Difference between revisions of "The longest chord passes through the centre of the circle"
KOER admin (talk | contribs) m (Text replace - "www.karnatakaeducation.org.in" to "karnatakaeducation.org.in") |
|||
Line 93: | Line 93: | ||
# Basics of circles and its related terms should have been done. | # Basics of circles and its related terms should have been done. | ||
*Multimedia resources: Laptop, geogebra file, projector and a pointer. | *Multimedia resources: Laptop, geogebra file, projector and a pointer. | ||
− | *Website interactives/ links/ / Geogebra Applets : This geogebra file has been created by Tharanath | + | *Website interactives/ links/ / Geogebra Applets : This geogebra file has been created by Tharanath Achar of Dakshina kannada. |
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAMSKc0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1VXBzQb3Ns3UhIzomaNlKoaFbOKmiGECmqLlZq1S6O2NkapTY1ataUoUrP2rlEpqmbNVoVS1VKbf97v/73fOd+95977nOeO83t+597neW6sIUqbkY6bjoKCghGpo3mPPA6SmweQhtzDPp85U1AwNSM11U0C5rZtgj3YTLlh4tHTNC+0Tx1AFyzsusmRE1HsNoY6mWrFEA+PHjjuqrjOU42Cq8n9Fkgby2/7tOr3JdWeRN644q5xl7obgYyKarz8UIs0N/dsckLj6UTGb89wmfxFv3IXvoPFd347X07OUofaiO7E3KWQJQVyLQFHdEtq6ToSyu/d/aqdrX3jSImx1VXGqFN2Z4QjoQWy7pUuONkSiw3duwqkgzbq0FvvChodhb/5GjVxW+MmugooDc3DN9w8/pZ4CaNxM0fqbjP26y0juI5Yv/TqpkDR1Zea7hdczRnHCJ+nBKd2Vp7zJBnqg4EPxhyoRc0QnmKIH91xqjrTq1a5ww43WLmgw6xqzLFBnYRq/rQ47OgoYb9EgGDNXic96GS0MHJiqJp/GK1ow2LOhur4XrJIUedT8bhG9NmpiulKf1nFDuFPLOLD9exOYkc7Pt+8WvWow3K2apOYAY2QiSHaTfFrQMOb+MqqdJcuTjQK1ARO+SeouUYY4cTiOr0lu062mIvhpX0HD4H4CmtqF9JRjDvwoveCan3gkSPDZmxwq0RyWW7naVuz+acZeTK0C78I/GZGfhmPQfQ/AGOUfxsvwFsG34v/F56zufd9b4byIP+tkeD6yJdiuJGr0+WzSpfX5KbkV+/bYcWaOz7MxW0Grh2n7eSkj1b89AC9dSs/B9u3hITfSzweEexxqQaCvxV/DQWldpicRaXWxDkIQxx/bi77KfA6RNi8VS6gzUnn/+i+L8f2saZC2CFswKVBLGJzMTp8I8EMBd+Pr/D5LdcaVJcG/V0Xd2q6JtlBK2OKNPUWxQ5X/UuPKVpGT2wV1cKW/+gHuuqRI800+oM2gZPhOlDw9RUdXTrWyG7J1c/mdtvw5LKy69ttzc1ZZm+stAxeqTjhJDmpXr48dnU2M2PHYrEEACYg7vFSQpJvfUODEQZTKAKyQqMt++8H0MJk02VciGOJvEo8np/KDcpTBLUnchX8jr/AFb/QYgJwwgYxXgsCQTvKRRP3ilofv0NlQSUwGxOlHTWnr8KvKz7EkT4ZxKqcJpN+1LSnXI8HCA3mKwdDKvwOzw5a9g7/ootgnZNJOTntIxff9a8/8Qb9rv8hoty2l2wVh3694cP6eQdfDnK4PpadOeX6fiZM6feVBaXgJD7bUNLIsLcrVDFQGqpOzBMM2hvMaWttjfX121fuFQZseP0oaxXemYBd6nQFUCiopSbOMW2ff3nnt5Hj3bHBuGS0oM4soVLQWr7jtsLC/LBl/mx36iqDmBh26Ol7N7ffEjtvpYteG8d2nCQiwQeApwD8goleQiv3zVLKyUr9nFuWZZ/N5hCMWozclnxLIVtxmb8OH+4d8zm7mWAKUckHSy6QvpvqY0/GkwtF1Ut9cWTaPh39Wd8uNUq6/M5vmemzZ2UxMZpYEkwgjWS9Nkq2hnVWsQKC36HlP0smGeUaNLxccsXaYQ06/Hf4jNZ3akij8r0GMhggbgBtZ2HQ+fNIThzrena8n9ir8iCwCHn529qLyFgKWWghYjSn/MDz20Dim4InpMNdPtB561jYGfashUTr5ELbY9vBk0vTcz+Le3BovGZ6EjB5KyVaSp+FaSO23uUDyShTiWq9IkCA2WPVQsKgBwyw+5P92E3guKLXYk3z+aBr5zhK7od7fRhKmsLOUUZOVDACX51I+vNx/wTpfBJnhyuAJ3REX8kjGZbEiOuroZKFxjHliKdQWAee38HOnCObW7BSKwVvtVuk258LveliJSv3/makoBYF3pJzV8NFZdxUvBBB6SxqEBa23GJo6YgFPRkGYHW/wC0K2aMq3YYw8dMsU3dHIU4vdrTSNPPBgAQWXucmlsTLLBRIiGUqUG6YISGhGwJYj+cEA24xxJtoUSdDV1D5EdeetqTjQ1OTVBuZ/TZfoMBbXFJQIDc/N0ZWO0kgRcDqlWOovkaiF/bR7QBV5aXohdbZbD4ZnFpCbCOjAESESm3Ut867zx53m0p8VZIi6KlOCZBCCSnNzcoldS0ms2KkP45jY4bgwPLaqrZZhjMf/O386GSutjqzi+eNTlmPw4tRmF8Tp4owsOTZdHPQviivgu+1U8qovz/xCY1SWdD2rlqJKe8+KlERKnm539ENU18HEmS24w6dKu70lgOeVghMeR/qP+8qiN2/xoCYBELc5UoLCp7Mzc+HosMQVKyAaHXxoOdCXottSFomHpLyKzl3M51dTCtGskgDHG+NifWoSsnPR12R92IQk8jYOcYmKAkSQb7ry7yjy+yb5vP6BWkd2B9m2dJOuha7UkL8iVDI6lr0coDibJ5JsAa4ML+LQJjGV1dPfXHqOVkq1cvs+RnXxRJpLkPxZWC8WLvBqAXEel3zLtjUCh7NUBh68ldBV69EmL+yx35kcLDAJT+wbPrAWwMCEB3d2q1rUHmSOUHlPtnkOY+gZeabDBkeDmU5HH8eSQrrJY0XNyRFEFh6ZmVrg/bd3qTU2LQ2Hth6eVW/ZamcqMDjx3QcpsZGgS4I8NN0MXO3dcJhbRACHNKdWQIrtGn