Difference between revisions of "A Kite and its properties"
Jump to navigation
Jump to search
Line 164: | Line 164: | ||
# They should know to construct a line segment of given length by constructing arcs. | # They should know to construct a line segment of given length by constructing arcs. | ||
*Multimedia resources: Laptop | *Multimedia resources: Laptop | ||
− | *Website interactives/ links/ / Geogebra Applets | + | *Website interactives/ links/ / Geogebra Applets: This geogebra file has been done by ITfC-Edu-Team |
<ggb_applet width="800" height="485" version="4.0" ggbBase64="UEsDBBQACAAIANdNlEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ+sM8HPn5ZLiYmBg4PX0cAkC0ieAuISDDUgeCKidwMDA2uTp4hhScevt3YPZwZESbR//cT46FclxtEy5qUt5mobTnZ6ORWcOMW7XW5IhHiuyPGlxZETaAbGYK3NP6MTs2PxgWceCoMAlSZJaskucxLeGuB1/5KK5dev8uolXVJ7ce3KvuE/luQ0/y9pgpWJ1+3t37qTcUksJsZv/XKEiRrqdQYFFoEHAgcGJgZGDkQWZ08LAJMCEJobgKDYwoCqYJeihp170Ves4s4IIZ0pKy2NGgaj8ykrXPpmfvcyMAquu7rzfnvp9W7ylAMPCKFuL6jArs78qweHrCgwYnJ7u3VMZ/OzYMZXZZ0/ZX1938tAPC3ZWhSV758+cmD5dT7R+vcOW47W1m74842VnV0j8vjJggvvevZ8qU5cyeXydL+zQ9Mazfn9NTETE/10sLr/zs7z+yUk9UmBUOZOWd2dCePn7sD+RlhNWvFdsqIi/YhXCvHKrEcuEBeesXzE+rGFRcBT9zhWqqxD1UzuWRSB/dXmvMldH2K4wJ4aPm7ZPnly6ftJxxotqbGxPDt+RYRdW+De33ObNy5W/a782rNHTFX3f/lmwoWLqvBR9fT0p5ov/5s+durxmA5fCvi81KS7/5s7IeFEtzbjobF+fWD7LhGl+iTb+H04ud2vM2KW0Sw0o4DM/6GXwahVVxkXPFR/fvTunn2GJ6eXJmbaW5awul8O3fJmqy+ThvVT/+avTuzy9uVwuZytX9bYwXBJ62eqwV2HGMhMHk72n1oXf5lTwnbuv1eW+16RtWxy+2LjMv/SyVIjJI3gZf5Ctpn/VvUTmjmXvf1wt/yfkMMuo9veufb13VYQVZtWVudg7OzFkrsqxNfBtvNHkxbBx2tnlZmYNNypWuTNkzvrMd9vBQp7R43LK76eh0Q4mk6fP5lQ4tnOHQ7pwx7RvTaqMRzTC8z/e2FTbzdPDF3JHrz/WbNd5k/xKxQaJueU7dmlsr7ydNjN+zvodc/eX7vtx/tvfnfpXa2fF7VFpUDn19PYZb4dd/uXi8/OmMs+s/v528baZ9kZH469fuya17/6S/N3qDUtOfWWf+qgh52yu7r9bpjemvtq32n7H1W9f91/rk7XJYExaKf8x8PqO5RFmWv9frGeyLOth13XQKfmUEmdlxe/x71Dro37P4sLTKUabEh+z3ayuyT+qW62U/fb9i18/F2wpl5mm+G/+fgbDt7++5pu/PTe36Y1liZfa/X0F3777+vt7V1fvvly//OHt76n/F9Zpflgl5uBzWX6JpcWPv6+nnl996fuNt/71m2pll+y6537YxosxafnV0Imvwov+VxXeftm1g8XIqjr+3Vn7p4FcAuU74wSnO0TwN/yZELOuQ1thDbvDngjBcJBIxUYlvYYNcgwf01xjGBJtGR6d7brBdqiK4chq0Y28LV8ZOsK1k4Q5XjMKvA87oiZwjVnh3toOXbABMYLRYAN2KpmBDShzzQEb8LZrBhOI/oqgweJ/4fQSVqAFKh2intxACzwEtCexAS2YkBCmwguy4OAajyCQBU1RE5eALGDZquQJsoAzz3USyAChO10mXCCNE7QvaYA0OK7zUAYr3K3UC1bwpusKM8iGF6Ir2UEKL2gLgekPCJoVSHNoCzFDKEbcvKBtSk9Bhm9QCtUO4gMJha714AQFyKqNSqogd6441gV2hshGJZCzOFzXeDzXt47kbwhYe+5LzJRzsezX9597aqHGsPBr3H69mtquUhEFhoUrPv20YWeElFocCuCSbM0X1n18N5iW+2t7AQtlBk9XP5d1TglNAFBLBwgTQJKCTwUAALsFAABQSwMEFAAIAAgA102UQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK4FAFBLBwjWN725GQAAABcAAABQSwMEFAAIAAgA102UQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzVWdty2zYQfU6+AsPnSCIA3pSRkqntdJoZJ+nUaafTN5CEKNQUyRLQxZn+VH+k39QFQIqUJTlWYqexxjYIYIHFnt09C8qT15tFjla8lqIspg4eug7iRVKmosimzlLNBpHz+tXzScbLjMc1Q7OyXjA1dTwtKdKpw3wSUBbjAfcxGXiUeIMopPFgxjwf42g8Y5HvILSR4mVRvmcLLiuW8KtkzhfsskyYMornSlUvR6P1ej1sVQ3LOhtlWTzcyNRBcMxCTp3m4SVst7NoTY04cV08+v3dpd1+IAqpWJFwB2kTluLV82eTtSjSco3WIlXzqRO5YMaci2wONgU0dNBIC1UASMUTJVZcwtJe19isFpVjxFih55/ZJ5RvzXFQKlYi5fXUcYcE7C9rwQvVzOJGy6hdP1kJvrYb6Sejw3OQKss8ZnoP9PffiLjERS90g21DoAkCO+XaMZfahtjGs41vZTy73LOinpXxrIxHHbQSUsQ5nzozlkvATBSzGvy17Ut1k3Nznmagsxe/AJuk+ATCVCNqQYZx132hfwP49fTEaNdI3NOq6uWJSluV4Ti6v0ryVYbSVic5ZCbxj5gZ3KHU2n0fO7Hf0wmqzI/53dNI7zLztkbb/5zCMBi/oOH4qMrA+yZGTkZtskya/EByrmWb+FF8IXXG0DHyxzrwMfIhO4IQ4txHeAxNSBDkA8I+8nzo4ggFug0RDWHCQxRFSMthikx6+BH88UKzWYB82EyPhpCVCIMiD/kUYZNVHoJcQiYzIUsJBQnfRz4s0uox0VvQAHkB9GiEPDijTsoQgyCFhdAH9QRRjKhejENEAhTo/bCnkz2I9NFhS4ICFwVYbwh5DTlt8xnkI0S1NUEDlyiqpWogalBPFmkLlyqr7TCIAyV1VGcpaocJn01yFvMcisOVdiVCK5brpDCaZmWhUOtFYseymlVzkcgrrhSskuhPtmKXTPHNjyAtW91GNikL+XNdqvMyXy4KiVBS5m57UHjGvWfSGVPmtDfh9Sf83kTQew4P6i1hBi0lB/1lLVtxlqZvtUTHDgDlhyK/Oas5u65KccyM92wlMhPdZ7ditMrZzdlSKR333cgFhz9ALLqwVrC+ldiaU8grxasW28nIFLQJXya5SAUrfoO00Pq1A1Bb3ww1tvXNC/z2iGWdXt1IyBW0+YPXJaiNgiHtfSB8buwMdYOh2//AlEyYznJKd9ZQYMebo1NGM19tI4FteAdqVmsK6XXeyrMy74YMzuesUsva3ExAU62N+qHIcm5i0VAIlP3kOi43VzYIqd3r400FPdeeIM6MfxGQEPGhMmdNG9vWyOijbaVcI+MaCbeNapFu5/GYGAnTxrY1UpAm9miNqbg1E7utGiENdbrOboKaJNO3iGUh1GXbUSK57kzVC94vFzHfhurunvih9pyMboXY5JrXBc+bWAdnLsultEzQS4OUJ2IBXTvRQMK0u36FA9jRlGc1bw+em1ufBczMuv1g3Rs2W/1Yl4u3xeojxMKtA0xG7SknMqlFpWMOxVBvrnkXVamQDMpV2l+n8wxMT3TiAjxKQwMssFTzsjYXOyAvaHXm5XwBlzqkTHiZCN3C/IO5H2o8URn/Cfy5rbJ2vnMYTB8MNROULK/mTN8hG6OBIXi9A4PZ78NsJrlCm6kzIODGGxP63fS7Mr2NHbjGGCgto4DrK85t1FhzsCUlk2w75AbOkFaTJqqWsD7Zdwd7edZI6AzcqQ529JYbIbYsiJ+B8+x/gtNa+OhYeg8MZVIuFqxIUWHuXlc80+NOdxtgro5QxLBG1sK2VO0Es7s1e+w5Rja7tdCzz7imZ/Ax37j39swe+h2GboNh0GA4wGS72ZaIFdxFruGdS5r3ANXUBfPwk0hTbi6itlD9Vdgl0rKjWFS5SITawpVrf74tFHAlN2SxT4HXnFe69nwoPtaskPrV2cr0qPWIz96J1GbAPZ12frfTdrPp/IuySd/vM9vEtvl6p+FHDfwPNZB2VhYsv4QIuAXluYWS7UEZ3w2lDqYtUvF3EvyDoAHSbYAMHiv2j6P984F4jffQvTglUC++KFAxsdc6055I/Y9C77ijJvqt+f1izwPJafyefFmIY58+eJB7Bj9dkLccD0PBkyX5w467OMbx6WmOS78bx+37jZAh3ntLejJ+ux/TvTmF6d58c6brLrnWNxg/Ng26w/Gtj1E8oMNx8K1p8c2eu/hp2cW/pvKbHAN/+fgh0ss3+PXSCwaebnIddtvZMbfNTnPb7Dt026ArZ+Ew8p6s58x3cYf9pi/b5NBl5N9/7vaf+ZZn6x2Q1uvhPMsGVTz0QzccB5QE4diLxkFzG/iyrwqwu1/18J3+7VgUN848TKNfkY+sTnpU2PJxnpfrX/gs5xsD+4NcOfazKzstu7Lv5HVoPGxrCx5i7BJCXeIFxMd+4L8ZYFttBiAV9atR9IQyb9T/mtL8M6D5r/mr/wBQSwcIcr2X3zIHAADSHwAAUEsBAhQAFAAIAAgA102UQxNAkoJPBQAAuwUAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADXTZRD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAACTBQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIANdNlENyvZffMgcAANIfAAAMAAAAAAAAAAAAAAAAAPAFAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAXA0AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | <ggb_applet width="800" height="485" version="4.0" ggbBase64="UEsDBBQACAAIANdNlEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ+sM8HPn5ZLiYmBg4PX0cAkC0ieAuISDDUgeCKidwMDA2uTp4hhScevt3YPZwZESbR//cT46FclxtEy5qUt5mobTnZ6ORWcOMW7XW5IhHiuyPGlxZETaAbGYK3NP6MTs2PxgWceCoMAlSZJaskucxLeGuB1/5KK5dev8uolXVJ7ce3KvuE/luQ0/y9pgpWJ1+3t37qTcUksJsZv/XKEiRrqdQYFFoEHAgcGJgZGDkQWZ08LAJMCEJobgKDYwoCqYJeihp170Ves4s4IIZ0pKy2NGgaj8ykrXPpmfvcyMAquu7rzfnvp9W7ylAMPCKFuL6jArs78qweHrCgwYnJ7u3VMZ/OzYMZXZZ0/ZX1938tAPC3ZWhSV758