Difference between revisions of "The longest chord passes through the centre of the circle"
Line 345: | Line 345: | ||
*Multimedia resources | *Multimedia resources | ||
*Website interactives/ links/ / Geogebra Applets | *Website interactives/ links/ / Geogebra Applets | ||
+ | <ggb_applet width="1282" height="601" version="4.0" ggbBase64="UEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ21WeTTUixf/YrzGMgyZLBONsdQgKiFZMjWYIUuDMCGlxCDFpAlDDT2ylGd9xvYajKUsyTLWNFmSaLEVUVMyg0YYGmN5Pf3zzu+c9/vj3nvu/ePeez7n3Pv53HF2tIVIqkgCAADBYTH47fh824LBv217g5EtfwCQ2IXDoF3J47yCoGCXi0q98/sNY9RP+R2WvCXruFOI0En2UiClke0VxPt2HwRlTiTpnbhIU4bv859LSQ7mkrqQiib5R7zemPbYldd1quhkVul3XyvOS1YIbmzW+8byKxrL/zJ78fHroR/5Mz/tHVvaKFERkcub61Mf/RBAJ1PpihRwEwFYQQEEGICCALAoABIBqACA/lW+SVIoeettn9GRb/t70o7en3VPBdqRxxjwXT+EAZyU1diuqP0Atetlldnj2S7h6ZYn2gmFoeS4wrVz7dizoysy3i5LztgDukOajFg+fXctG13k2RDwwfxFG94SlVrzZanFSI7jOiMG1QykHtkMqeedNPL+ab2rQfwoZj016/Hzoev6mtisQPkxiqVhJUI2Ok+3X6HwEjkYM/jgZW9NTs/vKI212GpIjE3u2VxZqlVayVJz1BOvbgKF9CBfLUgi7GOHVljnVMNGX3msLj++v+RlU2fL6cRH068ZiZsvoqEgqmZBXsTL+0OKFpX1BoCVwa7/AvAvLgCaKi0t7WLff6OO0Fpe99ZBO0Pjc63HeEXHlK0jR1xFRcW63ipthdF03fm5s+vwcX8+Tn2H/Wf+lqrRk7EJp4GBWHxIlTv4WdFE+8SJW51aGBkQTtbGpgeD63zqTZhD3iszqOY3eylWMN+hBt1dhm6BqYj127FCPv/eHR08svZ9ZJdQCLOCTqZ963SoTwSo5Ta4PtQbR6y1W/XDbynlgyJguinT3U7qyefU1Ek6hcUCwHQJZlNfwKbnCj5QZAH8aX5pIwF6Dqq5+nRtfX6AttE9Iw9Jt4I6gO6ffmB4qqamFX5qBzp9aN+McS93UqDZfJQDS+j/iswb0L5Lo9F8v3xA3hXv3/V6M1942OBS4ZG6wjx7wVSEVNbl8czFIL4wevj9e+VVj45oIfO7tdmal1UZVRokmrmxZncwgLPRb9swSDhECaXfk6XocSRAfOzT4KYJa4SJsfGLW14Egp12Bmp6n45OElbKKcfyrJublhSrDvtz3mI+angnV8J0If9glk6jmXzM2SO1Wja2P/NU/A4oTWuYW2SHo6EFj7i5OYHrqhn75m/rvRgcYHxoaK5nD0AOb83OhiEeA/gDY2NjyVb+p0qsfmxsSTQbZw/fGFRGPs8XKCbrf8IIanHogpwc24y9ToyOjg6o8hEKm3U7MzdXGZmIR4Dp4Wgm8eKHK/H+savU3TcNBwy753socJcYyq2nAMxV8fmYcdUVlclaf0lln4OJfnOMCpJw+WtJNsJOmTV0ilqSizCHXpLIBtsTx/rR3LmIPpF9qs+Kn6Fae3iNPNKnMbHl1QFK7B0sR06AubvQi++mYdV+DSW/uHGOfVVn/c3JM7T+rwCJdPQ5s7e8ImgyggzPMsnKGPte+r47+StpwQNrA0t+gFdWVpaTx35vnlxIFGQi0VBVSeRAj/f6qu5KASdtn+mUxaJ+SPXESQ0/DVqrT2uvY0+7TeS34pzpw/poeSMpMl0nO92j0hOKSaAuKsjMvK+E1bdEWoQ8uiynlTh6cMQNs6VGHBoZuWbt3bxTNVr/Lw00096dFh8Q5sqd006QYs3jarmS1PKkQ+VJhMb5md92/LZRUXJujFknBqYTV+1CtRIFx2U97444rFEA0B0pH8NBsZBZTXDN1V4bKBQDI29amUpWlemMkqnxsXsBdDXtlWVQxljkWoKoawSDIKAuXka1lUJvIq4+G5GT4NyOqFxVezMAaYzKH+ZaqqHuNu3pD1dPXKfW7t7POXMtPC6EJ3N186NAdLs1mhnZPaIHFkVgM63sSLKjKcpBXa43wKIkFJYeVZvSE62ipOTMix4diiDOBt9GQDUt7KANbDW9hT4qYvtLeN1CmK/1wQPFwPIm5kn6IUUZ+lTsPR8AqnmZvAVyWuT/EDiXthrvB/2h1g4gsB8Wkajqu++iCjJdGuz00olbJ/b4qc/EmQVc0AsbhB0rihcM/FqK/GO+OkK3qpywN/vd8vkKKkWc5oVTehtT+UBJsLF9u1MGVxcVr6865c0OFcOWCSuMjzQubyt03hFagQFBMUbksI9xF03pK86XBS6XdRU3nGdxUJ8zNVmpjWgamHXS+JhcnTo8dNxX2E3P5cWch4FGdMHp0DrGSfpLzvfikdHj4+x3J1T/lqH9ZEdX1rvPMUBsI8Sf3VLo4b0acaPVBFvxUDVG6LjM2yCIdiRJgI98V5dY+NATV1rdPvyO4hW+U/mZOJvyaPGKKjj9APn1gfEMoljOet/oFyh90Rf56v1nd/uoAo8Thw7T2rwxzEupJsMzC9wyS09UGb/Qoy0dapUWr86rVtIt7Ag/D7kjnJbxzD9fZl2y1Fk8VyDxxCR54LMKAY4xm/1D1kcaZQGAcEe8Epomomp86nwDWcnVZFcfz/FFwk61lOm3XGLAUuPr0bgzJ47Ka6LJeXvM9VWomhB9azKriHZlo3TqeoqdI09Srmzum9N0C9l4LpHp1Q2Xdo65FtP1GK22daUi4E/+0HUREI7olrwnNDtlVkXP1qH3nHqypoz9BV6dy/dPT8wy/qzyP/rVDIbccWy9c3FOFXdjReQmQm7RF36s0xAmLS2L5xeVWTeklPaNC3cPCIkH2ze3bNZXuhyJvGsuZzihpI1nAt9BGAinaq6RXXY/QGShnWgelTlF1GF8s+jnzjxEHQ4a3594CJweiWNqvnlhYFTjzZ47W78QAKDxpyc//+Xayo7p5sHGrN8UwJFBPmpICDWgmD3YfmaJJNIrJiu6rL+ihEpA0H7vxXlkXnC7yoTn2EP07t9GtOg4kAmSr/IdhofDdqVZX1A/RbSCerNkJ9lE2WSW219k+HK0pRqMw19qkTFnAdQSSBs3qTXelHnDeo9JeekkXpu4GQ6z00n1MP57901EIMT9HrlJQSZ66npQW9ye9k4tp8qo3v+S5n859F9q/X9S43+Y9lda3nMMxN1IMsYnZW8LJQBn7YipPu5L/QdQSwcIRnoUezEJAABPCQAAUEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vrvcts2Ev+cPgWGN5MvjSX8B5jK6cjOdC4zadOp05ub+0aRkIyaIhWSsuVMX6pp2sfwM90CICnJcnxW3DqXu2bigACWWGB/+9td0Bl9vZrn6NxUtS2Lw4gMcIRMkZaZLWaH0bKZHujo62dfjGamnJlJlaBpWc2T5jDiTtJmhxGTMplMM3wQC54ccJziA50ochBTIlSG6WRidITQqrZPi/K7ZG7qRZKak/TUzJOXZZo0XvFp0yyeDocXFxeDTtWgrGbD2WwyWNVZhGCbRX0YtQ9PYbmtly6YF6cYk+E/v30Zlj+wRd0kRWoi5I6wtM++eDS6sEVWXqALmzWncGCqaYROjZ2dwqGUYBEaOqkFWGRh0saemxre3ej6QzfzReTFksLNPwpPKO/PE6HMntvMVIcRHoAShQXhmmIRg0IeobKypmhaYdIqHXbLjc6tuQjruievEl5qyjKfJG5J9PPPiGKK0RPXkNBQaKQMUziMYRYaGhoeGhFkeHidB1EeZHiQ4WCIc1vbSW4Oo2mS12BDW0wrwK/v181lbvx+2oH18ckTOFNt34Iww+AowegwjvET9yPhh7uJ4fYhyYbWplruqbRTSQgWd9dJ76OT9TrlDSqp+MAx5S3WDXu40znFhmlBlf/rf3Y0MrqHxtC/n0LJH+SIo2FHlVHLDlSfOtkWycbMa8cXFiMRO7cnSAA3pAIvF4jE0CiKgA2ICMQFdIlG0rUKMQUTHDGkkZMjDHlyCA3/cOUXk0jAYm5UAScRAUUcCYaI5xRHwCTkeQkcpQwkhEACXnLqCXVLMIm4hB7TiMMeHSUVAUEGL0If1FPECGLuZaIQlUi69Qh3VJfabR2WpEhiJIlbEFgNjA5sBnmNmDuNbM1li8Wy2TJROs+6x6Zc9FiANMSjddgL8WkrKj4a5cnE5JApThySCJ0nuWOEVzQtiwZ1INIwNquSxalN6xPTNPBWjX5KzpOXSWNW34B03en2smlZ1N9XZXNc5st5USOUljnu91zmZOOZ9ruGDtuY4JsTYmNCbjyrG/WWMIOWtQH9ZVV34kmWvXAS69AAlnxV5JdHlUnOFqXdPsZo6JPOyCzT3GY2Kf4Bzuq0OLugPgf5cNXlIBHH3U7KKju5rMGF0epfpiohVBHh0u5l6LHQq9PEcUxgP7XZ88uY897cycqsdz6rHE03Oi/qozJfD/nDHCeLZln5WgAiXeV2OC5mufGAe5pCok3PJuXqJCDNwlqvLxfQa3cwmXkjIiA6FXDSWdtOQutl3NZ6KexlsJfAnevYrJ8nMfUSvp2E1kuBL4attUcl3TEJ7tTY2ocnHLUk6EKP82SXtpeFbV52ncamZ+ujuhe+W84npveH7TXJH7XmaHjNYUZnpipM3vongLksl3Wg24brZia1c+iGidYkiYPrR9hAGM3MrDLdxnNfZwWD+Vm86Xk7w36pb6py/qI4fw2+cG0Do2G3y1GdVnbhfA5NIKafmbVXZbZOICVkm+85QsHRUxf6wTyNMw1QbdmclpWvpCBCQOt4lJs5lE2o8e7lPbQ38ytfkDl7onLyEwSpPo+F+TVgMH2jq3mnTPLFaeKKtvbQeXJpqi0z+PW+LbPrxgHb+xMAYRe+6gN0F8YExwg7hocFLOj5tBVzwN41WgHJBhSK5Uv3OoOHt6EiDxWpO61j2VaYDaPXoAL/CYbyxp3PkyJDhU+8x7ZKcxOtM0GCneVQQvoVy2XTTaRhsXaJHfsDbjbt7Zv+B/tvnPdDABBXfn8sAGvuN5BjzqCQrn1t17ShyD/83WaZ8fVFiI12Zopz2CuEeLii4PYCdImDfvS2G1mBfQ5CgCXt0FuyAQ5AX9kVGnfy405qTN1DjKmK+z8aTjlmrYox5KiDAPtYeCUAfNjcmyKcpw7RwmVeO7Xp7Qh/70mxDXC6g+zx7chuM+v4o5jVhfoujH9iZuEB3L4YYYJLIpWkLuUCz+gAx3Dri6XSsYyJpOJPYN3dMDnaB5OjB8Xk1XRam8aZ8YDE3m5wg3kAyASTsSCaESwBu4AYMEQzrpTmimsiCeD5J0B2YmZu/BpoxyFSHu1gl9yOXd2u1qGT3CdW+igJ8Any8ZxaG5kOYkYZ0bCq0oJh3VuZasYkUUQQrBgWQnkzH5CBdgWr0pJSzWOt2D3i77UQZ+eL3Ka26e2bO/d4UTRQHhlfH+xWPWfGLFy5+ap4XSVF7b5PBZmNaupevHy+Dy+f/y/ESjGQAD0ESaYxjWPeRkrKMZFAPc05w0TJTxYpx/sgMv5kkTKYjTwEXhAEMYu5UJLDvzRQmAykit2Xx1jrmBAeswcLlM9DoBzvQDfZL1BO7hUoMf0DAyUbxO57KsdKMcahhujiJFFUAls0BrZwrZ1SFycpmD9WXGpKGcNYyc82TN4M8dGHIM72gzj778mFUFlwgWNKINIpAWAHInFAnmMN8VAKIBILiZANpJBQgohYMK45+XzT4K21zvMdfM1++Jr73wvvkRDX4Dqmcgo5DW5iXDEtBJYtvJpAuqNQ/kNNw1r6xoNYxUBdDNQFdrPPl77+g93N5HUY05swvvrldpD9p6AeQpB278N+lq31XeyTcK9ikH2EhrKh/Rr1cZ9nCN71A3JHP9j5Mnh33JIq3ciOXcbO8/LiBzPNzcob9j4o9BTzKOxG0qt3e6HwbhcFHiso2VyxpiBnCf4XCrso9LWKR2H3bnf1614o/HoDCpxrFsN9Ci6xSqm/QNgFYdzdrD0Ix7sgvN8LhPc3BCRAgcaSiRgY8X+JglktKlDjbhvdGc2qgcoJJg6jx2+WZfPV8WUKuQm9WSZZZfMEUlKShxm/2rbR3evR9lqfuJbzv3WsTWWn69/Qtb+ej7r024rWTVI1/r6JXHlABqStBuTWxfZ2A1791lrv6hf0JQLuo10rXXPN3667JoO6hIgYiksG5aWK2f1xvfq929Y7t633d9jW7w+wLecidMvdHufNV2P0pWuO0SEiGj/+G8F++Ah27trn7fidnZB+0oJzalcm2zbKjq/pQfjIRgax/pCvDTd/K+Z/k9z+t6hn/wZQSwcIahw98e0IAACzJQAAUEsBAhQAFAAIAAgA64WEQ0Z6FHsxCQAATwkAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADrhYRD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAB1CQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAOuFhENqHD3x7QgAALMlAAAMAAAAAAAAAAAAAAAAANIJAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAA+RIAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | ||
*Process/ Developmental Questions | *Process/ Developmental Questions | ||
*Evaluation | *Evaluation |
Revision as of 16:52, 4 December 2013
Philosophy of Mathematics |
While creating a resource page, please click here for a resource creation checklist.
Concept Map
Error: Mind Map file circles_and_lines.mm
not found
Textbook