1NyIXTUGk/+BQO7ym/Yzb6bsjTbumIFTfysoqNRs6XWNXfn524r4eQcs8df0x7lqzubExnJqWabJa4aqOk5NQAqeUgGOsIyJZPYJm/PToz8asy6tSv3XiuN9H5UweUTNPzzdlq7mR5rIclEipVYPwwkuVHIZILVDCvGLic7Hn6XZ1Q2nCxnB4BGLK8SrQQ8216+v7JGa3rPtJMFkdKqRA9UskmaSY1sc7tmjQfVkit6kE4ZlVg8+KhlVbAAFhspWGg1IdSmPKthvcp62RqjsLd7KlBXM2rTbrPYk/FdQBD/We/zKE9bLiYsKojmlXKpSkbQ/n6du/HW4em9ev7bHP317RYbkO7JXBAZcPbAxTmPhVeKwohVjOTrPW5XytD3epbp44cilv+nwfZC9G6zOdBQ34SnAJdoNwgRY2+lPGxPHdiLkoOZ5CqJxY+hSPHfyo/PeD8KGwzc1bH4XrbgQ0g1PpIR9Akb1bkYHdHvSx/Liu3b1id2LHJgmgUXT76C09hyrjG0b1Pp1ApdLHwT/SmnDEBNWsyOxL2BEmKG18VFhUTmMy/BnT+K+V3gcTJcgyXl+x1953bn1iSO1houp6zjd87LXr9P6LSGU/yl/PrU5luCi+iEE7cJZSjP5sq69bHz2INyomDaeLDSM8saM6txojOLkt8M0Pv0YjcKmpEOMNzNHn8G93hXwFtE479qb00cDoQFN4faGuYGOETpfHok+ofrco0wlo68bbPR93L44S4KSijP2Q5x+Csx1rH/l48gV5MFOLyaZz/Dw2ywShGhvqj5/xoaS/g8hjF7dQE0blAkfa8WwFxJf6zyjfbdNwcX5BJnH6GPKKTExM1JcSvC78OQHiYCb3YkMvGtY+9lrBmaN2bIsZzxkEb+mFwpkgU06EDlids/95gzgjqHznAOcKJA26xtXqpZtiEXAfc01EnaLqtU+wEx+iYPndNYjwQ6qsc4ESoJlGTyZHxAqXuuzOhtGxaC8dcwO97V2BFF0oWnZkyB5nQWW35vqGCKd+3ybBMB+tBILAi4QChazCX7+OXbfTYtTuvMZ9JD0eqdXZ1PJaEy4d+1fBmukhSaZoJVwo+wVrDOyWKivgiZNydiKPGtOesFqGoU1SdWjoTX29vAHGmX0zJ9fm4nWwTQtfSOeqdp7sQEBFtOomW5GY6syzP4LqFI9mij3turJZ8TalpaWJPb03LGwNUTny3t9peD3xwHuzny6uSM1bhkSmgVJWF5Lola/G/BXkPcVMUTflk7rgRRb6Ishv/Ot9CXvJV3ZTYHsIlTDM8uIyQ1G7cC4y+aw8Jrpd8wXhjhSIqnn3xKW8y1Cyatdnzt6kFaoAOZp2Z3gF0cy4Znt2h7W32bCVmK9cmefArWQdNzDhzREBug/Cy2VJ/ShdKCRnPxPnuQj0d88VeWKMNw5of8ihGds4fCmd7p5Dfxvb5Nxw/jyXytUYkvjXVzycdP6t1Pyj9aG794vrQ/zHi7Qma+w6m8XMNSB9h+k1sKqkgCC6813KoW/9/P5fE8D+1eoLrrnUNAxAPcizOpIo3yC7+SOEMB99hr08peXYzHbYALVdS1Ys/b0njlnm6VUQuD+jKLeBm5vbq/2VmbExP1/fY/Ehm0YPy53N3ra2O9uLfbGsJ30cOW6gHXJ4adBCW9y8kWmwqBk2cKdq2D7e/a5xupkGS58O+13V95OBOtR1jKFcjw7TzqYfIKYLcJePjo7mHlpavmyEwWDlL2Vc3BjBOQ+REhndix2haCVEb01FhXQ6wKLa3bonrr5W+05KGXBpdnZWWNWUz9lJciD9k6alyQMhcXXOQlZNMlJ5x5V0wIV+97uZyoweCcu3JU1JBEwvjadIlVvou88Q23RFoXWRJeM1jBmNg7VDdkV9FpQB8XZP/Z9kNKIbgOmjXq7Wbt6S+gvaOpbhXMPp8R1lc+qyH4zPuuAkQ0CnY0BeG4/bZix9w+mkKHqO+h9vmSnEUXAX6z6bjhAF1sgVg60v7+qadr/evgzCpWeQ/cjnnriVKXIYcbW9En68IbzNI4FcacoE9fwSkqzPyct7Eyj2Is9AKQW6ml2bRlE7Rp+uxyBSg25KJK+AKSoq4gmEFDEcqMde8v8warI5/2VujJBUT+UjC5Xjov8j05j9q/xfgbPvL/N/N0hmQeMdqU9/OOsU26HOtrL7496+siX7YCWTaZZ9vU9Nm4pYanOF2ltx690wMJmQndo/aWrFAwRjkD1bEqhHh3OZ2Wj2Sgy7N/M5+kUegPB8nRbnsUTcyV8B8+ZpJowu9sexqYuKxWbnHIXKQK5gWACq3sfL1EXKwb9k9Ks1aVhLmDsOqVTxK3SO/1phT07s74JpIv6fYWScDDTkz8A/k/+qegYuKFHn/bJsIum15K8sBVILpVmtYY/7D1BLBwjkG4C46A4AAPEOAABQSwMEFAAIAAgAxIpzQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAAIAMSKc0MAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vv5btvIHf579ykGKrD/dEXPfWTtXThOnBjIHqjTomhRFBQ1khlTpEJSthzsA/R5ij5HH6JP0t/MkDqsw5a8TuxdrMNrOMf3/Y5vhqPDH6ajDF3ZskqL/KhDItxBNk+KfpoPjzqTetDVnR++//pwaIuh7ZUxGhTlKK6POtyVTPtHnWTAEiWo7Io+1l3OYtvVwpqu1ETiWJmB1bSD0LRKX+TFT/HIVuM4sefJhR3F74okrn3DF3U9fnFwcH19HbVNRUU5PBgOe9G06ncQdDOvjjrNyQuobumla+aLU4zJwV9/fBeq76Z5Vcd5YjvIDWGSfv/1V4fXad4vrtF12q8vYMBUwzgubDq8gEHBODrowJUaAyJjm9Tpla3g3YVLP+h6NO74YnHunn8VzlA2G08H9dOrtG/Low6OoBGDJRUdVJSpzeumDGnaOmhrObxK7XWozp35lngH1UWR9WJXE/r1V0QxxehbdyDhQOEgZXiEwz3MwoGGAw8HEcrw8DoPRXkow0MZzjroKq3SXmaPOoM4qwC6NB+UQNvsuqpvMuv709yYj5p8C2Oq0k9QmGHANWAN9zH+1v1J+OPuwcHyIMlCq3U52bHRtklCMLt/m/QhbbJZm1KsNknFhmHKLeiGPtxrnGIBWmjK/+//VlpkdIcWw/XDGpT8swzx8KB1lcPGO1B14co2TNZ2VDl/YQYJ48yeIAG+IRVYuUDEwEFRBN6AiEBcwCXRSLqjQkzBA44Y0siVIwx55xAa/uHKVyaRgMrcXQU+iQg0xJFgiHif4gg8CXm/BB+lDEoIgQS85Jon1FXBJOISrphGHProXFIRKMjgRbiG5iliBDH3MlGISiRdfYQ7V5fadR2qpEhiJImrELwaPDp4M5TXiLnRyAauNB9P6iWIklG/Pa2L8YwLKA3xaB7tQnxaCoZfHWZxz2aQIM4dkwhdxZnzCN/QoMhr1JJIw71hGY8v0qQ6t3UNb1XoQ3wVv4trOz2F0lXbti+