+cmD5dT7R+vcOW47W1m74842VnV0j8vjJggvvevZ8qU5cyeXydL+zQ9Mazfn9NTETE/10sLr/zs7z+yUk9UmBUOZOWd2dCePn7sD+RlhNWvFdsqIi/YhXCvHKrEcuEBeesXzE+rGFRcBT9zhWqqxD1UzuWRSB/dXmvMldH2K4wJ4aPm7ZPnly6ftJxxotqbGxPDt+RYRdW+De33ObNy5W/a782rNHTFX3f/lmwoWLqvBR9fT0p5ov/5s+durxmA5fCvi81KS7/5s7IeFEtzbjobF+fWD7LhGl+iTb+H04ud2vM2KW0Sw0o4DM/6GXwahVVxkXPFR/fvTunn2GJ6eXJmbaW5awul8O3fJmqy+ThvVT/+avTuzy9uVwuZytX9bYwXBJ62eqwV2HGMhMHk72n1oXf5lTwnbuv1eW+16RtWxy+2LjMv/SyVIjJI3gZf5Ctpn/VvUTmjmXvf1wt/yfkMMuo9veufb13VYQVZtWVudg7OzFkrsqxNfBtvNHkxbBx2tnlZmYNNypWuTNkzvrMd9vBQp7R43LK76eh0Q4mk6fP5lQ4tnOHQ7pwx7RvTaqMRzTC8z/e2FTbzdPDF3JHrz/WbNd5k/xKxQaJueU7dmlsr7ydNjN+zvodc/eX7vtx/tvfnfpXa2fF7VFpUDn19PYZb4dd/uXi8/OmMs+s/v528baZ9kZH469fuya17/6S/N3qDUtOfWWf+qgh52yu7r9bpjemvtq32n7H1W9f91/rk7XJYExaKf8x8PqO5RFmWv9frGeyLOth13XQKfmUEmdlxe/x71Dro37P4sLTKUabEh+z3ayuyT+qW62U/fb9i18/F2wpl5mm+G/+fgbDt7++5pu/PTe36Y1liZfa/X0F3777+vt7V1fvvly//OHt76n/F9Zpflgl5uBzWX6JpcWPv6+nnl996fuNt/71m2pll+y6537YxosxafnV0Imvwov+VxXeftm1g8XIqjr+3Vn7p4FcAuU74wSnO0TwN/yZELOuQ1thDbvDngjBcJBIxUYlvYYNcgwf01xjGBJtGR6d7brBdqiK4chq0Y28LV8ZOsK1k4Q5XjMKvA87oiZwjVnh3toOXbABMYLRYAN2KpmBDShzzQEb8LZrBhOI/oqgweJ/4fQSVqAFKh2intxACzwEtCexAS2YkBCmwguy4OAajyCQBU1RE5eALGDZquQJsoAzz3USyAChO10mXCCNE7QvaYA0OK7zUAYr3K3UC1bwpusKM8iGF6Ir2UEKL2gLgekPCJoVSHNoCzFDKEbcvKBtSk9Bhm9QCtUO4gMJha714AQFyKqNSqogd6441gV2hshGJZCzOFzXeDzXt47kbwhYe+5LzJRzsezX9597aqHGsPBr3H69mtquUhEFhoUrPv20YWeElFocCuCSbM0X1n18N5iW+2t7AQtlBk9XP5d1TglNAFBLBwgTQJKCTwUAALsFAABQSwMEFAAIAAgA102UQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK4FAFBLBwjWN725GQAAABcAAABQSwMEFAAIAAgA102UQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzVWdty2zYQfU6+AsPnSCIA3pSRkqntdJoZJ+nUaafTN5CEKNQUyRLQxZn+VH+k39QFQIqUJTlWYqexxjYIYIHFnt09C8qT15tFjla8lqIspg4eug7iRVKmosimzlLNBpHz+tXzScbLjMc1Q7OyXjA1dTwtKdKpw3wSUBbjAfcxGXiUeIMopPFgxjwf42g8Y5HvILSR4mVRvmcLLiuW8KtkzhfsskyYMornSlUvR6P1ej1sVQ3LOhtlWTzcyNRBcMxCTp3m4SVst7NoTY04cV08+v3dpd1+IAqpWJFwB2kTluLV82eTtSjSco3WIlXzqRO5YMaci2wONgU0dNBIC1UASMUTJVZcwtJe19isFpVjxFih55/ZJ5RvzXFQKlYi5fXUcYcE7C9rwQvVzOJGy6hdP1kJvrYb6Sejw3OQKss8ZnoP9PffiLjERS90g21DoAkCO+XaMZfahtjGs41vZTy73LOinpXxrIxHHbQSUsQ5nzozlkvATBSzGvy17Ut1k3Nznmagsxe/AJuk+ATCVCNqQYZx132hfwP49fTEaNdI3NOq6uWJSluV4Ti6v0ryVYbSVic5ZCbxj5gZ3KHU2n0fO7Hf0wmqzI/53dNI7zLztkbb/5zCMBi/oOH4qMrA+yZGTkZtskya/EByrmWb+FF8IXXG0DHyxzrwMfIhO4IQ4txHeAxNSBDkA8I+8nzo4ggFug0RDWHCQxRFSMthikx6+BH88UKzWYB82EyPhpCVCIMiD/kUYZNVHoJcQiYzIUsJBQnfRz4s0uox0VvQAHkB9GiEPDijTsoQgyCFhdAH9QRRjKhejENEAhTo/bCnkz2I9NFhS4ICFwVYbwh5DTlt8xnkI0S1NUEDlyiqpWogalBPFmkLlyqr7TCIAyV1VGcpaocJn01yFvMcisOVdiVCK5brpDCaZmWhUOtFYseymlVzkcgrrhSskuhPtmKXTPHNjyAtW91GNikL+XNdqvMyXy4KiVBS5m57UHjGvWfSGVPmtDfh9Sf83kTQew4P6i1hBi0lB/1lLVtxlqZvtUTHDgDlhyK/Oas5u65KccyM92wlMhPdZ7ditMrZzdlSKR333cgFhz9ALLqwVrC+ldiaU8grxasW28nIFLQJXya5SAUrfoO00Pq1A1Bb3ww1tvXNC/z2iGWdXt1IyBW0+YPXJaiNgiHtfSB8buwMdYOh2//AlEyYznJKd9ZQYMebo1NGM19tI4FteAdqVmsK6XXeyrMy74YMzuesUsva3ExAU62N+qHIcm5i0VAIlP3kOi43VzYIqd3r400FPdeeIM6MfxGQEPGhMmdNG9vWyOijbaVcI+MaCbeNapFu5/GYGAnTxrY1UpAm9miNqbg1E7utGiENdbrOboKaJNO3iGUh1GXbUSK57kzVC94vFzHfhurunvih9pyMboXY5JrXBc+bWAdnLsultEzQS4OUJ2IBXTvRQMK0u36FA9jRlGc1bw+em1ufBczMuv1g3Rs2W/1Yl4u3xeojxMKtA0xG7SknMqlFpWMOxVBvrnkXVamQDMpV2l+n8wxMT3TiAjxKQwMssFTzsjYXOyAvaHXm5XwBlzqkTHiZCN3C/IO5H2o8URn/Cfy5rbJ2vnMYTB8MNROULK/mTN8hG6OBIXi9A4PZ78NsJrlCm6kzIODGGxP63fS7Mr2NHbjGGCgto4DrK85t1FhzsCUlk2w75AbOkFaTJqqWsD7Zdwd7edZI6AzcqQ529JYbIbYsiJ+B8+x/gtNa+OhYeg8MZVIuFqxIUWHuXlc80+NOdxtgro5QxLBG1sK2VO0Es7s1e+w5Rja7tdCzz7imZ/Ax37j39swe+h2GboNh0GA4wGS72ZaIFdxFruGdS5r3ANXUBfPwk0hTbi6itlD9Vdgl0rKjWFS5SITawpVrf74tFHAlN2SxT4HXnFe69nwoPtaskPrV2cr0qPWIz96J1GbAPZ12frfTdrPp/IuySd/vM9vEtvl6p+FHDfwPNZB2VhYsv4QIuAXluYWS7UEZ3w2lDqYtUvF3EvyDoAHSbYAMHiv2j6P984F4jffQvTglUC++KFAxsdc6055I/Y9C77ijJvqt+f1izwPJafyefFmIY58+eJB7Bj9dkLccD0PBkyX5w467OMbx6WmOS78bx+37jZAh3ntLejJ+ux/TvTmF6d58c6brLrnWNxg/Ng26w/Gtj1E8oMNx8K1p8c2eu/hp2cW/pvKbHAN/+fgh0ss3+PXSCwaebnIddtvZMbfNTnPb7Dt026ArZ+Ew8p6s58x3cYf9pi/b5NBl5N9/7vaf+ZZn6x2Q1uvhPMsGVTz0QzccB5QE4diLxkFzG/iyrwqwu1/18J3+7VgUN848TKNfkY+sTnpU2PJxnpfrX/gs5xsD+