Difference between revisions of "The longest chord passes through the centre of the circle"
Line 167: | Line 167: | ||
*Multimedia resources : Laptop and projector | *Multimedia resources : Laptop and projector | ||
*Website interactives/ links/ / Geogebra Applets | *Website interactives/ links/ / Geogebra Applets | ||
− | <ggb_applet width=" | + | This geogebra file has been made by ITfC-Edu-team |
+ | <ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAP2DIUQAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ21VaTgbCBoOUiLuuKZJS2ZkO45RHpVJEEfQJhmlSUpbR6W0LFpHMRNZjzi2iiIJk1AUbYI6ilaFFm12DCuoxmgS1lmto3GWKi0lm+7+2P0x3/N87/fju973x/d8OUQfnBYYCgYAAFoEvCdZEYUKDwKpKtCqeXcQAFB9QvDE+iaNr5Y74y+eB/RRvLDj2G/ZI73VmVx0Kb3Guvq3/mEc4Y9qfqRVjm/WsOON0hpt9bHv7NM1tQ8fURgkThfiG/fViLYIjwh9Tc9eroeLz56rjHZnJ6xJtLM2urf/erNip2JvY81ZkPyceVgFENYfpwHQBQKwfwL/jVXQVsru+BWfdjVBpFJ3h+1uotdJndoe+tHUg4hgWbJN3KefRFqg0M9XE8yMc1yOfH7ZtZGQ9fnaVitN9oLUuVZOEbROUOSypOAqqkFMarJ5WbtzxAXqWvyi499ksM5Py4mY2abRmYXmhD5VYN0765SVnfXVHab8028HjcJqkXTmueWtJNO8O3Y2lbRRug1/v5Hy3NwCX/ewWevIiebtVPbXUZuHNpiLV8wnRymLDC1QIdrhTL5Ogtn/xPyZPPizjDuuqdN5+fklmZmHEuQHKWsgtxBw/Pq0c8Ky1Npq4P37uOn41XHkXJ2KVCp98eVLV75GXNoPRb8uLkkaTtXlByJEPT03/IOC7HVMXeZ8ikJSUqamBRsbG9xikVCYfdEVhTL+rFHb2TmxtbV1O/WXttUZGAyG6fq9CLv1/q/h4Q8wmTqCinn/4OC2gpkz6evTzwINYmJjRU3F8GIbyo+LL8sfV5K6ejs7O160y9U3X68vLrrEz2X/a3zcLjo6+ljZUOnpY5dLy8r0qgIeNDWVymSRe//Y911805sbHh8/8oO1dcnQ0JB4UtjHNJ0QuwnO2mSVl5ffYpg5JIpeVjhf7c1gg1sonpvzG2fLqwZ4M1xQI5tXirevtmRrLOFZ+8Siy2FhvUEC+lQeg2E0P3q/puYa4sHWalA027nwG8vL4s2Kd+3LYco/Hxdi56/7oygmmRoqHFhiTHV2COeqqpqah5Mp4rRizi0uCEEImh2zLiSQCU0eg6+GL7n6SomcpDHzBsnoqHGZgQGWbM6k+FnTfOnEEvN3Zf4jEjsvw7mdre1tMp8B5+MMlep1ib1plqAvbBztAEOrwDzyaxsI6MXupqcrtQSCIDq045paJdcu82gCvqQGE7VD2mOOp3Pd/U9VZ6fBC8z0XKJjUU4TosASzjOSWW19iAYM/zsbt2nJUQHmGPjNqw69RNPYRz/A8PzaS82bXsgJpNinsEb1PJDwTdPgaSQx1YrP8KroZt8n0xJPtwSAIOr1RlKYo+YXEwm9Xr8Kx++eIxcUaWDQQHU1yZWT/ro2f2HaMDwLMaiYSdvySiqxIRM+e09Yg799Awz0A7faP490dHXwYUYp6p894l3TxZhHVVp0TXfPguhmdXOEwK+ZAts9fz+r3ldINa2yNhMJCGJHEAZzCjugXA50kDdwC71de4oFIuaTILDX4pyWIg6YAGOkwZF5EdU3hf88GpbLhUz0v6WC/erPflS0u2/XkxH8OQbsnhbOjbUFGplhTvqYCHD8GXyAmAfFjtgI/67mtDDAeeQ5eNRo/qYZnvtwDstimfnHrt91oLXoYLUJF5zr9RBhBQ+CgQ61mKaO8X791rPmGXD8xevDig2FXHyNWoOaTlZxXzUaRFaeuovwkRqFOeEDsCwIe+lTMZC9eC5ZGY73JvFDLqhU1xOQu6FKGUD3DEQjyuZQIlA93z5PTQlYJ4P5Py5BWCT3sgKB6oaS3O/vDTdAUeE/YnXJBSkDXoTlUwy4hWVuz9NobPlH7u1IEyw8i1yAZojOgfsQUhDEAfr4rnxQrz27Nj6LrOvGEpJcy9Ec3O0nUGxoVlTrm+GARu2fofVgEMRJ/C3RguB7gmo+76YNzEFCWbzu62PRiJgMFTfWGE+5E9y/BKUsd3eGW+W4491YHm8PnB/XTNS1mf9UNylG2wO/w1t6kngXn8rf6hn4TUUZ6Vi/YObC69xPREaEAlDFjcd0kkiIYmLUI2qCe+Rr/VA4fonkfb7usHjQ28gtF50BgIMAGYgbq6vRnQA4XklU4XxCcacLPTn628nHfpUnfKTOdqTESuUhVCo1V2pIN/bw8PhlamVlJV00+170kfsQu6MC7P9DIgkzNr7X1tYWrzeo/kaae/Om6quRkVABCoVa7Obz+fPdSCSy5P6ZygWpYYxxe+zMcYht2dACQ0ZhPqF9CJ9GPo1zHOXhmCsbfIHAey8iNfpD5kYzKWSKTl2b7N+nyx3T7BRE/8P2/0BsKlc+J5N4x2qGfK94ZQDCSR/PJvdLGf8GUEsHCLd7b2fmBgAA8QYAAFBLAwQUAAgACAD9gyFEAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgA/YMhRAAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzVWdty4zYSfZ58RRcf8jSScONFE2lStqtSO1XOpcqzl9o3kIQkxBSpkJAsTeUH8hX7b/sl2wBIiZTHjj2Ok9ope0ACzW706T7dwMzs2/26gJ2qG12V84COSQCqzKpcl8t5sDWLURJ8+/6r2VJVS5XWEhZVvZZmHggrqfN5kIsopyqPRyJN+Egwno+kEHyUqHyhhFikaU4DgH2j35XVD3Ktmo3M1E22Umt5XWXSOMMrYzbvJpO7u7txZ2pc1cvJcpmO900eAG6zbOZB+/AO1Q0+uuNOnBFCJ//6/tqrH+myMbLMVADWha1+/9Wb2Z0u8+oO7nRuVugwS9CPldLLFToVhyyAiZXaICIblRm9Uw1+23t1Tpv1JnBisrTrb/wTFEd/Asj1TueqngdkTMMpj8MAqlqr0rQStLU06XTMdlrdeWX2ydkRAZiqKlJp9cCvvwIjjMBbO1A/MByiyC8RP0e4H5gfhB9CLyP858KLCi8jvIzgAex0o9NCzYOFLBoETpeLGoN2fG/MoVBuP+3EyWf6Fn1q9CcU5gRR9UjjPCFv7W+Ev8IuTIZO0p5VU2+fabQzSVmcPN0me5GnvDOKmN23ycIH/IweMeodf5KjYQ9bNOV+3O89i/wxN88t+veXGYzEn+LibNJxZdbSA5qVlW3Tx6h1YwnDpxBObd5TCJEcUYxpHgKd4hAzQDoADUGE+EoTiOwYA49xQQCHBKwc5eDYESb4l4idsghCVGZnYyQlUDQkIORAHakEIJXAERNJyjhKhCGE+JE1T5lVwSMQEb7xBATu0XIypijI8UN8R/MMOAVuP6YxsAgiq48Ky/UosVtHlQwiAhG1CpHWSGlPZ5RPgFtvohYuXW62ZgBRts67R1NtjrFAaSxIp2LnC9SgFr6ZFTJVBfaHGxtJgJ0sLCOcoUVVGjgS0s8ta7lZ6ay5UcbgVw38LHfyWhq1/w6lm862k82qsvmprsxVVWzXZQOQVQU57rkqaO+ZHXeNL7y3IPoLYW8h6j3Hn7Vb4QpsG4X2q7rpxGWef7ASp9KASP5YFofLWsnbTaWHbswmrtXM1DYrdK5l+Q9MVmvF4gKnzmPrVdd5wiTpdlLV+c2hwRSG/b9VXWGRoWI87f+JAzj4