bFHn1S1nUJ0U2GeUVQkmR4Vmfi4wsnNNZr+GCLTzgiw/EwgO5cK7WtlvAEzSpLLRflFVbPO73z1yJeWgAJH/Os5uXpY0vx0W6PIzDA59rDu0kydJ+Gud/AWN1rThc0Cz1+HDVph5hdNuTouyf31Rgwmj6N1sWgK1REaeUSY6JUVpJoPUmPKKMREpgeMIVNwz+g84lsfM+SiIttILco4jWCruXNjziKrRtr2YcxVM7H+6wdL69cHFWvSyy+S2PwEk8riel1w3QidIN6zgfZtZbifdtSMrJZa+YngfzYKGu9zdjuMKhB72hRx5BdKACQuuwOfbC0ZdxXZuVwr4M9iVwa29pf/acGOpL+GMvHH0pMODQtWaopB0mwW0zaeVjGu40ntPGK2f+LsVP8rR+117UaXI5H6p74afJqGfnRuQKvEqDIAlKa7kZ8ojNHB7cssXDS1vmNmtMHyifFJMqePKCV/Rtko7gMjxogIsdqX+GPoW7fTssbVM+zrxyC7D6p3jRqFdu+6pOy2J0ll+9B4u51YHDg7aXh1VSpmNnmagH6eLSzm2vn1YxZJv+4nvOVwGNxGUVAKR2aIEXT+qLovTaDIIPHJ2LZnYEigzV3gjzyciWaTLDPvYiDzo1afotIx567oBHRe8DRMVZ4gzv+AtfBh5vMFMUZ+OL2EvDxhjjG1suQeNr+7HoNw035arMaUo0SkOyHMXTo46B6noVxMsaVDVQkc9VdehYG28wdpod3pDKq/cbODPuZJBO7SwbAETpJzCJeGksc2+pIZRfgl6tvISqG+f1J2/Tft/ms87GORiPpwCC2TiMFkEiscHYZ6+OYfQ+bCwQ3/CywpCPNDOsjzsP5cIHlxkb+J5s4PUDXDM8sm54jT9UjouujIxiWEpiGNFEUeOJgb4wzjgWTFLJBDZEQ0c/LcQNj4SLpEv5N9y95WiLcCbFaBTnfZR7RXaSlklmO3OJEGOHKoqJM/6A3KRuHyShsqaKFW7A6xZ8J7mDmwU0FsmBOcgiPe5qX3rW2izfbrOQjW1+Bb2F7A+TVtxMiW9waB99au9MAaGuv3VDmlufyAI9YBhlOkXHbfnjttQxyBYVSck1IxxLQ7nSGLg9Zk0Tx9zFmRWjOBahwVWzCB3/mIexViE5OMGWDtJkO/+/eHdapj/YxN+PQW2Kf6zYwMvtNrDsny/38k9CQ+L3x9/aR9cGoTu9FOK+4MRIRhUIMGGCk8pIUayME3JcQ3iVWz3UrPdQsZ2hczt099e76MsVenrb6ama2loCeqsELauP3bLZfbmha6Kg1JILLKSiBJSs8gATBrpXUUkFJURiRrVHuMtVhLUkkijjvEOa/ZPUbb9JR+MsTdJ6hmzmzOIsr0FiWS8oVmXSpbVjp2J/zt+XcV65JbJQpkVvM73vQQKt0vsy0Jus0NsPD+x2lh0OMwb7d1G8IRA/lGN8m2McUa00RCwGjBGDBZWe5C6wLCQDR6IwfeFSNn6kTUSNFIRoDK8wLB6H5M1aYwlG+2U8ZQVFgiMJbsKlYUZwzgwJIOqIY3AVrYjUFNJDUAtdQiMqlYJrzoiUmn0GFJctfOY6t2w8CabsLJrOmlgw9ZNdEs3JXolGBqnhDr1weDg/XRURrLWmxiVpjbFqUgWH6GUMlZISQzB5BDF3B9J2E9KvdkH61dNBmkSGa8EoA7i5VM7knSewyFCjhNAMIgljmj8C1Lvrpte7gPz696KbuoRDXNKGE6UE1hiyeRPzaQTOoAUFOSsFhYC2lSWxniX+AO30eoWiwW7aafBUEivkTwj9BOBUxhAhJA0YK4g5QjtPINpoaYJ4MoAx+A3DFBIrBCj1O9NOrzdpp2F4cLGDdho+FYqBS6VBI2E3C1GYuAjq9DGBZGOIBClgsFHSBC9iNCJcMSUgC3GQzuyLKqeLJwOiE5pUYEjNkJkVgRl0QDHCAsSo+4hNAFulWaOdNMCrIGZhxWHa98SE03BTOj/dJdOcPp10zkDuG6WUJsJoqlggpysiiqUQEKxA2UIg+/zC6WIT0m92QfrN00Ea/ICBOFWccpiPYcrbNUcQU0RJmFqARqX4UbD2n4TWh+zjgPPqosZ///1Psh1q/yFhBqUv7+pYWLmnEdgQd/qbCEYop83ntv0WjwnedSn/58GgsrWDX4egI7etjPRtUpRBfoUByv2jT1wmc9JoK++yrLj+kx1kduoZuW/OXS+pTgKBr1aYS3eTVOmD1/PvnyjmhLSalKptlCxNwd3yK9gTplSDD4WJh4jcEhXMzQkIWmdh3ns4jriCCaGUwsBEXG4j8q616S8rt9ZT/yZQf7pC/YfdqP/wRajvshD6uvx+1ItIMffdnBtuMEiv8DYYBEz2tZEwxzdUCRIWsBSJwDxcwIFJP+aCPFvqNyXIXiA/XSH/7S6Z8e3TyYwgsiNmOAOdYUCE4LBCCUkxYoxgRRRnjIFKDIlRsUhyKYghBIheyoePpEgGAfAPK4Cf7QL42dMBnHAuIoMlTFwJx1ySRvVxLCLNOcxTGZZYC7oWcaJ+Q8y3rha8XUH8crf4dvkZ49u2Dy0Qk4gC5GCaowmHdBUWC2gEYDOhBZcw22G8CWFdHQmwegXXQkgjFN8Sw572asFWes9W6M12ozd7GvTSiCkiqMYGc7c4SpqlIOIFP8yrGChgrkS7mUBGwnmYgjvwDjGP9HXgUei103EJHXMauQXZTmvSQfDgqPPNx0lRf/e+8FukYBhxjV5/nMQZSi48WMUAxSjxS7YoLi2yHydp32+bqtGgLEbwikUJtFTaUJVvftkIXHud5ca3W8GmPQ/NTrdgCKAT9o6sfvtlZct0MN+q2OxT7rTEtFuJ6ris/To2CoEBcpxQhkFIkBhz3ny4MBFhGjqIBVUGdKxanBPeTQddouPEYY9OXqEjFG6gP6IU/sJFgzO6B9B0P6B/oyWl/VF2X+84xoy7VVm3k7PxTycgwXElNm4PPjVaLm8muBtotgboN6eLQH/YB2j2fIHWUsN8i4EA58Kv6YVA6Pa7wnRMaKIMF1zvBjNfgvl///pPsOY3p/cPEvz5BgmiIwNzGYgEzG29oO0nNx5BtlGcCskNBePeMUiIJVDbzav7h2HxfI2WEaOM01oau+3cAV4Zaf8F32DI63hXk5VL6B6fLcaEbJ+YIJ8rvCSShlIOMgjmGgqLdueEJBSA1W5mD0ZtdoNXLcP7dhHey33gVc8XXpg2Y8IFhVxmZIsvWDXoCio1BAbmdv6I3QDWq/Z7/Pb+wUA/33BLcQTRgAimhMtUmM0/njPJHM7GMPd1fceIYJYQ/amo7Qv0Y3FlfbA9D1vM6wKUsvvA6m+WcT+deNHs47GXzdE3fyD4u9l7UK8tcxDY4ecwtyrwC/QIRPg8nkf359Dsx6FjbRgOD90OsZFEfLdXwHRMEEIExzD3Iu1iMcyxCefGbf7VTNJNDB4s/pbB/7So+Xns9/8HUEsHCM2Hg2sODQAAuzsAAFBLAQIUABQACAAIAMSKc0PkG4C46A4AAPEOAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAxIpzQ0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAALA8AAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADEinNDzYeDaw4NAAC7OwAADAAAAAAAAAAAAAAAAACKDwAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAANIcAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | <ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAMSKc0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1VXBzQb3Ns3UhIzomaNlKoaFbOKmiGECmqLlZq1S6O2NkapTY1ataUoUrP2rlEpqmbNVoVS1VKbf97v/73fOd+95977nOeO83t+597neW6sIUqbkY6bjoKCghGpo3mPPA6SmweQhtzDPp85U1AwNSM11U0C5rZtgj3YTLlh4tHTNC+0Tx1AFyzsusmRE1HsNoY6mWrFEA+PHjjuqrjOU42Cq8n9Fkgby2/7tOr3JdWeRN644q5xl7obgYyKarz8UIs0N/dsckLj6UTGb89wmfxFv3IXvoPFd347X07OUofaiO7E3KWQJQVyLQFHdEtq6ToSyu/d/aqdrX3jSImx1VXGqFN2Z4QjoQWy7pUuONkSiw3duwqkgzbq0FvvChodhb/5GjVxW+MmugooDc3DN9w8/pZ4CaNxM0fqbjP26y0juI5Yv/TqpkDR1Zea7hdczRnHCJ+nBKd2Vp7zJBnqg4EPxhyoRc0QnmKIH91xqjrTq1a5ww43WLmgw6xqzLFBnYRq/rQ47OgoYb9EgGDNXic96GS0MHJiqJp/GK1ow2LOhur4XrJIUedT8bhG9NmpiulKf1nFDuFPLOLD9exOYkc7Pt+8WvWow3K2apOYAY2QiSHaTfFrQMOb+MqqdJcuTjQK1ARO+SeouUYY4cTiOr0lu062mIvhpX0HD4H4CmtqF9JRjDvwoveCan3gkSPDZmxwq0RyWW7naVuz+acZeTK0C78I/GZGfhmPQfQ/AGOUfxsvwFsG34v/F56zufd9b4byIP+tkeD6yJdiuJGr0+WzSpfX5KbkV+/bYcWaOz7MxW0Grh2n7eSkj1b89AC9dSs/B9u3hITfSzweEexxqQaCvxV/DQWldpicRaXWxDkIQxx/bi77KfA6RNi8VS6gzUnn/+i+L8f2saZC2CFswKVBLGJzMTp8I8EMBd+Pr/D5LdcaVJcG/V0Xd2q6JtlBK2OKNPUWxQ5X/UuPKVpGT2wV1cKW/+gHuuqRI800+oM2gZPhOlDw9RUdXTrWyG7J1c/mdtvw5LKy69ttzc1ZZm+stAxeqTjhJDmpXr48dnU2M2PHYrEEACYg7vFSQpJvfUODEQZTKAKyQqMt++8H0MJk02VciGOJvEo8np/KDcpTBLUnchX8jr/AFb/QYgJwwgYxXgsCQTvKRRP3ilofv0NlQSUwGxOlHTWnr8KvKz7EkT4ZxKqcJpN+1LSnXI8HCA3mKwdDKvwOzw5a9g7/ootgnZNJOTntIxff9a8/8Qb9rv8hoty2l2wVh3694cP6eQdfDnK4PpadOeX6fiZM6feVBaXgJD7bUNLIsLcrVDFQGqpOzBMM2hvMaWttjfX121fuFQZseP0oaxXemYBd6nQFUCiopSbOMW2ff3nnt5Hj3bHBuGS0oM4soVLQWr7jtsLC/LBl/mx36iqDmBh26Ol7N7ffEjtvpYteG8d2nCQiwQeApwD8goleQiv3zVLKyUr9nFuWZZ/N5hCMWozclnxLIVtxmb8OH+4d8zm7mWAKUckHSy6QvpvqY0/GkwtF1Ut9cWTaPh39Wd8uNUq6/M5vmemzZ2UxMZpYEkwgjWS9Nkq2hnVWsQKC36HlP0smGeUaNLxccsXaYQ06/Hf4jNZ3akij8r0GMhggbgBtZ2HQ+fNIThzrena8n9ir8iCwCHn529qLyFgKWWghYjSn/MDz20Dim4InpMNdPtB561jYGfashUTr5ELbY9vBk0vTcz+Le3BovGZ6EjB5KyVaSp+FaSO23uUDyShTiWq9IkCA2WPVQsKgBwyw+5P92E3guKLXYk3z+aBr5zhK7od7fRhKmsLOUUZOVDACX51I+vNx/wTpfBJnhyuAJ3REX8kjGZbEiOuroZKFxjHliKdQWAee38HOnCObW7BSKwVvtVuk258LveliJSv3/makoBYF3pJzV8NFZdxUvBBB6SxqEBa23GJo6YgFPRkGYHW/wC0K2aMq3YYw8dMsU3dHIU4vdrTSNPPBgAQWXucmlsTLLBRIiGUqUG6YISGhGwJYj+cEA24xxJtoUSdDV1D5EdeetqTjQ1OTVBuZ/TZfoMBbXFJQIDc/N0ZWO0kgRcDqlWOovkaiF/bR7QBV5aXohdbZbD4ZnFpCbCOjAESESm3Ut867zx53m0p8VZIi6KlOCZBCCSnNzcoldS0ms2KkP45jY4bgwPLaqrZZhjMf/O386GSutjqzi+eNTlmPw4tRmF8Tp4owsOTZdHPQviivgu+1U8qovz/xCY1SWdD2rlqJKe8+KlERKnm539ENU18HEmS24w6dKu70lgOeVghMeR/qP+8qiN2/xoCYBELc5UoLCp7Mzc+HosMQVKyAaHXxoOdCXottSFomHpLyKzl3M51dTCtGskgDHG+NifWoSsnPR12R92IQk8jYOcYmKAkSQb7ry7yjy+yb5vP6BWkd2B9m2dJOuha7UkL8iVDI6lr0coDibJ5JsAa4ML+LQJjGV1dPfXHqOVkq1cvs+RnXxRJpLkPxZWC8WLvBqAXEel3zLtjUCh7NUBh68ldBV69EmL+yx35kcLDAJT+wbPrAWwMCEB3d2q1rUHmSOUHlPtnkOY+gZeabDBkeDmU5HH8eSQrrJY0XNyRFEFh6ZmVrg/bd3qTU2LQ2Hth6eVW/ZamcqMDjx3QcpsZGgS4I8NN0MXO3dcJhbRACHNKdWQIrtGn1NyIXTUGk/+BQO7ym/Yzb6bsjTbumIFTfysoqNRs6XWNXfn524r4eQcs8df0x7lqzubExnJqWabJa4aqOk5NQAqeUgGOsIyJZPYJm/PToz8asy6tSv3XiuN9H5UweUTNPzzdlq7mR5rIclEipVYPwwkuVHIZILVDCvGLic7Hn6XZ1Q2nCxnB4BGLK8SrQQ8216+v7JGa3rPtJMFkdKqRA9UskmaSY1sc7tmjQfVkit6kE4ZlVg8+KhlVbAAFhspWGg1IdSmPKthvcp62RqjsLd7KlBXM2rTbrPYk/FdQBD/We/zKE9bLiYsKojmlXKpSkbQ/n6du/HW4em9ev7bHP317RYbkO7JXBAZcPbAxTmPhVeKwohVjOTrPW5XytD3epbp44cilv+nwfZC9G6zOdBQ34SnAJdoNwgRY2+lPGxPHdiLkoOZ5CqJxY+hSPHfyo/PeD8KGwzc1bH4XrbgQ0g1PpIR9Akb1bkYHdHvSx/Liu3b1id2LHJgmgUXT76C09hyrjG0b1Pp1ApdLHwT/SmnDEBNWsyOxL2BEmKG18VFhUTmMy/BnT+K+V3gcTJcgyXl+x1953bn1iSO1houp6zjd87LXr9P6LSGU/yl/PrU5luCi+iEE7cJZSjP5sq69bHz2INyomDaeLDSM8saM6txojOLkt8M0Pv0YjcKmpEOMNzNHn8G93hXwFtE479qb00cDoQFN4faGuYGOETpfHok+ofrco0wlo68bbPR93L44S4KSijP2Q5x+Csx1rH/l48gV5MFOLyaZz/Dw2ywShGhvqj5/xoaS/g8hjF7dQE0blAkfa8WwFxJf6zyjfbdNwcX5BJnH6GPKKTExM1JcSvC78OQHiYCb3YkMvGtY+9lrBmaN2bIsZzxkEb+mFwpkgU06EDlids/95gzgjqHznAOcKJA26xtXqpZtiEXAfc01EnaLqtU+wEx+iYPndNYjwQ6qsc4ESoJlGTyZHxAqXuuzOhtGxaC8dcwO97V2BFF0oWnZkyB5nQWW35vqGCKd+3ybBMB+tBILAi4QChazCX7+OXbfTYtTuvMZ9JD0eqdXZ1PJaEy4d+1fBmukhSaZoJVwo+wVrDOyWKivgiZNydiKPGtOesFqGoU1SdWjoTX29vAHGmX0zJ9fm4nWwTQtfSOeqdp7sQEBFtOomW5GY6syzP4LqFI9mij3turJZ8TalpaWJPb03LGwNUTny3t9peD3xwHuzny6uSM1bhkSmgVJWF5Lola/G/BXkPcVMUTflk7rgRRb6Ishv/Ot9CXvJV3ZTYHsIlTDM8uIyQ1G7cC4y+aw8Jrpd8wXhjhSIqnn3xKW8y1Cyatdnzt6kFaoAOZp2Z3gF0cy4Znt2h7W32bCVmK9cmefArWQdNzDhzREBug/Cy2VJ/ShdKCRnPxPnuQj0d88VeWKMNw5of8ihGds4fCmd7p5Dfxvb5Nxw/jyXytUYkvjXVzycdP6t1Pyj9aG794vrQ/zHi7Qma+w6m8XMNSB9h+k1sKqkgCC6813KoW/9/P5fE8D+1eoLrrnUNAxAPcizOpIo3yC7+SOEMB99hr08peXYzHbYALVdS1Ys/b0njlnm6VUQuD+jKLeBm5vbq/2VmbExP1/fY/Ehm0YPy53N3ra2O9uLfbGsJ30cOW6gHXJ4adBCW9y8kWmwqBk2cKdq2D7e/a5xupkGS58O+13V95OBOtR1jKFcjw7TzqYfIKYLcJePjo7mHlpavmyEwWDlL2Vc3BjBOQ+REhndix2haCVEb01FhXQ6wKLa3bonrr5W+05KGXBpdnZWWNWUz9lJciD9k6alyQMhcXXOQlZNMlJ5x5V0wIV+97uZyoweCcu3JU1JBEwvjadIlVvou88Q23RFoXWRJeM1jBmNg7VDdkV9FpQB8XZP/Z9kNKIbgOmjXq7Wbt6S+gvaOpbhXMPp8R1lc+qyH4zPuuAkQ0CnY0BeG4/bZix9w+mkKHqO+h9vmSnEUXAX6z6bjhAF1sgVg60v7+qadr/evgzCpWeQ/cjnnriVKXIYcbW9En68IbzNI4FcacoE9fwSkqzPyct7Eyj2Is9AKQW6ml2bRlE7Rp+uxyBSg25KJK+AKSoq4gmEFDEcqMde8v8warI5/2VujJBUT+UjC5Xjov8j05j9q/xfgbPvL/N/N0hmQeMdqU9/OOsU26HOtrL7496+siX7YCWTaZZ9vU9Nm4pYanOF2ltx690wMJmQndo/aWrFAwRjkD1bEqhHh3OZ2Wj2Sgy7N/M5+kUegPB8nRbnsUTcyV8B8+ZpJowu9sexqYuKxWbnHIXKQK5gWACq3sfL1EXKwb9k9Ks1aVhLmDsOqVTxK3SO/1phT07s74JpIv6fYWScDDTkz8A/k/+qegYuKFHn/bJsIum15K8sBVILpVmtYY/7D1BLBwjkG4C46A4AAPEOAABQSwMEFAAIAAgAxIpzQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAAIAMSKc0MAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vv5btvIHf579ykGKrD/dEXPfWTtXThOnBjIHqjTomhRFBQ1khlTpEJSthzsA/R5ij5HH6JP0t/MkDqsw5a8TuxdrMNrOMf3/Y5vhqPDH6ajDF3ZskqL/KhDItxBNk+KfpoPjzqTetDVnR++//pwaIuh7ZUxGhTlKK6POtyVTPtHnWTAEiWo7Io+1l3OYtvVwpqu1ETiWJmB1bSD0LRKX+TFT/HIVuM4sefJhR3F74okrn3DF3U9fnFwcH19HbVNRUU5PBgOe9G06ncQdDOvjjrNyQuobumla+aLU4zJwV9/fBeq76Z5Vcd5YjvIDWGSfv/1V4fXad4vrtF12q8vYMBUwzgubDq8gEHBODrowJUaAyJjm9Tpla3g3YVLP+h6NO74YnHunn8VzlA2G08H9dOrtG/Low6OoBGDJRUdVJSpzeumDGnaOmhrObxK7XWozp35lngH1UWR9WJXE/r1V0QxxehbdyDhQOEgZXiEwz3MwoGGAw8HEcrw8DoPRXkow0MZzjroKq3SXmaPOoM4qwC6NB+UQNvsuqpvMuv709yYj5p8C2Oq0k9QmGHANWAN9zH+1v1J+OPuwcHyIMlCq3U52bHRtklCMLt/m/QhbbJZm1KsNknFhmHKLeiGPtxrnGIBWmjK/+//VlpkdIcWw/XDGpT8swzx8KB1lcPGO1B14co2TNZ2VDl/YQYJ48yeIAG+IRVYuUDEwEFRBN6AiEBcwCXRSLqjQkzBA44Y0siVIwx55xAa/uHKVyaRgMrcXQU+iQg0xJFgiHif4gg8CXm/BB+lDEoIgQS85Jon1FXBJOISrphGHProXFIRKMjgRbiG5iliBDH3MlGISiRdfYQ7V5fadR2qpEhiJImrELwaPDp4M5TXiLnRyAauNB9P6iWIklG/Pa2L8YwLKA3xaB7tQnxaCoZfHWZxz2aQIM4dkwhdxZnzCN/QoMhr1JJIw71hGY8v0qQ6t3UNb1XoQ3wVv4trOz2F0lXbti+bFHn1S1nUJ0U2GeUVQkmR4Vmfi4wsnNNZr+GCLTzgiw/EwgO5cK7WtlvAEzSpLLRflFVbPO73z1yJeWgAJH/Os5uXpY0vx0W6PIzDA59rDu0kydJ+Gud/AWN1rThc0Cz1+HDVph5hdNuTouyf31Rgwmj6N1sWgK1REaeUSY6JUVpJoPUmPKKMREpgeMIVNwz+g84lsfM+SiIttILco4jWCruXNjziKrRtr2YcxVM7H+6wdL69cHFWvSyy+S2PwEk8riel1w3QidIN6zgfZtZbifdtSMrJZa+YngfzYKGu9zdjuMKhB72hRx5BdKACQuuwOfbC0ZdxXZuVwr4M9iVwa29pf/acGOpL+GMvHH0pMODQtWaopB0mwW0zaeVjGu40ntPGK2f+LsVP8rR+117UaXI5H6p74afJqGfnRuQKvEqDIAlKa7kZ8ojNHB7cssXDS1vmNmtMHyifFJMqePKCV/Rtko7gMjxogIsdqX+GPoW7fTssbVM+zrxyC7D6p3jRqFdu+6pOy2J0ll+9B4u51YHDg7aXh1VSpmNnmagH6eLSzm2vn1YxZJv+4nvOVwGNxGUVAKR2aIEXT+qLovTaDIIPHJ2LZnYEigzV3gjzyciWaTLDPvYiDzo1afotIx567oBHRe8DRMVZ4gzv+AtfBh5vMFMUZ+OL2EvDxhjjG1suQeNr+7HoNw035arMaUo0SkOyHMXTo46B6noVxMsaVDVQkc9VdehYG28wdpod3pDKq/cbODPuZJBO7SwbAETpJzCJeGksc2+pIZRfgl6tvISqG+f1J2/Tft/ms87GORiPpwCC2TiMFkEiscHYZ6+OYfQ+bCwQ3/CywpCPNDOsjzsP5cIHlxkb+J5s4PUDXDM8sm54jT9UjouujIxiWEpiGNFEUeOJgb4wzjgWTFLJBDZEQ0c/LcQNj4SLpEv5N9y95WiLcCbFaBTnfZR7RXaSlklmO3OJEGOHKoqJM/6A3KRuHyShsqaKFW7A6xZ8J7mDmwU0FsmBOcgiPe5qX3rW2izfbrOQjW1+Bb2F7A+TVtxMiW9waB99au9MAaGuv3VDmlufyAI9YBhlOkXHbfnjttQxyBYVSck1IxxLQ7nSGLg9Zk0Tx9zFmRWjOBahwVWzCB3/mIexViE5OMGWDtJkO/+/eHdapj/YxN+PQW2Kf6zYwMvtNrDsny/38k9CQ+L3x9/aR9cGoTu9FOK+4MRIRhUIMGGCk8pIUayME3JcQ3iVWz3UrPdQsZ2hczt099e76MsVenrb6ama2loCeqsELauP3bLZfbmha6Kg1JILLKSiBJSs8gATBrpXUUkFJURiRrVHuMtVhLUkkijjvEOa/ZPUbb9JR+MsTdJ6hmzmzOIsr0FiWS8oVmXSpbVjp2J/zt+XcV65JbJQpkVvM73vQQKt0vsy0Jus0NsPD+x2lh0OMwb7d1G8IRA/lGN8m2McUa00RCwGjBGDBZWe5C6wLCQDR6IwfeFSNn6kTUSNFIRoDK8wLB6H5M1aYwlG+2U8ZQVFgiMJbsKlYUZwzgwJIOqIY3AVrYjUFNJDUAtdQiMqlYJrzoiUmn0GFJctfOY6t2w8CabsLJrOmlgw9ZNdEs3JXolGBqnhDr1weDg/XRURrLWmxiVpjbFqUgWH6GUMlZISQzB5BDF3B9J2E9KvdkH61dNBmkSGa8EoA7i5VM7knSewyFCjhNAMIgljmj8C1Lvrpte7gPz696KbuoRDXNKGE6UE1hiyeRPzaQTOoAUFOSsFhYC2lSWxniX+AO30eoWiwW7aafBUEivkTwj9BOBUxhAhJA0YK4g5QjtPINpoaYJ4MoAx+A3DFBIrBCj1O9NOrzdpp2F4cLGDdho+FYqBS6VBI2E3C1GYuAjq9DGBZGOIBClgsFHSBC9iNCJcMSUgC3GQzuyLKqeLJwOiE5pUYEjNkJkVgRl0QDHCAsSo+4hNAFulWaOdNMCrIGZhxWHa98SE03BTOj/dJdOcPp10zkDuG6WUJsJoqlggpysiiqUQEKxA2UIg+/zC6WIT0m92QfrN00Ea/ICBOFWccpiPYcrbNUcQU0RJmFqARqX4UbD2n4TWh+zjgPPqosZ///1Psh1q/yFhBqUv7+pYWLmnEdgQd/qbCEYop83ntv0WjwnedSn/58GgsrWDX4egI7etjPRtUpRBfoUByv2jT1wmc9JoK++yrLj+kx1kduoZuW/OXS+pTgKBr1aYS3eTVOmD1/PvnyjmhLSalKptlCxNwd3yK9gTplSDD4WJh4jcEhXMzQkIWmdh3ns4jriCCaGUwsBEXG4j8q616S8rt9ZT/yZQf7pC/YfdqP/wRajvshD6uvx+1ItIMffdnBtuMEiv8DYYBEz2tZEwxzdUCRIWsBSJwDxcwIFJP+aCPFvqNyXIXiA/XSH/7S6Z8e3TyYwgsiNmOAOdYUCE4LBCCUkxYoxgRRRnjIFKDIlRsUhyKYghBIheyoePpEgGAfAPK4Cf7QL42dMBnHAuIoMlTFwJx1ySRvVxLCLNOcxTGZZYC7oWcaJ+Q8y3rha8XUH8crf4dvkZ49u2Dy0Qk4gC5GCaowmHdBUWC2gEYDOhBZcw22G8CWFdHQmwegXXQkgjFN8Sw572asFWes9W6M12ozd7GvTSiCkiqMYGc7c4SpqlIOIFP8yrGChgrkS7mUBGwnmYgjvwDjGP9HXgUei103EJHXMauQXZTmvSQfDgqPPNx0lRf/e+8FukYBhxjV5/nMQZSi48WMUAxSjxS7YoLi2yHydp32+bqtGgLEbwikUJtFTaUJVvftkIXHud5ca3W8GmPQ/NTrdgCKAT9o6sfvtlZct0MN+q2OxT7rTEtFuJ6ris/To2CoEBcpxQhkFIkBhz3ny4MBFhGjqIBVUGdKxanBPeTQddouPEYY9OXqEjFG6gP6IU/sJFgzO6B9B0P6B/oyWl/VF2X+84xoy7VVm3k7PxTycgwXElNm4PPjVaLm8muBtotgboN6eLQH/YB2j2fIHWUsN8i4EA58Kv6YVA6Pa7wnRMaKIMF1zvBjNfgvl///pPsOY3p/cPEvz5BgmiIwNzGYgEzG29oO0nNx5BtlGcCskNBePeMUiIJVDbzav7h2HxfI2WEaOM01oau+3cAV4Zaf8F32DI63hXk5VL6B6fLcaEbJ+YIJ8rvCSShlIOMgjmGgqLdueEJBSA1W5mD0ZtdoNXLcP7dhHey33gVc8XXpg2Y8IFhVxmZIsvWDXoCio1BAbmdv6I3QDWq/Z7/Pb+wUA/33BLcQTRgAimhMtUmM0/njPJHM7GMPd1fceIYJYQ/amo7Qv0Y3FlfbA9D1vM6wKUsvvA6m+WcT+deNHs47GXzdE3fyD4u9l7UK8tcxDY4ecwtyrwC/QIRPg8nkf359Dsx6FjbRgOD90OsZFEfLdXwHRMEEIExzD3Iu1iMcyxCefGbf7VTNJNDB4s/pbB/7So+Xns9/8HUEsHCM2Hg2sODQAAuzsAAFBLAQIUABQACAAIAMSKc0PkG4C46A4AAPEOAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAxIpzQ0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAALA8AAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADEinNDzYeDaw4NAAC7OwAADAAAAAAAAAAAAAAAAACKDwAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAANIcAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | ||
*Process: | *Process: |
Revision as of 13:27, 6 January 2014
Philosophy of Mathematics |
While creating a resource page, please click here for a resource creation checklist.
