Difference between revisions of "Introduction to algebra"
Jump to navigation
Jump to search
(10 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
+ | <div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#ffffff; vertical-align:top; text-align:center; padding:5px;"> | ||
+ | ''[http://karnatakaeducation.org.in/KOER/index.php/ಬೀಜಗಣಿತದ_ಪರಿಚಯ ಕನ್ನಡದಲ್ಲಿ ನೋಡಿ]'<nowiki/>''</div> | ||
+ | |||
<!-- This portal was created using subst:box portal skeleton --> | <!-- This portal was created using subst:box portal skeleton --> | ||
<!-- BANNER ACROSS TOP OF PAGE --> | <!-- BANNER ACROSS TOP OF PAGE --> | ||
{| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;" | {| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;" | ||
|- | |- | ||
− | |style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics] | [http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics] | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics] |
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics] | [http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus] | [http://karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics] | [http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks] | [http://karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank] | [http://karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank] | ||
|} | |} | ||
Line 20: | Line 23: | ||
= Concept Map = | = Concept Map = | ||
− | + | [[File:Introduction to algebra.mm|Flash]] | |
+ | |||
__FORCETOC__ | __FORCETOC__ | ||
Line 30: | Line 34: | ||
==Useful websites== | ==Useful websites== | ||
==Reference Books== | ==Reference Books== | ||
+ | http://ncert.nic.in/NCERTS/textbook/textbook.htm?femh1=11-14 <br> | ||
= Teaching Outlines = | = Teaching Outlines = | ||
Line 38: | Line 43: | ||
#Able to extend patterns | #Able to extend patterns | ||
#Able to state observed pattern in generalized terms | #Able to state observed pattern in generalized terms | ||
+ | #Generalization; and stating in algebraic terms | ||
+ | #Algebraic variables can be “x” or “y” or “a” of “b” | ||
+ | #Combining algebraic terms – commutative and distributive properties | ||
+ | #Making simple expressions (addition, subtraction of multiple algebraic terms) | ||
+ | #Introduction to terminology called monomial, binomial, etc. | ||
+ | |||
===Notes for teachers=== | ===Notes for teachers=== | ||
Abstraction is generalizing the thinking. So here will focus on activities to build skills of generalization. | Abstraction is generalizing the thinking. So here will focus on activities to build skills of generalization. | ||
===Activities=== | ===Activities=== | ||
− | + | #Activity 1 - [[Introduction_to_algebra_abstraction_activity_1|Match stick abstraction]] | |
− | + | #Activity 2 - [[Introduction_to_algebra_abstraction_activity_2|More Match sticks!!]] | |
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | Match sticks | ||
− | |||
− | |||
− | + | ==Concept #2 Algebraic thinking - Arithmetic Abstraction== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ==Concept #2 Algebraic thinking - | ||
===Learning objectives=== | ===Learning objectives=== | ||
===Notes for teachers=== | ===Notes for teachers=== | ||
− | === | + | ===Activities=== |
− | + | #Activity 1 - | |
− | + | #Activity 2 - | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Concept #3 Algebraic thinking - Forming expression== | ==Concept #3 Algebraic thinking - Forming expression== | ||
===Learning objectives=== | ===Learning objectives=== | ||
===Notes for teachers=== | ===Notes for teachers=== | ||
+ | ===Activities=== | ||
+ | |||
===Activity No # === | ===Activity No # === | ||
{| style="height:10px; float:right; align:center;" | {| style="height:10px; float:right; align:center;" | ||
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | |<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | ||
− | ''[http://karnatakaeducation.org.in/?q= | + | ''[http://karnatakaeducation.org.in/?q=noivesiti/305 Click to Comment]''</div> |
|} | |} | ||
*Estimated Time | *Estimated Time |
Latest revision as of 09:50, 6 February 2020
Philosophy of Mathematics |
While creating a resource page, please click here for a resource creation checklist.
Concept Map
Textbook
To add textbook links, please follow these instructions to: (Click to create the subpage)
Additional Information
Useful websites
Reference Books
http://ncert.nic.in/NCERTS/textbook/textbook.htm?femh1=11-14
Teaching Outlines
Concept #1 Algebraic thinking - Abstraction
Learning objectives
- To make meaning from patterns
- Able to extend patterns
- Able to state observed pattern in generalized terms
- Generalization; and stating in algebraic terms
- Algebraic variables can be “x” or “y” or “a” of “b”
- Combining algebraic terms – commutative and distributive properties
- Making simple expressions (addition, subtraction of multiple algebraic terms)
- Introduction to terminology called monomial, binomial, etc.
Notes for teachers
Abstraction is generalizing the thinking. So here will focus on activities to build skills of generalization.
Activities
- Activity 1 - Match stick abstraction
- Activity 2 - More Match sticks!!
Concept #2 Algebraic thinking - Arithmetic Abstraction
Learning objectives
Notes for teachers
Activities
- Activity 1 -
- Activity 2 -
Concept #3 Algebraic thinking - Forming expression
Learning objectives
Notes for teachers
Activities
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Concept #4 Algebraic thinking - Manipulating algebraic expressions
Learning objectives
Notes for teachers
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Hints for difficult problems
Project Ideas
Math Fun
Usage
Create a new page and type {{subst:Math-Content}} to use this template