To add textbook links, please follow these instructions to: (Click to create the subpage)
Additional Information
Useful websites
- www.regentsprep.com conatins good objective problems on chords and secants
- www.mathwarehouse.com contains good content on circles for different classes
- staff.argyll contains good simulations
Reference Books
= Teaching Outlines Chord and its related theorems
Concept #1 CHORD
Learning objectives
The students should be able to:
- Recall the meaning of circle and chord.
- They should know the method to measure the perpendicular distance of the chord from the centre of the circle.
- State Properties of chord.
- By studying the theorems related to chords, the students should know that a chord in a circle is an important concept .
- They should be able to relate chord properties to find unknown measures in a circle.
- They should be able to apply chord properties for proof of further theorems in circles.
- The students should understand the meaning of congruent chords.
Notes for teachers
- A chord is a straight line joining 2 points on the circumference of a circle.
- Chords within a circle can be related in many ways.
- The theorems that involve chords of a circle are :
- Perpendicular bisector of a chord passes through the center of a circle.
- Congruent chords are equidistant from the center of a circle.
- If two chords in a circle are congruent, then their intercepted arcs are congruent.
- If two chords in a circle are congruent, then they determine two central angles that are congruent.
Activity No 1[Theorem 1: Perpendicular bisector of a chord passes through the center of a circle.]
- Estimated Time
20 minutes
- Materials/ Resources needed:
Laptop, Geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any
- The students should know the basic concepts of a circle and its related terms.
- They should have prior knowledge of chord and construction of perpendicular bisector to the chord.
- Multimedia resources: Laptop
- Website interactives/ links/ / Geogebra Applets
- Process:
- Show the children the geogebra file.
- Let them identify the chord. Ask them to define a chord.
- Let them recall what a perpendicular bisector is.
- Show them the second chord.
- Let students observe if everytime the perpendicular bisector of the chord passes through the centre of the circle.
- Developmental Questions:
- What is a chord ?
- At how many points on the circumference does the chord touch a circle .