Concept Map
Error: Mind Map file circles_and_lines.mm
not found
Textbook
To add textbook links, please follow these instructions to: (Click to create the subpage)
Additional Information
Useful websites
- www.regentsprep.com conatins good objective problems on chords and secants
- www.mathwarehouse.com contains good content on circles for different classes
- staff.argyll contains good simulations
Reference Books
Teaching Outlines
Chord and its related theorems
Concept #1 Chord
Learning objectives
- Meaning of circle and chord.
- Method to measure the perpendicular distance of the chord from the centre of the circle.
- Properties of chord.
- Able to relate chord properties to find unknown measures in a circle.
- Apply chord properties for proof of further theorems in circles.
- Understand the meaning of congruent chords.
Notes for teachers
- A chord is a straight line joining 2 points on the circumference of a circle.
- Chords within a circle can be related in many ways.
- The theorems that involve chords of a circle are :
- Perpendicular bisector of a chord passes through the center of a circle.
- Congruent chords are equidistant from the center of a circle.
- If two chords in a circle are congruent, then their intercepted arcs are congruent.
- If two chords in a circle are congruent, then they determine two central angles that are congruent.
Activity No 1[Theorem 1: Perpendicular bisector of a chord passes through the center of a circle.]
- Estimated Time:20 minutes
- Materials/ Resources needed:Laptop, Geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any:
- Basic concepts of a circle and its related terms should have been covered.
- Multimedia resources: Laptop.
- Website interactives/ links/ / Geogebra Applets:
This geogebra has been created by ITfc-Edu-team.
- Process:
- Show the children the geogebra file and ask the listed questions below.
- Developmental Questions:
- What is a chord ?
- At how many points on the circumference does the chord touch a circle .
- What is a bisector ?
- What is a perpendicular bisector ?
- In each case the perpendicular bisector passes through which point ?
- Evaluation
- What is the angle formed at the point of intersection of chord and radius ?
- Are the students able to understand what a perpendicular bisector is ?
- Are the students realising that perpendicular bisector drawn for any length of chords for any circle always passes through the center of the circle .
- Question Corner:
- What do you infer ?
- How can you reason that the perpendicular bisector for any length of chord always passes through the centre of the circle.
Activity No # 2.[Theorem 2.Congruent chords are equidistant from the center of a circle.]
- Estimated Time :40 minutes.
- Materials/ Resources needed:Laptop, geogebra,projector and a pointer.
- Prerequisites/Instructions, if any
- Basics of circles and its related terms should have been done.
- Multimedia resources: Laptop, geogebra file, projector and a pointer.
- Website interactives/ links/ / Geogebra Applets : This geogebra file has been created by Tharanath Achar of Dakshina kannada.
- Process:
- Show geogebra file and ask the questions below.
- Developmental Questions:
- What is a chord ?
- Name the centre of the circle.
- How do you draw congruent chords in a circle ?
- How many chords do you see in the figure ? Name them.
- If both the chords are congruent, what can you say about the length of both the chords ?
- How can we measure the length of the chord ?
- What is the procedure to draw perpendicular bisector ?
- What does theorem 1 say ? Do you all remember ?
- What is the length of both chords here ?
- What can you conclude ?
- Repeat this for circles of different radii and for different lengths of congruent chords.
- Evaluation:
- Were the students able to comprehend the drawing of congruent chords in a circle ?
- Were the students able to comprehend why congruent chords are always equal for a given circle. Let any student explain the analogy.
- Are the students able to understand that this theorem can be very useful in solving problems related to circles and triangles ?
- Question Corner:
- What is a chord ?
- What are congruent chords ?
- Why do you think congruent chords are always equal for a circle of given radius ?
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Concept #2.Secant and Tangent
Learning objectives
- The secant is a line passing through a circle touching it at any two points on the circumference.
- A tangent is a line toucing the circle at only one point on the circumference.
Notes for teachers
Activity No # 1.Understanding Secant and Tangent using geogebra.
- Estimated Time: 15 minutes
- Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any:
- The students should have a prior knowledge about a circle and its basic parts and terms.
- They should know the clear distinction between radius, diameter, chord, secant and tangent.
- Multimedia resources : Laptop and projector
- Website interactives/ links/ / Geogebra Applets
This geogebra file has been made by ITfC-Edu-team
- Process:
- The teacher can show the geogebra file.
- Move the points on circumference and explain secant.
- When both endpoints of secant meet, it becomes a tangent.
Developmental Questions:
- Name the points on the circumference of the circle.
- At how many points is the line touching the circle ?
- What is the line called ?
- Evaluation
- What is the difference between the secant and a tangent?
- What is the difference between the chord and a secant ?
- Question Corner
- Can you draw a secant touching 3 points on the circle ?
- At how many points does a tangent touch a circle ?
- How many tangents can be drawn to a circle ?
- How many tangents can be drawn to a circle at any one given point ?
- How many parallel tangents can a circle have at the most ?
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Concept # Construction of tangents
Learning objectives
- The students should know that tangent is a straight line touching the circle at one and only point.
- They should understand that a tangent is perpendicular to the radius of the circle.
- The construction protocol of a tangent.
- Constructing a tangent to a point on the circle.
- Constructing tangents to a circle from external point at a given distance.
- A tangent that is common to two circles is called a common tangent.
- A common tangent with both centres on the same side of the tangent is called a direct common tangent.
- A common tangent with both centres on either side of the tangent is called a transverse common tangent.