JX6+hPxrMmnZJ6bDlQST4fDA2tTbVrtjjORendxd1pbbvZcPzWVVnKYcAldyY7a1OzZgeaytWxflslAuSxy3sSdnt2m1v/Hpwb2uj4cNvhG/g3TpkAesDizEjrlsx9SPTsZu7ShFnAxxEqTLN50f1+mUOQk3pn50UpjAfmutq7Rzk5LOjG5cTSNBy5yuXtn0tx1+W2pz3b0Ynd2eXLUf/LBdp+qYREOd9I/SOZucZdnsVtWlKtqkxmBuq23jOdrL91xleo2vfqGFRNpw/R034GdztaxVt/HCHck8YG6V9NP13rRT9V1drT+Uu4+YC2cbmE26Xc6arNYbm3OQYiO4VaesynUjsY/k/e8sC9H1zPYLhMdYaJCfW7OqanfowrKCoyVfodZ42ALj0stl6BHmC3d2s3hClf6Mle3Y/Pz6KWC4/NlUc0kpi81K2vNd63QhD6oewOD0fV/l5+Ag9s4DZPnGx3ajlE8Lv1982KA6x6ZBmUK0G9jjSXVs6TwPRmQcI+c/+aO7P7paXy3HBpXZz54FCrPHw+SgXa9lmUPpevWVrrNCBafmIYnFDSQ9aqy2plvIvLJWxT30MWo6O6Kb/Q76PX8fgp98Ofgn3htsSrd49G7cadC0Zcg9/E3nuXIHEl8X9VKVO9wp9gS8yZD2nnQg3j586mb21EXErtF26hPthQbDXus9XHTyF53UBXNFmZMYw3rBW70X2MlGLtIXoZ3CSPv9/FJ6FxpfHGx31gudPR7SnxwHhhHN7oXy8vFQDol0+UVE6ir7c2P542LRKGOzf0SJz/7pa/MsHDMxnfIwiZJYhFSQ0BmmY8pEjD/YVwnerdgrUPBp8bp6Tryu/oB4UcL+2tJHyRhv01MaCrxXJ4xQXwlxdhpHMWEhw0BFIkxeISbXWD3OQnLpi+LVvcjIxyNjC9ERePn0mojFNNceQnsKbaXTVyuYJ+CxALGYhCIUMReJIBFzwIfIhXAaT3GacaRJ6HAfTcdhwjiJSIRB4QkNX1B/z+qdXm8KnWlzHiu139Soz2LTJbTaG0woXJgHX/+yrcw3NyqTGAMb0o94SrHxqBYgIXMNz8s4vcNoWUXBUOsLupjjEIYlpF8el4Xeq9zPnGjr7l+NqvXidFfxp+0o6NBrv2+MrI2rMWCDy8dTRvp/hAuuGLOoz6MB3AOEUryIK1keAUgdQLi/rTrf5UtOXl/SLhKW+Ko95Y9mOt5gbO64OZ8nT8swNsiwNq2enkrspeS/hP/+9h+4erUScJYqlI2TqG2D8fAeyR7Mlc8Cx18GHP9/A46P46TPMdqiyOjwNv4sEMUAxH+uFK5ikYXLKzDVFi/dTVvcoCqLA0gseLjqGh+WClcNU4VdCuXMcyMg/tKz/Bm8mJYDdAn3h0QxFlF/+sEknfSvl+7fcdr/inj/P1BLBwj0Wlw3dgcAACcZAABQSwECFAAUAAgACAD9gyFEt3tvZ+YGAADxBgAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIAP2DIURFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAACoHAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgA/YMhRPRaXDd2BwAAJxkAAAwAAAAAAAAAAAAAAAAAiAcAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAMIAAAA4DwAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | ||
*Process: | *Process: | ||
# The teacher can show the geogebra file. | # The teacher can show the geogebra file. |
Revision as of 16:39, 1 January 2014
Philosophy of Mathematics |
While creating a resource page, please click here for a resource creation checklist.
