Difference between revisions of "Cyclic quadrilateral"

From Karnataka Open Educational Resources
Jump to navigation Jump to search
m (added Category:Circles using HotCat)
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
A quadrilateral ABCD is called cyclic if all four vertices of it lie on a circle.In a cyclic quadrilateral the sum of opposite interior angles is 180 degrees.If the sum of a pair of opposite angles of a quadrilateral is 180, the quadrilateral is cyclic.In a cyclic quadrilateral the exterior angle is equal to interior opposite angle.
  
<!-- This portal was created using subst:box portal skeleton  -->
+
===Objectives===
<!--        BANNER ACROSS TOP OF PAGE        -->
+
Understanding cyclic quadrilaterals  
{| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;"
 
|-
 
| style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |
 
[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics]
 
| style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics]
 
| style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |
 
[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics]
 
| style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |
 
[http://karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus]
 
| style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |
 
[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics]
 
| style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |
 
[http://karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks]
 
| style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |
 
[http://karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank]
 
|}
 
While creating a resource page, please click here for a resource creation [http://karnatakaeducation.org.in/KOER/en/index.php/Resource_Creation_Checklist '''checklist'''].
 
 
__FORCETOC__
 
 
 
===Activity#1 Cyclic quadrilateral ===                                                                                                             
 
*Estimated Time 10 minutes
 
*Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
 
*Prerequisites/Instructions, if any
 
# Circle and quadrilaterals should have been introduced.
 
*Multimedia resources : Laptop
 
*Website interactives/ links/ / Geogebra Applets
 
<span> </span>
 
  
<span></span><div id="ggbContainer5061ec2b58633e074b0c05f395a3849d"></div><span></span>
+
Relation between angles of a cyclic quadrilateral.
*Process:
+
 
 +
===Estimated Time===
 +
10 minutes
 +
 
 +
===Prerequisites/Instructions, prior preparations, if any===
 +
Circle and quadrilaterals should have been introduced.
 +
 
 +
===Materials/ Resources needed===
 +
Digital : Laptop, geogebra file, projector and a pointer.
 +
 
 +
Geogebra file: [https://ggbm.at/jdxxnrmb Cyclic quadrilateral.ggb]
 +
 
 +
{{Geogebra|jdxxnrmb}}
 +
 
 +
===Process (How to do the activity)===
 +
<span></span><span></span>
 
# The teacher can recall the concept of a circle, quadrilateral, circumcircle.
 
# The teacher can recall the concept of a circle, quadrilateral, circumcircle.
 
# Can explain a cyclic quadrilateral and show the geogebra applet.
 
# Can explain a cyclic quadrilateral and show the geogebra applet.
 
# Move points, the vertices of the quadrilateral and let the students observe the sum of opposite interior angles.
 
# Move points, the vertices of the quadrilateral and let the students observe the sum of opposite interior angles.
Developmental Questions:
+
* Developmental Questions:
 
# What two figures do you see in the figure ?
 
# What two figures do you see in the figure ?
 
# Name the vertices of the quadrilateral.
 
# Name the vertices of the quadrilateral.
Line 46: Line 34:
 
*Question Corner  
 
*Question Corner  
 
# Can all quadrilaterals be cyclic ?
 
# Can all quadrilaterals be cyclic ?
# What are the necessary conditions for a quadrilateral to be cyclic ?   
+
# What are the necessary conditions for a quadrilateral to be cyclic ?  <span></span><span></span>
 
 
*
 
 
 
<span> </span>
 
 
 
<span></span><div id="ggbContainer7ac33d1e68b29e64169259c6189c0d53"></div><span></span>
 
*
 
''[http://karnatakaeducation.org.in/?q=node/305 Click to Comment]''
 
  
|}
+
[[Category:Circles]]

Latest revision as of 11:01, 31 October 2019

A quadrilateral ABCD is called cyclic if all four vertices of it lie on a circle.In a cyclic quadrilateral the sum of opposite interior angles is 180 degrees.If the sum of a pair of opposite angles of a quadrilateral is 180, the quadrilateral is cyclic.In a cyclic quadrilateral the exterior angle is equal to interior opposite angle.

Objectives

Understanding cyclic quadrilaterals

Relation between angles of a cyclic quadrilateral.

Estimated Time

10 minutes

Prerequisites/Instructions, prior preparations, if any

Circle and quadrilaterals should have been introduced.

Materials/ Resources needed

Digital : Laptop, geogebra file, projector and a pointer.

Geogebra file: Cyclic quadrilateral.ggb


Download this geogebra file from this link.


Process (How to do the activity)

  1. The teacher can recall the concept of a circle, quadrilateral, circumcircle.
  2. Can explain a cyclic quadrilateral and show the geogebra applet.
  3. Move points, the vertices of the quadrilateral and let the students observe the sum of opposite interior angles.
  • Developmental Questions:
  1. What two figures do you see in the figure ?
  2. Name the vertices of the quadrilateral.
  3. Where are all the 4 vertices situated ?
  4. Name the opposite interior angles of the quadrilateral.
  5. What do you observe about them.
  • Evaluation:
  1. Compare the cyclic quadrilateral to circumcircle.
  • Question Corner
  1. Can all quadrilaterals be cyclic ?
  2. What are the necessary conditions for a quadrilateral to be cyclic ?