfrcl70GZ5BfbzTNhqBFaMGW0kkx4EoNMK2MF5QQkWZMCqvMiY/E6YR7O8/ru89377pRmPymVArZU/X+Wy1IojdFiWl0Kh+GSEixJoiAbpjowIF3eXjt5O/hAExLXyytxvS8Sl9XALGShFV9RsOJFjoGtwdIGwwGFalMh7JkudKFncUfSLgvdx7xC9/GL0GUUuhzldwwb7RKIkMARWmlEyfvsJJPDMXTZ4U79xF186a7F/On8p3l3+b/cFDAV0u9WNhX2SpRUEux4Ozv1HYAopVQICLFF3ox/jpzpyxTnNclrRya7tyOpvcyK0HzLGQeHwy1uV6TM90iFeIETRYwmBpRf+nIVS5iizDApGIDfUiOclN1EKZpfeOOUHWr+szKFSqKpuRbSYvkEdruOm7dprsDSQOTEsPapgNWSlx5BPEvR/U4+ze/sQe+T25b3cxBJ3O10YdNy1GxPNY0l0mK2DDCCrX4J/jMvNcleMOO8/mK8F3+xL7lZ9iE0Lq9adCLRSaoN8CICJc0AduSGlPwEvoQXmQY308A7kt9/uhpO//isP5wE7s960kjjDfWluzMzviCAFm5aX3xquDiEOU+Cce8sdhsTMMXww3VP78igpu+Yr4WAzwcPKiMp2QIp34+CQQ5KplQSPRhKcuEUyZ3llXuH/zt/yPCyOfs63zLC12VCFRB8MkEteichsWR61hLWEotBKdVaGr31+STPF7AijxFckcfsPC8XpQnWv3EKvl8Joqj2iW6Di2KEEayDkYZuA+BWiO5FCnD7Jp/UflMmWtKmooRwqQBFaUFmyAr3a3DOwT8q7KSw1ZrBqiXGg2xLjAf5l3IPyraUC2qqQFA1AQArrZmTWSA7bhcGI8E0gtb9r+XmIfRx2Qi9u3XcF7EdPlixxb0xi7eXA/fGo+ji9aoKxbzbTcpkVfBseKEphGxSU0A01PNAWAocoExx+JTQrTrerEjSRztOUuz0NG+wNN19sGR2tHpoGOeScg62h5u4ySkoDzWCYzGuwDbScUTNBcTeBOIkqgDilDqiTikKjhX1uASK+qpMiooF7hRQq8bmVEQxG5dlCCGUEVhTxri2ec8szLTxx6c1XqUlw+7avpFIh+3+5LHd6GqyMpTRdZWhDdxpzg0DC2yUxfbila8MfeUlJRkxnuaVk9MHLCeLRj3C8uk2XTZBQBQTIECKcgCgZZaRpEl/s2zSP9AFo47rpmJF0ZcbtV3p15ttVzLvkfEMuwsC5DUQqeFOXhUjXso0E1Li6rlkEM+tteFyE82M6nDepFjws7yaebZ7zSxdsQMR2AqGMU6w6kEZ351XQIBuIWzBnWkk9NJhSxg8thkcuFYQphtZsWz125kOJ3S3mILNtyXSWtEELK2kBEstsGg/RuBSAxRjlhlgbXwEaBHFmm9TlDbIq7TBF6VdVlpF1yktIOswSWkEbs0Dg135Dfxv47K4FIHq5hWo7m9doFb041xV2SuanGCqlinDwMnTUgO5HJ0Mf0qI0nleUTrfw2HUZDdGJ9v50f7wr2od/poACu/mFrwaS2WRjXtf6npXpvwMngZrVVilRLFrHJFxv2XFtWJ4mBso/VbZmaPeeDwcrzLq36QY9ff5Frzelwh2Yc2QVdJwBdESD/fJzHbLA5wGVWJaUbCjeqslr1SivllH1OOcW+hKRFQCrslqw4SSYGEsl5L7WlqitTa4O4Ci7Vm/9p2IQJOm4CiHKUivk1yKIBIxRV5zcVQmc4F7MaQQinOsgxc8LF92RbMADqQ22kiBvUy2Whpf67ePUrfk5PTcvT147t3totFEam7BluOW3rgmjTatwXgBwkE8C5AJ3w0Cd91wjtEiYQLcQLWc9+tUjeXxQkpWvb2PrN3rEtlMbP0mwWoqY0AdwyMrItcOfsgYxijYS8D0pIiufN4PvU5R1o95lfXjg1XW8NhcYfFwFkog7BLxOjbTUmGzKAjPOKFR0YYA+C20xUMwuERoVmZNzZTd9XKSZtRHeeVk9GDlhDY51bgnEs/sBTMtdXpbjriHo6KChJCegVzZUlv0LAeXxocPhGeRPnMnkZ4kJQZu1m7oJ39w6Tj8g+NGJuYOLp1ucnCpXi1ZrALd5b1/oQicl6SyqBNMP61Tx7VEW/SYd9Qxpz3SNuipsNMYlh+5ZOcXjqvIruLOOCg5tyYV5Fa+xHOeg6BKzqxpBZmV0CyW3hE4bgQGMYXFM58MAb5xWmrdyoI5on7A7xyMeOFARLKJNIID4zEHd4MH4R8c15q4wxxnH3h+zGF2jTlSm03vBzrwyilMon2JjNrQrnJG4bIJ6JXCgnGNHWrLrDLrGTaoIsOK7Y1fco51K8ixQtvUl5xfZxXk14ojYVadCNPIcyTM3tmVBUMc+o6zISx46UBBspU1OnvrhrY9hvj0Qbjh5x5D9DbBEHbXGCK1T+0+MES7ggqTLMXnWq6oxZc+BcGwSAMMHDgqzRjVZVaau2CfqCLLUlsmr+iYnKthcsnZdV5BDVvVBX3FVpd8XdBLzq9eJfmVfrRBcunDesyX43CDvTMsC4iYa0UaIoM3Dhccp8IIStzojx5HtHwu4iIEFAKXyTbAEfC9OwYSO+gmGUpqvFIXvisclnwsVgnXPdL9pTbuszPr3nVwPb9a1eRXUU1NS86ti2IRZCHcypzV8DkoQvFIK22xRY2QFcb7owrqVnF90ffOrCxgZK5VYAgvDh24SGs1G8KGaHRnBkeitEbbw5HzD2IDOLKmb0YxcGRNU1oIEXaW1egUqzKrH2gLhSmuReLeVeYu7FCoNyqAWY3lRqjE+HMq5xuhGuviY9WEIItKosFJSWx0XWHo0K4es4rrYF1yXp1XjleFNRjeO6eyoIaFTjwhDjh2KCDZcDj07syN7oYYgWHmKkINI48aWh/kBqhh0zKc++3Mso+0Q7eCgVGxjYn2rjh3JWsrybCCOgSVnFmjCjIr30oIbVoKmAHX7QFbcDwSsrLcQt9RPW4V1lBx79zKgiDinc2vF/BDWouZ0NNzN/oCWB2O/zhDENIhiP5GyyCbRt/76R1CgfHhkhy+tqPXwrHGRcH6tfahtrKHab2xGiv67DTydMfau47dtShVrP8qhmOJZQ5K1yxzVCkTexfaqKJ+FdrHquQc6xe80FGURSysUdTe+ZVj1+mRz1m43crcbW9PRR3C3XHpVzsuPer46FHHYKPVjk2tcyH7mne53HFZueWOYvtv7F1v7mJX1fKyjRVb61fsrG/k2VpfcmZ9LBZGFKNbqf0yVrTLaOTpl1FyZg0qp1npHQQb6S0EG/l6CO6dWeC+BxP4IPwufN8Nht2gPW796f8BUEsHCLB6zA6dHAAA1h4BAFBLAQIUABQACAgIAHOeTUGoB8lFcQgAAHUIAAAZAAAAAAAAAAAAAAAAAAAAAABFOlxHRU9HRUJSQVxTaXRlXGxvZ28uZ2lmUEsBAhQAFAAICAgAc55NQaBsHwafDgAAng4AABYAAAAAAAAAAAAAAAAAuAgAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgICABznk1BsHrMDp0cAADWHgEADAAAAAAAAAAAAAAAAACbFwAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAxQAAAHI0AAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" />
+
<math>{\pi}r^2</math>
 +
<math>4{\pi}{\epsilon}r^2</math>
 +
 