Concept Map
Error: Mind Map file circles_and_lines.mm
not found
Textbook
To add textbook links, please follow these instructions to: (Click to create the subpage)
Additional Information
Useful websites
- www.regentsprep.com conatins good objective problems on chords and secants
- www.mathwarehouse.com contains good content on circles for different classes
- staff.argyll contains good simulations
Reference Books
= Teaching Outlines Chord and its related theorems
Concept #1 CHORD
Learning objectives
The students should be able to:
- Meaning of circle and chord.
- Method to measure the perpendicular distance of the chord from the centre of the circle.
- State Properties of chord.
- By studying the theorems related to chords, the students should know that a chord in a circle is an important concept .
- Able to relate chord properties to find unknown measures in a circle.
- Apply chord properties for proof of further theorems in circles.
- Understand the meaning of congruent chords.
Notes for teachers
- A chord is a straight line joining 2 points on the circumference of a circle.
- Chords within a circle can be related in many ways.
- The theorems that involve chords of a circle are :
- Perpendicular bisector of a chord passes through the center of a circle.
- Congruent chords are equidistant from the center of a circle.
- If two chords in a circle are congruent, then their intercepted arcs are congruent.
- If two chords in a circle are congruent, then they determine two central angles that are congruent.
Activity No 1[Theorem 1: Perpendicular bisector of a chord passes through the center of a circle.]
- Estimated Time:20 minutes
- Materials/ Resources needed:Laptop, Geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any:
- Basic concepts of a circle and its related terms should have been covered.
- Multimedia resources: Laptop.
- Website interactives/ links/ / Geogebra Applets:
This geogebra has been created by ITfc-Edu-team.
- Process:
- Show the children the geogebra file and ask the listed questions below.
- Developmental Questions:
- What is a chord ?
- At how many points on the circumference does the chord touch a circle .
- What is a bisector ?
- What is a perpendicular bisector ?
- In each case the perpendicular bisector passes through which point ?
- Evaluation
- What is the angle formed at the point of intersection of chord and radius ?
- Are the students able to understand what a perpendicular bisector is ?
- Are the students realising that perpendicular bisector drawn for any length of chords for any circle always passes through the center of the circle .
- Question Corner:
- What do you infer ?
- How can you reason that the perpendicular bisector for any length of chord always passes through the centre of the circle.
Activity No # 2.[Theorem 2.Congruent chords are equidistant from the center of a circle.]
- Estimated Time :40 minutes.
- Materials/ Resources needed:Laptop, geogebra,projector and a pointer.
- Prerequisites/Instructions, if any
- Basics of circles and its related terms should have been done.
- Multimedia resources: Laptop, geogebra file, projector and a pointer.
- Website interactives/ links/ / Geogebra Applets : This geogebra file has been created by Tharanath achar of Dakshina kannada.
- Process:
- Show geogebra file and ask the questions below.
- Developmental Questions:
- What is a chord ?
- Name the centre of the circle.
- How do you draw congruent chords in a circle ?
- How many chords do you see in the figure ? Name them.
- If both the chords are congruent, what can you say about the length of both the chords ?
- How can we measure the length of the chord ?
- What is the procedure to draw perpendicular bisector ?
- What does theorem 1 say ? Do you all remember ?
- What is the length of both chords here ?
- What can you conclude ?
- Repeat this for circles of different radii and for different lengths of congruent chords.
- Evaluation:
- Were the students able to comprehend the drawing of congruent chords in a circle ?
- Were the students able to comprehend why congruent chords are always equal for a given circle. Let any student explain the analogy.
- Are the students able to understand that this theorem can be very useful in solving problems related to circles and triangles ?
- Question Corner:
- What is a chord ?
- What are congruent chords ?
- Why do you think congruent chords are always equal for a circle of given radius ?
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Concept #2.Secant and Tangent
Learning objectives
- The secant is a line passing through a circle touching it at any two points on the circumference.
- A tangent is a line toucing the circle at only one point on the circumference.
Notes for teachers
Activity No # 1.Understanding Secant and Tangent using geogebra.
- Estimated Time: 15 minutes
- Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any:
- The students should have a prior knowledge about a circle and its basic parts and terms.
- They should know the clear distinction between radius, diameter, chord, secant and tangent.
- Multimedia resources : Laptop and projector
- Website interactives/ links/ / Geogebra Applets
This geogebra file has been made by ITfC-Edu-team
- Process:
- The teacher can show the geogebra file.
- Move the points on circumference and explain secant.
- When both endpoints of secant meet, it becomes a tangent.
Developmental Questions:
- Name the points on the circumference of the circle.