- What is a bisector ?
- What is a perpendicular bisector ?
- In each case the perpendicular bisector passes through which point ?
- Can anyone explain why does the perpendicular bisector always passes through the centre of the circle ?
- Evaluation
- What is the angle formed at the point of intersection of chord and radius ?
- Are the students able to understand what a perpendicular bisector is ?
- Are the students realising that perpendicular bisector drawn for any length of chords for any circle always passes through the center of the circle .
- Question Corner:
- What do you infer ?
- How can you reason that the perpendicular bisector for any length of chord always passes through the centre of the circle.
Activity No # 2.[Theorem 2.Congruent chords are equidistant from the center of a circle.]
- Estimated Time :40 minutes.
- Materials/ Resources needed:
Laptop, geogebra,projector and a pointer.
- Prerequisites/Instructions, if any
- The students should have prior knowledge of a circle, its centre, radius, circumference and a chord.
- They should know that the length of the chord means its perpendicular distance from the centre.
- They should know to draw perpendicular bisector to a given chord.
- They should know the meaning of the term congruent and equidistant.
- Multimedia resources: Laptop, geogebra file, projector and a pointer.
- Website interactives/ links/ / Geogebra Applets
- Process:
- The teacher can reiterate the prior knowledge on circles.
- Revise the procedure of drawing chords of given length accurately in a circle.
- Revise what congruent chords mean.
- Show geogebra file and explain to help them understand the theorem.
- Developmental Questions:
- What is a chord ?
- Name the centre of the circle.
- How do you draw congruent chords in a circle ?
- How many chords do you see in the figure ? Name them.
- If both the chords are congruent, what can you say about the length of both the chords ?
- How can we measure the length of the chord ?
- What is the procedure to draw perpendicular bisector ?
- What does theorem 1 say ? Do you all remember ?
- What is the length of both chords here ?
- What can you conclude ?
- Repeat this for circles of different radii and for different lengths of congruent chords.
- Evaluation:
- Were the students able to comprehend the drawing of congruent chords in a circle ?
- Were the students able to comprehend why congruent chords are always equal for a given circle. Let any student explain the analogy.
- Are the students able to understand that this theorem can be very useful in solving problems related to circles and triangles ?
- Question Corner:
- What is a chord ?
- What are congruent chords ?
- Why do you think congruent chords are always equal for a circle of given radius ?
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Concept #2.Secant and Tangent
Learning objectives
- The secant is a line passing through a circle touching it at any two points on the circumference.
- A tangent is a line toucing the circle at only one point on the circumference.
Notes for teachers
Activity No #
- Estimated Time: 15 minutes
- Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any:
- The students should have a prior knowledge about a circle and its basic parts and terms.
- They should know the clear distinction between radius, diameter, chord, secant and tangent.
- Multimedia resources : Laptop and projector
- Website interactives/ links/ / Geogebra Applets
- Process:
- The teacher can show the geogebra file.
- Move the points on circumference and explain secant.
- When both endpoints of secant meet, it becomes a tangent.
Developmental Questions:
- Name the points on the circumference of the circle.
- At how many points is the line touching the circle ?
- What is the line called ?
- Evaluation
- What is the difference between the secant and a tangent?
- What is the difference between the chord and a secant ?
- Question Corner
- Can you draw a secant touching 3 points on the circle ?
- At how many points does a tangent touch a circle ?
- How many tangents can be drawn to a circle ?
- How many tangents can be drawn to a circle at any one given point ?
- How many parallel tangents can a circle have at the most ?
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Concept # Construction of tangent
Learning objectives
- The students should know that tangent is a straight line touching the circle at one and only point.
- They should understand that a tangent is perpendicular to the radius of the circle.
- The construction protocol of a tangent.
- Constructing a tangent to a point on the circle.
- Constructing tangents to a circle from external point at a given distance.
- A tangent that is common to two circles is called a common tangent.
- A common tangent with both centres on the same side of the tangent is called a direct common tangent.
- A common tangent with both centres on either side of the tangent is called a transverse common tangent.
Notes for teachers
Activity No # Construction of Direct common tangent
- Estimated Time: 90 minutes
- Materials/ Resources needed:
- Laptop, geogebra file, projector and a pointer.
- Students' individual construction materials.
- Prerequisites/Instructions, if any
- The students should have prior knowledge of a circle , tangent and the limiting case of a secant as a tangent.
- They should understand that a tangent is always perpendicular to the radius of the circle.