 +
 
 +
'''How to write a matrix:'''
 +
 
 +
<nowiki><math> \begin{matrix}
 +
  a & b  \\
 +
  d & e 
 +
\end{matrix}</math>
 +
</nowiki>
 +
 
 +
''The & sign separates columns and the "\\" separates the rows''
 +
 
 +
<math> \begin{matrix}
 +
  a & b \\
 +
  d & e 
 +
\end{matrix}</math>
 +
 
 +
 
 +
<math>s=ut+\frac{1}{2}(at^2)</math>
 +
 
 +
Chemical formula: Sulphuric Acid - <math>H_2SO_4</math>
 +
 
 +
<math>\bar a </math><br>
 +
 
 +
<math>\sqrt[x]{y} </math><br>
 +
 
 +
<math>\exists</math>
 +
<math>\partial</math>
 +
 
 +
==Demo==
 +
<math>\sqrt{45}</math>
 +
<math>\sum_ x</math>
 +
<math>\frac{\sum {x}}{n}={\bar x} </math>
 +
 
 +
[[Category:Mathematics]]

Latest revision as of 09:21, 29 January 2020

Use this website for formula



How to write a matrix:

<math> \begin{matrix} a & b \\ d & e \end{matrix}</math>

The & sign separates columns and the "\\" separates the rows


Chemical formula: Sulphuric Acid -



Demo