- At how many points is the line touching the circle ?
- What is the line called ?
- Evaluation
- What is the difference between the secant and a tangent?
- What is the difference between the chord and a secant ?
- Question Corner
- Can you draw a secant touching 3 points on the circle ?
- At how many points does a tangent touch a circle ?
- How many tangents can be drawn to a circle ?
- How many tangents can be drawn to a circle at any one given point ?
- How many parallel tangents can a circle have at the most ?
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Concept # Construction of tangents
Learning objectives
- The students should know that tangent is a straight line touching the circle at one and only point.
- They should understand that a tangent is perpendicular to the radius of the circle.
- The construction protocol of a tangent.
- Constructing a tangent to a point on the circle.
- Constructing tangents to a circle from external point at a given distance.
- A tangent that is common to two circles is called a common tangent.
- A common tangent with both centres on the same side of the tangent is called a direct common tangent.
- A common tangent with both centres on either side of the tangent is called a transverse common tangent.
Notes for teachers
Activity No # 1. Construction of Direct common tangent
- Estimated Time: 90 minutes
- Materials/ Resources needed:
- Laptop, geogebra file, projector and a pointer.
- Students' individual construction materials.
- Prerequisites/Instructions, if any
- The students should have prior knowledge of a circle , tangent and the limiting case of a secant as a tangent.
- They should understand that a tangent is always perpendicular to the radius of the circle.
- They should know construction of a tangent to a given point.
- If the same straight line is a tangent to two or more circles, then it is called a common tangent.
- If the centres of the circles lie on the same side of the common tangent, then the tangent is called a direct common tangent.
- Note: In general,
- The two circles are named as C1 and C2
- The distance between the centre of two circles is 'd'
- Radius of one circle is taken as 'R' and other as 'r'
- The length of tangent is 't'
- Multimedia resources:Laptop
- Website interactives/ links/ / Geogebra Applets
- Process:
The teacher can explain the step by step construction of Direct common tangent and with an example. [Note for teachers : Evaluate if it is possible to construct a direct common tangent without the third circle.] Developmental Questions:
- What is a tangent
- What is a common tangent ?
- What is a direct common tangent ?
- What is R and r ?
- What does the length OA represent here ?
- Why was a third circle constructed ?
- Let us try to construct direct common tangent without the third circle and see.
- What should be the radius of the third circle ?
- Why was OA bisected and semi circle constructed ?
- What were OB and OC extended ?
- What can you say about lines AB and AC ?
- Name the direct common tangents .
- At what points is the tangent touching the circles ?
- Identify the two right angled triangles formed from the figure ? What do you understand ?
- Evaluation:
- Is the student able to comprehend the sequence of steps in constructing the tangent.
- Is the student able to identify error areas while constructing ?
- Is the student observing that the angle between the tangent and radius at the point of intersection is 90º ?
- Is the student able to appreciate that the direct common tangents from the same external point are equal and subtend equal angles at the center.
- Question Corner:
- What do you think are the applications of tangent constructions ?
- What is the formula to find the length of direct common tangent ?
- Can a direct common tangent be drawn to two circles one inside the other ?
- Observe the point of intersection of extended tangents in relation with the centres of two circles. Infer.
- What are properties of direct common tangents ?
Activity No # 2. Construction of Transverse common tangent
- Estimated Time: 45 minutes
- Materials/ Resources needed:
- Laptop, geogebra file, projector and a pointer.
- Students' individual construction materials.
- Prerequisites/Instructions, if any
- The students should have prior knowledge of a circle , tangent and direct and transverse common tangents .
- They should understand that a tangent is always perpendicular to the radius of the circle.
- They should know construction of a tangent to a given point.
- If the same straight line is a tangent to two or more circles, then it is called a common tangent.
- If the centres of the circles lie on opposite side of the common tangent, then the tangent is called a transverse common tangent.
- Note: In general,
- The two circles are named as C1 and C2
- The distance between the centre of two circles is 'd'
- Radius of one circle is taken as 'R' and other as 'r'
- The length of tangent is 't'
- Multimedia resources: Laptop
- Website interactives/ links/ / Geogebra Applets
- Process:
- The teacher can explain the step by step construction of Transverse common tangent.
Developmental Questions
- What is a transverse common tangent ?
- What is the radius of the third circle ?
- What is the difference in finding the radius of the third circle in constructing Dct and that of Tct ?