- They should know construction of a tangent to a given point.
- If the same straight line is a tangent to two or more circles, then it is called a common tangent.
- If the centres of the circles lie on the same side of the common tangent, then the tangent is called a direct common tangent.
- Note: In general,
- The two circles are named as C1 and C2
- The distance between the centre of two circles is 'd'
- Radius of one circle is taken as 'R' and other as 'r'
- The length of tangent is 't'
- Multimedia resources:Laptop
- Website interactives/ links/ / Geogebra Applets
- Process:
The teacher can explain the step by step construction of Direct common tangent and with an example. [Note for teachers : Evaluate if it is possible to construct a direct common tangent without the third circle.] Developmental Questions:
- What is a tangent
- What is a common tangent ?
- What is a direct common tangent ?
- What is R and r ?
- What does the length OA represent here ?
- Why was a third circle constructed ?
- Let us try to construct direct common tangent without the third circle and see.
- What should be the radius of the third circle ?
- Why was OA bisected and semi circle constructed ?
- What were OB and OC extended ?
- What can you say about lines AB and AC ?
- Name the direct common tangents .
- At what points is the tangent touching the circles ?
- Identify the two right angled triangles formed from the figure ? What do you understand ?
- Evaluation:
- Is the student able to comprehend the sequence of steps in constructing the tangent.
- Is the student able to identify error areas while constructing ?
- Is the student observing that the angle between the tangent and radius at the point of intersection is 90º ?
- Is the student able to appreciate that the direct common tangents from the same external point are equal and subtend equal angles at the center.
- Question Corner:
- What do you think are the applications of tangent constructions ?
- What is the formula to find the length of direct common tangent ?
- Can a direct common tangent be drawn to two circles one inside the other ?
- Observe the point of intersection of extended tangents in relation with the centres of two circles. Infer.
- What are properties of direct common tangents ?
Activity No # Construction of Transverse common tangent
- Estimated Time: 45 minutes
- Materials/ Resources needed:
- Laptop, geogebra file, projector and a pointer.
- Students' individual construction materials.
- Prerequisites/Instructions, if any
- The students should have prior knowledge of a circle , tangent and direct and transverse common tangents .
- They should understand that a tangent is always perpendicular to the radius of the circle.
- They should know construction of a tangent to a given point.
- If the same straight line is a tangent to two or more circles, then it is called a common tangent.
- If the centres of the circles lie on opposite side of the common tangent, then the tangent is called a transverse common tangent.
- Note: In general,
- The two circles are named as C1 and C2
- The distance between the centre of two circles is 'd'
- Radius of one circle is taken as 'R' and other as 'r'
- The length of tangent is 't'
- Multimedia resources: Laptop
- Website interactives/ links/ / Geogebra Applets
- Process:
- The teacher can explain the step by step construction of Transverse common tangent.
Developmental Questions
- What is a transverse common tangent ?
- What is the radius of the third circle ?
- What is the difference in finding the radius of the third circle in constructing Dct and that of Tct ?
- Why was a third circle constructed ?
- Let us try to construct transverse common tangent without the third circle and see.
- Name the transverse common tangents .
- At what points is the tangent touching the circles ?
- Evaluation:
- Is the student able to comprehend the sequence of steps in constructing the tangent.
- Is the student able to identify error areas while constructing ?
- Is the student observing that the angle between the tangent and radius at the point of intersection is 90º ?
- Is the student able to understand the difference in the construction protocol between direct common tangent and transverse common tangent ?
- Question Corner:# What do you think are the applications of tangent constructions ?
- What is the formula to find the length of transverse common tangent ?
- Can a direct common tangent be drawn to two circles one inside the other ?
- What are properties of transverse common tangents ?
- Evaluation:
- Were the students able to comprehend the steps in transverse common tangent construction ?
- Question Corner:
- Can you construct a transverse common tangent without the third circle ?
Concept # Cyclic quadrilateral
Learning objectives
- The students should learn that a quadrilateral ABCD is called cyclic if all four vertices of it lie on a circle.
- The sum of either pair of opposite angles of a cyclic quadrilateral is 180 degrees.
- If the sum of a pair of opposite angles of a quadrilateral is 180, the quadrilateral is cyclic.
Notes for teachers
- Activity No # Construction of cyclic quadrilateral
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
- Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Hints for difficult problems
Project Ideas
Math Fun
Usage
Create a new page and type {{subst:Math-Content}} to use this template