4NcOfazKzstu7Lv5HVoPGxrCx5i7BJCXeIFxMd+4L8ZYFttBiAV9atR9IQyb9T/mtL8M6D5r/mr/wBQSwcIcr2X3zIHAADSHwAAUEsBAhQAFAAIAAgA102UQxNAkoJPBQAAuwUAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADXTZRD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAACTBQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIANdNlENyvZffMgcAANIfAAAMAAAAAAAAAAAAAAAAAPAFAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAXA0AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | ||
*Process: | *Process: |
Revision as of 15:59, 2 January 2014
Philosophy of Mathematics |
While creating a resource page, please click here for a resource creation checklist.
Concept Map
Error: Mind Map file kite.mm
not found
Textbook
To add textbook links, please follow these instructions to: (Click to create the subpage)
Additional Information
Useful websites
- http://www.transum.org/software/Fun_Maths/kite. This website has good description and activities about kites.
Reference Books
Teaching Outlines
Concept # 1. A Kite and its properties
Learning objectives
- A kite is a quadrilateral with two distinct pairs of adjacent sides that are congruent.
- The two pairs of congruent sides meet at two different points.
- A kite can also be described as a quadrilateral with an axis of symmetry along one of its diagonals.
- Kites have a couple of properties that will help us identify them from other quadrilaterals.
- The diagonals of a kite meet at a right angle.
- Kites have exactly one pair of opposite angles that are congruent.
- Diagnols intersect at right angles.
<K = <M. This is the only pair of congruent angles because <J and <L have different measures.
Notes for teachers
Source : http://www.ask.com/question/what-is-a-kite-in-geometry
Summary :
- A kite is sometimes also known as a deltoid.
- A kite, may be either convex or concave, but the word "kite" is often restricted to the convex variety. A concave kite is sometimes called a "dart" or "arrowhead".
Activity No # 1. Paper kite
- Estimated Time: 30 minutes.