- Why was a third circle constructed ?
- Let us try to construct transverse common tangent without the third circle and see.
- Name the transverse common tangents .
- At what points is the tangent touching the circles ?
- Evaluation:
- Is the student able to comprehend the sequence of steps in constructing the tangent.
- Is the student able to identify error areas while constructing ?
- Is the student observing that the angle between the tangent and radius at the point of intersection is 90º ?
- Is the student able to understand the difference in the construction protocol between direct common tangent and transverse common tangent ?
- Question Corner:# What do you think are the applications of tangent constructions ?
- What is the formula to find the length of transverse common tangent ?
- Can a direct common tangent be drawn to two circles one inside the other ?
- What are properties of transverse common tangents ?
- Evaluation:
- Were the students able to comprehend the steps in transverse common tangent construction ?
- Question Corner:
- Can you construct a transverse common tangent without the third circle ?
Concept # Cyclic quadrilateral
Learning objectives
- The students should learn that a quadrilateral ABCD is called cyclic if all four vertices of it lie on a circle.
- They should know that in a cyclic quadrilateral the sum of opposite interior angles is 180 degrees.
- If the sum of a pair of opposite angles of a quadrilateral is 180, the quadrilateral is cyclic.
- In a cyclic quadrilateral the exterior angle is equal to interior opposite angle
Notes for teachers
Activity#1Cyclic quadrilateral
- Estimated Time 10 minutes
- Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any
- The students should know a circle and its parts.
- They should know that a quadrilateral is a 4 sided closed figure.
- Multimedia resources : Laptop
- Website interactives/ links/ / Geogebra Applets
- Process:
- The teacher can recall the concept of a circle, quadrilateral, circumcircle.
- Can explain a cyclic quadrilateral and show the geogebra applet.
- Move points, the vertices of the quadrilateral and let the students observe the sum of opposite interior angles.
Developmental Questions:
- What two figures do you see in the figure ?
- Name the vertices of the quadrilateral.
- Where are all the 4 vertices situated ?
- Name the opposite interior angles of the quadrilateral.
- What do you observe about them.
- Evaluation:
- Compare the cyclic quadrilateral to circumcircle.
- Question Corner
- Name this special quadrilateral.
Activity No # 2.Properties of a Cyclic quadrilateral
- Estimated Time: 45 minutes
- Materials/ Resources needed
coloured paper, pair if scissors, sketch pen, carbon paper, geometry box
- Prerequisites/Instructions, if any
- The students should know a circle and a quadrilateral.
- They should know that in a cyclic quadrilateral the sum of opposite interior angles is 180 degrees.
- In a cyclic quadrilateral the exterior angle is equal to interior opposite angle
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
This activity has been taken from the website http://mykhmsmathclass.blogspot.in/2007/11/class-ix-activity-16.html
- Process:
Note: Refer the above geogebra file to understand the below mentioned labelling.
- Draw a circle of any radius on a coloured paper and cut it.
- Paste the circle cut out on a rectangular sheet of paper.
- By paper folding get chords AB, BC, CD and DA in order.
- Draw AB, BC, CD & DA. A cyclic quadrilateral ABCD is obtained.
- Make a replica of cyclic quadrilateral ABCD using carbon paper.
- Cut the replica into 4 parts such that each part contains one angle .
- Draw a straight line on a paper.
- Place angle BAD and angle BCD adjacent to each other on the straight line.Write the observation.
- Place angle ABC and angle ADC adjacent to each other on the straight line . Write the observation.
- Produce AB to form a ray AE such that exterior angle CBE is formed.
- Make a replica of angle ADC and place it on angle CBE . Write the observation.
Developmental Questions:
- How do you take radius ?
- What is the circumference ?
- What is a chord ?
- What is a quadrilateral ?
- Where are all four vertices of a quadrilateral located ?
- What part are we trying to cut and compare ?
- What can you infer ?
- Evaluation:
- Angle BAD and angle BCD, when placed adjacent to each other on a straight line, completely cover the straight angle.What does this mean ?
- Angle ABC and angle ADC, when placed adjacent to each other on a straight line, completely cover the straight angle.What can you conclude ?
- Compare angle ADC with angle CBE.
- Question Corner:
Name the two properties of cyclic quarilaterals.
Hints for difficult problems
Project Ideas
Math Fun
Usage
Create a new page and type {{subst:Math-Content}} to use this template