Notes for teachers
Activity No # 1. Construction of Direct common tangent
- Estimated Time: 90 minutes
- Materials/ Resources needed:
- Laptop, geogebra file, projector and a pointer.
- Students' individual construction materials.
- Prerequisites/Instructions, if any
- The students should have prior knowledge of a circle , tangent and the limiting case of a secant as a tangent.
- They should understand that a tangent is always perpendicular to the radius of the circle.
- They should know construction of a tangent to a given point.
- If the same straight line is a tangent to two or more circles, then it is called a common tangent.
- If the centres of the circles lie on the same side of the common tangent, then the tangent is called a direct common tangent.
- Note: In general,
- The two circles are named as C1 and C2
- The distance between the centre of two circles is 'd'
- Radius of one circle is taken as 'R' and other as 'r'
- The length of tangent is 't'
- Multimedia resources:Laptop
- Website interactives/ links/ / Geogebra Applets : This geogebra file was created by Mallikarjun sudi of Yadgir.
- Process:
The teacher can explain the step by step construction of Direct common tangent and with an example.
Developmental Questions:
- What is a tangent
- What is a common tangent ?
- What is a direct common tangent ?
- What is R and r ?
- What does the length OA represent here ?
- Why was a third circle constructed ?
- Let us try to construct direct common tangent without the third circle and see.
- What should be the radius of the third circle ?
- Why was OA bisected and semi circle constructed ?
- What were OB and OC extended ?
- What can you say about lines AB and AC ?
- Name the direct common tangents .
- At what points is the tangent touching the circles ?
- Identify the two right angled triangles formed from the figure ? What do you understand ?
- Evaluation:
- Is the student able to comprehend the sequence of steps in constructing the tangent.
- Is the student able to identify error areas while constructing ?
- Is the student observing that the angle between the tangent and radius at the point of intersection is 90º ?
- Is the student able to appreciate that the direct common tangents from the same external point are equal and subtend equal angles at the center.
- Question Corner:
- What do you think are the applications of tangent constructions ?
- What is the formula to find the length of direct common tangent ?
- Can a direct common tangent be drawn to two circles one inside the other ?
- Observe the point of intersection of extended tangents in relation with the centres of two circles. Infer.
- What are properties of direct common tangents ?
- [Note for teachers : Evaluate if it is possible to construct a direct common tangent without the third circle.] Examine with the help of following geogebra file made by Ranjani.
Activity No # 2. Construction of Transverse common tangent
- Estimated Time: 45 minutes
- Materials/ Resources needed:
- Laptop, geogebra file, projector and a pointer.
- Students' individual construction materials.
- Prerequisites/Instructions, if any
- The students should have prior knowledge of a circle , tangent and direct and transverse common tangents .
- They should understand that a tangent is always perpendicular to the radius of the circle.
- They should know construction of a tangent to a given point.
- If the same straight line is a tangent to two or more circles, then it is called a common tangent.
- If the centres of the circles lie on opposite side of the common tangent, then the tangent is called a transverse common tangent.
- Note: In general,
- The two circles are named as C1 and C2
- The distance between the centre of two circles is 'd'
- Radius of one circle is taken as 'R' and other as 'r'
- The length of tangent is 't'
- Multimedia resources: Laptop
- Website interactives/ links/ / Geogebra Applets
- Process:
- The teacher can explain the step by step construction of Transverse common tangent.
Developmental Questions
- What is a transverse common tangent ?
- What is the radius of the third circle ?
- What is the difference in finding the radius of the third circle in constructing Dct and that of Tct ?
- Why was a third circle constructed ?
- Let us try to construct transverse common tangent without the third circle and see.
- Name the transverse common tangents .
- At what points is the tangent touching the circles ?
- Evaluation:
- Is the student able to comprehend the sequence of steps in constructing the tangent.
- Is the student able to identify error areas while constructing ?
- Is the student observing that the angle between the tangent and radius at the point of intersection is 90º ?
- Is the student able to understand the difference in the construction protocol between direct common tangent and transverse common tangent ?
- Question Corner:# What do you think are the applications of tangent constructions ?
- What is the formula to find the length of transverse common tangent ?
- Can a direct common tangent be drawn to two circles one inside the other ?
- What are properties of transverse common tangents ?
- Evaluation:
- Were the students able to comprehend the steps in transverse common tangent construction ?
- Question Corner:
- Can you construct a transverse common tangent without the third circle ?
Concept # Cyclic quadrilateral
Learning objectives
- A quadrilateral ABCD is called cyclic if all four vertices of it lie on a circle.
- In a cyclic quadrilateral the sum of opposite interior angles is 180 degrees.
- If the sum of a pair of opposite angles of a quadrilateral is 180, the quadrilateral is cyclic.
- In a cyclic quadrilateral the exterior angle is equal to interior opposite angle
Notes for teachers
Activity#1. Cyclic quadrilateral
- Estimated Time 10 minutes
- Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
- Prerequisites/Instructions, if any
- Circles and quadrilaterals should have been covered.
- Multimedia resources : Laptop
- Website interactives/ links/ / Geogebra Applets; This geogebra file was created by ITfC-Edu-Team.
- Process:
- Show the geogebra file.
- Move points, the vertices of the quadrilateral and let the students observe the sum of opposite interior angles.
Developmental Questions:
- What two figures do you see in the figure ?
- Name the vertices of the quadrilateral.
- Where are all the 4 vertices situated ?
- Name the opposite interior angles of the quadrilateral.
- What do you observe about them.
- Evaluation:
- Compare the cyclic quadrilateral to circumcircle.
- Question Corner
- Name this special quadrilateral.
Activity No # 2.Properties of a Cyclic quadrilateral
- Estimated Time: 45 minutes
- Materials/ Resources needed
coloured paper, pair if scissors, sketch pen, carbon paper, geometry box
- Prerequisites/Instructions, if any
- Circles and quadrilaterals should have been covered.
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
This activity has been taken from the website http://mykhmsmathclass.blogspot.in/2007/11/class-ix-activity-16.html
- Process:
Note: Refer the above geogebra file to understand the below mentioned labelling.,br>
- Draw a circle of any radius on a coloured paper and cut it.
- Paste the circle cut out on a rectangular sheet of paper.
- By paper folding get chords AB, BC, CD and DA in order.
- Draw AB, BC, CD & DA. A cyclic quadrilateral ABCD is obtained.
- Make a replica of cyclic quadrilateral ABCD using carbon paper.
- Cut the replica into 4 parts such that each part contains one angle .
- Draw a straight line on a paper.
- Place angle BAD and angle BCD adjacent to each other on the straight line.Write the observation.
- Place angle ABC and angle ADC adjacent to each other on the straight line . Write the observation.
- Produce AB to form a ray AE such that exterior angle CBE is formed.
- Make a replica of angle ADC and place it on angle CBE . Write the observation.
Developmental Questions:
- How do you take radius ?
- What is the circumference ?
- What is a chord ?
- What is a quadrilateral ?
- Where are all four vertices of a quadrilateral located ?
- What part are we trying to cut and compare ?
- What can you infer ?
- Evaluation:
- Angle BAD and angle BCD, when placed adjacent to each other on a straight line, completely cover the straight angle.What does this mean ?
- Angle ABC and angle ADC, when placed adjacent to each other on a straight line, completely cover the straight angle.What can you conclude ?
- Compare angle ADC with angle CBE.
- Question Corner:
Name the two properties of cyclic quarilaterals.
Hints for difficult problems
Project Ideas
Math Fun
Usage
Create a new page and type {{subst:Math-Content}} to use this template