- Materials/ Resources needed :
- A4 sheet of paper.
- Prerequisites/Instructions, if any
- Neat paper folding skills.
- Ability to follow instructions.
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
This activity has been taken from the website : http://www.transum.org/software/Fun_Maths/kite/
- Process:
- Fold an A4 sheet of paper as shown in the figures to make a kite.
- Developmental Questions:
- Which is the figure formed ?
- What is special about this quadrilateral ?
- How many sides does a kite have ?
- Are all sides equal ?
- Mark the diagnols ? What do you notice about them ?
- Evaluation:
- Were the students able dto recognise the properties of a kite.
- Question Corner
- Compare kite with other quadrilaterals and make a list of similarities and differences between them.
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Concept #2. Measurements in a kite
Learning objectives
- A kite has two pairs of congruent sides.
- Its diagnols intersect at right angles.
- The sum of its four sides would be its perimetre.
- Its area is given by the formula
Notes for teachers
Activity No # 1. Deriving formula for area of a kite
- Estimated Time : 30 minutes.
- Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any
- Basics of a triangle and kite should have been done.
- Multimedia resources: Laptop
- Website interactives/ links/ / Geogebra Applets
- Process:
- The teacher can project the geogebra file on kite.
- Show them that a kite is made of two isosceles traingles.
- Sum of areas of these two triangles would be the area of the kite.
- Developmental Questions
- What is a kite /
- What are the properties of a kite.
- What other figures can you see in a kite ?
- What types of triangles are these ?
- Identify the two isosceles triangles ?
- What is the formula to find the area of a triangle ?
- Evaluation:
- Choosing which two traingles out of the 8 visible types would be easy to deduce the area of kite ?
- Question Corner:
- Recall the two formulae that you know to find the area of a triangle.
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Concept # 3. Construction of a kite
Learning objectives
- Learn steps for constructing a kite with given measures.
Notes for teachers
Activity No # 1. Construction of a kite.
- Estimated Time : 20 minutes.
- Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any:
- Students should have prior knowledge about a kite and its properties.
- They should know a perpendicular line and its construction.
- They should know to construct a line segment of given length by constructing arcs.
- Multimedia resources: Laptop
- Website interactives/ links/ / Geogebra Applets: This geogebra file has been done by ITfC-Edu-Team
- Process:
- The teacher can initially have a recaptualation of the concept of a kite and its properties.
- Give them measures say, "Construct a kite which has its congruent sides as 4 cm and 6 cm a pair with one of its diagnols measuring 5cm.
- Can project the geogebra file and explain the steps of construction for the given measures.
- Draw a rough small kite labelling with the given measures.
- Begin with drawing a line segment, the diagnol of a given measure, here 5 cm. label it as AB.
- Draw a perpendicular bisector to this line segment AB.
- With A as centre construct an arc with 4cm as radius. Mark the intersecting point of arc with the perpendicular bisector as D. Join AD.
- With B as centre construct another arc with the same radius 4cm. You get the same point D as point of intersection .
- Join AD and BD which would measure 4cm each and would become one pair of congruent sides of the kite.
- Similarly draw arcs on the other side taking radius as 6cm to get other pair of congruent sides.
- ADBE would be the specified kite.
- Developmental Questions:
- What are the properties of a kite ?
- What measures are given for constructing a kite ?
- By which given measure can we begin the kite construction ?
- What is the angle between the two diagnols in a kite ?
- For what purpose are we drawing the perpendicular bisector ?
- What is the purpose of drawing an arc ?
- What should be measure of the radius of the arc ?
- Why should AD and BD be same ?
- Evaluation:
- Check if the constructed kite satisfies all of its properties.
- Question Corner:
- Can you think of any other method of kite construction for the given measures ?
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Hints for difficult problems
Project Ideas
Math Fun
Usage
Create a new page and type {{subst:Math-Content}} to use this template