Difference between revisions of "The longest chord passes through the centre of the circle"
Jump to navigation
Jump to search
Line 199: | Line 199: | ||
# Can you draw a secant touching 3 points on the circle ? | # Can you draw a secant touching 3 points on the circle ? | ||
# At how many points does a tangent touch a circle ? | # At how many points does a tangent touch a circle ? | ||
+ | # How many tangents can be drawn to a circle ? | ||
+ | # How many tangents can be drawn to a circle at any one given point ? | ||
+ | # How many parallel tangents can a circle have at the most ? | ||
===Activity No # === | ===Activity No # === | ||
Line 214: | Line 217: | ||
*Question Corner | *Question Corner | ||
− | ==Concept # | + | ==Concept # Construction of tangent== |
===Learning objectives=== | ===Learning objectives=== | ||
===Notes for teachers=== | ===Notes for teachers=== |
Revision as of 16:29, 3 December 2013
Philosophy of Mathematics |
While creating a resource page, please click here for a resource creation checklist.
Concept Map
Error: Mind Map file circles_and_lines.mm
not found
Textbook
To add textbook links, please follow these instructions to: (Click to create the subpage)
Additional Information
Useful websites
- www.regentsprep.com conatins good objective problems on chords and secants
- www.mathwarehouse.com contains good content on circles for different classes
- staff.argyll contains good simulations
Reference Books
= Teaching Outlines Chord and its related theorems
Concept #1 CHORD
Learning objectives
The students should be able to:
- Recall the meaning of circle and chord.
- They should know the method to measure the perpendicular distance of the chord from the centre of the circle.
- State Properties of chord.
- By studying the theorems related to chords, the students should know that a chord in a circle is an important concept .
- They should be able to relate chord properties to find unknown measures in a circle.
- They should be able to apply chord properties for proof of further theorems in circles.
- The students should understand the meaning of congruent chords.
Notes for teachers
- A chord is a straight line joining 2 points on the circumference of a circle.
- Chords within a circle can be related in many ways.
- The theorems that involve chords of a circle are :
- Perpendicular bisector of a chord passes through the center of a circle.
- Congruent chords are equidistant from the center of a circle.
- If two chords in a circle are congruent, then their intercepted arcs are congruent.
- If two chords in a circle are congruent, then they determine two central angles that are congruent.
Activity No 1[Theorem 1: Perpendicular bisector of a chord passes through the center of a circle.]
- Estimated Time
20 minutes
- Materials/ Resources needed:
Laptop, Geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any
- The students should know the basic concepts of a circle and its related terms.
- They should have prior knowledge of chord and construction of perpendicular bisector to the chord.
- Multimedia resources: Laptop
- Website interactives/ links/ / Geogebra Applets
- Process:
- Show the children the geogebra file.
- Let them identify the chord. Ask them to define a chord.
- Let them recall what a perpendicular bisector is.
- Show them the second chord.
- Let students observe if everytime the perpendicular bisector of the chord passes through the centre of the circle.
- Developmental Questions:
- What is a chord ?
- At how many points on the circumference does the chord touch a circle .
- What is a bisector ?
- What is a perpendicular bisector ?
- In each case the perpendicular bisector passes through which point ?
- Can anyone explain why does the perpendicular bisector always passes through the centre of the circle ?
- Evaluation
- What is the angle formed at the point of intersection of chord and radius ?
- Are the students able to understand what a perpendicular bisector is ?
- Are the students realising that perpendicular bisector drawn for any length of chords for any circle always passes through the center of the circle .
- Question Corner:
- What do you infer ?
- How can you reason that the perpendicular bisector for any length of chord always passes through the centre of the circle.
Activity No # 2.[Theorem 2.Congruent chords are equidistant from the center of a circle.]
- Estimated Time :40 minutes.
- Materials/ Resources needed:
Laptop, geogebra,projector and a pointer.
- Prerequisites/Instructions, if any
- The students should have prior knowledge of a circle, its centre, radius, circumference and a chord.
- They should know that the length of the chord means its perpendicular distance from the centre.
- They should know to draw perpendicular bisector to a given chord.
- They should know the meaning of the term congruent and equidistant.
- Multimedia resources: Laptop, geogebra file, projector and a pointer.
- Website interactives/ links/ / Geogebra Applets
- Process:
- The teacher can reiterate the prior knowledge on circles.
- Revise the procedure of drawing chords of given length accurately in a circle.
- Revise what congruent chords mean.
- Show geogebra file and explain to help them understand the theorem.
- Developmental Questions:
- What is a chord ?
- Name the centre of the circle.
- How do you draw congruent chords in a circle ?
- How many chords do you see in the figure ? Name them.
- If both the chords are congruent, what can you say about the length of both the chords ?
- How can we measure the length of the chord ?
- What is the procedure to draw perpendicular bisector ?
- What does theorem 1 say ? Do you all remember ?
- What is the length of both chords here ?
- What can you conclude ?
- Repeat this for circles of different radii and for different lengths of congruent chords.
- Evaluation:
- Were the students able to comprehend the drawing of congruent chords in a circle ?
- Were the students able to comprehend why congruent chords are always equal for a given circle. Let any student explain the analogy.
- Are the students able to understand that this theorem can be very useful in solving problems related to circles and triangles ?
- Question Corner:
- What is a chord ?
- What are congruent chords ?
- Why do you think congruent chords are always equal for a circle of given radius ?
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Concept #2.Secant and Tangent
Learning objectives
- The secant is a line passing through a circle touching it at any two points on the circumference.
- A tangent is a line toucing the circle at only one point on the circumference.
Notes for teachers
Activity No #
- Estimated Time: 15 minutes
- Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any:
- The students should have a prior knowledge about a circle and its basic parts and terms.
- They should know the clear distinction between radius, diameter, chord, secant and tangent.
- Multimedia resources : Laptop and projector
- Website interactives/ links/ / Geogebra Applets
- Process:
- The teacher can show the geogebra file.
- Move the points on circumference and explain secant.
- When both endpoints of secant meet, it becomes a tangent.
Developmental Questions:
- Name the points on the circumference of the circle.
- At how many points is the line touching the circle ?
- What is the line called ?
- Evaluation
- What is the difference between the secant and a tangent?
- What is the difference between the chord and a secant ?
- Question Corner
- Can you draw a secant touching 3 points on the circle ?
- At how many points does a tangent touch a circle ?
- How many tangents can be drawn to a circle ?
- How many tangents can be drawn to a circle at any one given point ?
- How many parallel tangents can a circle have at the most ?
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Concept # Construction of tangent
Learning objectives
Notes for teachers
Activity No # 1. Construction of tangent from an external point .
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Activity No # Construction of Direct common tangent
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Activity No # Construction of Transverse common tangent
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Hints for difficult problems
Project Ideas
Math Fun
Usage
Create a new page and type {{subst:Math-Content}} to use this template