Anonymous

Changes

From Karnataka Open Educational Resources
Line 97: Line 97:  
# To understand that negative numbers are numbers that are created to explain situations in such a way that mathematical operations hold<br>
 
# To understand that negative numbers are numbers that are created to explain situations in such a way that mathematical operations hold<br>
 
# Negative numbers are opposite of positive numbers; the rules of working with negative numbers are opposite to that of working with positive numbers<br>
 
# Negative numbers are opposite of positive numbers; the rules of working with negative numbers are opposite to that of working with positive numbers<br>
# Together, the negative numbers and positive numbers form one contiuous number line<br>
+
# Together, the negative numbers and positive numbers form one continuous number line<br>
 
# Perform manipulations with negative numbers and express symbolically situations involving negative numbers<br>
 
# Perform manipulations with negative numbers and express symbolically situations involving negative numbers<br>
   Line 361: Line 361:     
Prepare worksheets for practise.<br>  
 
Prepare worksheets for practise.<br>  
        Line 436: Line 435:  
parts of the curriculum for reinforcement. For example, when looking at
 
parts of the curriculum for reinforcement. For example, when looking at
 
shapes, talk about ‘half a square’ and ‘third of a circle’.  
 
shapes, talk about ‘half a square’ and ‘third of a circle’.  
        Line 455: Line 453:  
A discontinuous whole is a group of items that together make up the whole. To find a fraction part of such a whole, we can divide it up into groups, each with the same number of items. We call such groups "equal-sized groups" or "groups of equal size". It is important that we always mention thathe groups are equal in size to emphasise this aspect of the fraction parts of a whole. Examples of discontinuous wholes are: 15 oranges, 6 biscuits, 27 counters, 4 new pencils, etc.  
 
A discontinuous whole is a group of items that together make up the whole. To find a fraction part of such a whole, we can divide it up into groups, each with the same number of items. We call such groups "equal-sized groups" or "groups of equal size". It is important that we always mention thathe groups are equal in size to emphasise this aspect of the fraction parts of a whole. Examples of discontinuous wholes are: 15 oranges, 6 biscuits, 27 counters, 4 new pencils, etc.  
 
Language patterns for a continuous whole To find 1/5  of my circular disc, I first divide the whole circular disc into 5 parts of equal size. Each part is 1/5 of the whole, and if I shade one of these parts, I have shaded of the 1/5 whole.  
 
Language patterns for a continuous whole To find 1/5  of my circular disc, I first divide the whole circular disc into 5 parts of equal size. Each part is 1/5 of the whole, and if I shade one of these parts, I have shaded of the 1/5 whole.  
        Line 499: Line 496:  
find a fraction part of a unit whole, we have to cut/fold/break, etc. because the whole is a  
 
find a fraction part of a unit whole, we have to cut/fold/break, etc. because the whole is a  
 
single thing.  
 
single thing.  
  −
        Line 510: Line 505:  
same number as the denominator. It is thus made up of more that one item and is a  
 
same number as the denominator. It is thus made up of more that one item and is a  
 
discontinuous whole.  
 
discontinuous whole.  
        Line 520: Line 514:  
denominator. This is also made up of more than one unit and so it is a discontinuous  
 
denominator. This is also made up of more than one unit and so it is a discontinuous  
 
whole.  
 
whole.  
  −
        Line 531: Line 523:  
denominator. This is also a multiple unit whole, and so it is a discontinuous whole.  
 
denominator. This is also a multiple unit whole, and so it is a discontinuous whole.  
 
   
 
   
        Line 547: Line 538:  
Writing or ordering fractions in pre positioned boxes along number line.  This can illustrate how a number line can be used to represent fractions of distance or length; or support the notion of a fraction being larger or smaller than another.   
 
Writing or ordering fractions in pre positioned boxes along number line.  This can illustrate how a number line can be used to represent fractions of distance or length; or support the notion of a fraction being larger or smaller than another.   
 
Marking the fraction on an empty number line - this involves measurement and judgement of a fraction as a proportion of a length or distance.
 
Marking the fraction on an empty number line - this involves measurement and judgement of a fraction as a proportion of a length or distance.
        Line 857: Line 847:  
the fractions with denominator equal to 5 are now displayed as shown:  
 
the fractions with denominator equal to 5 are now displayed as shown:  
 
To find equivalent forms of Rational Numbers
 
To find equivalent forms of Rational Numbers
        Line 866: Line 855:  
Principal Roots and Irrational Numbers  
 
Principal Roots and Irrational Numbers  
 
Prerequisite Concepts: Set of rational numbers  
 
Prerequisite Concepts: Set of rational numbers  
  −
        Line 941: Line 928:  
Construct these triangles on a virtual geoboard. Provide students with the formula for the area of a triangle (A = ½bh) and ask them to determine the areas of the displayed triangles. [12.5 units2 and 4.5 units2.]
 
Construct these triangles on a virtual geoboard. Provide students with the formula for the area of a triangle (A = ½bh) and ask them to determine the areas of the displayed triangles. [12.5 units2 and 4.5 units2.]
   −
 
+
 
      
  Tell students that there are more squares that fit on a geoboard than those found during the previous lesson. Today's lesson will focus on finding some atypical squares using geoboards.
 
  Tell students that there are more squares that fit on a geoboard than those found during the previous lesson. Today's lesson will focus on finding some atypical squares using geoboards.
155

edits