Difference between revisions of "Cyclic quadrilateral"

From Karnataka Open Educational Resources
Jump to navigation Jump to search
m (added Category:Circles using HotCat)
 
(33 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
A quadrilateral ABCD is called cyclic if all four vertices of it lie on a circle.In a cyclic quadrilateral the sum of opposite interior angles is 180 degrees.If the sum of a pair of opposite angles of a quadrilateral is 180, the quadrilateral is cyclic.In a cyclic quadrilateral the exterior angle is equal to interior opposite angle.
  
<!-- This portal was created using subst:box portal skeleton  -->
+
===Objectives===
<!--        BANNER ACROSS TOP OF PAGE        -->
+
Understanding cyclic quadrilaterals
{| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;"
 
|-
 
|style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank]
 
|}
 
While creating a resource page, please click here for a resource creation [http://karnatakaeducation.org.in/KOER/en/index.php/Resource_Creation_Checklist '''checklist'''].
 
  
= Concept Map =
+
Relation between angles of a cyclic quadrilateral.
__FORCETOC__
 
<mm>[[Cyclic_quadrilateral.mm|flash]]</mm>
 
  
= Textbook =
+
===Estimated Time===
To add textbook links, please follow these instructions to:
+
10 minutes
([{{fullurl:{{FULLPAGENAME}}/textbook|action=edit}} Click to create the subpage])
 
  
=Additional Information=
+
===Prerequisites/Instructions, prior preparations, if any===
==Useful websites==
+
Circle and quadrilaterals should have been introduced.
==Reference Books==
 
  
= Teaching Outlines =
+
===Materials/ Resources needed===
 +
Digital : Laptop, geogebra file, projector and a pointer.
  
==Concept #1. What is a Cyclic quadrilateral ?==
+
Geogebra file: [https://ggbm.at/jdxxnrmb Cyclic quadrilateral.ggb]
===Learning objectives===
 
===Notes for teachers===
 
===Activity No # ===
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time
 
*Materials/ Resources needed
 
*Prerequisites/Instructions, if any
 
*Multimedia resources
 
*Website interactives/ links/ / Geogebra Applets
 
*Process/ Developmental Questions
 
*Evaluation
 
*Question Corner
 
  
===Activity No # ===
+
{{Geogebra|jdxxnrmb}}
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time
 
*Materials/ Resources needed
 
*Prerequisites/Instructions, if any
 
*Multimedia resources
 
*Website interactives/ links/ / Geogebra Applets
 
*Process/ Developmental Questions
 
*Evaluation
 
*Question Corner
 
  
==Concept #2. Theorems ==
+
===Process (How to do the activity)===
===Learning objectives===
+
<span></span><span></span>
===Notes for teachers===
+
# The teacher can recall the concept of a circle, quadrilateral, circumcircle.
===Activity No #1.By paper folding, cutting and pasting verify that
+
# Can explain a cyclic quadrilateral and show the geogebra applet.
1) "The sum of interior opposite angles of cyclic quadrilateral is 180 degrees".
+
# Move points, the vertices of the quadrilateral and let the students observe the sum of opposite interior angles.
2) "In a cyclic quadrilateral the exterior angle is equal to interior opposite angle". ===
+
* Developmental Questions:
{| style="height:10px; float:right; align:center;"
+
# What two figures do you see in the figure ?
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
+
# Name the vertices of the quadrilateral.
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
+
# Where are all the 4 vertices situated ?
|}
+
# Name the opposite interior angles of the quadrilateral.
*Estimated Time :40 minutes
+
# What do you observe about them.
*Materials/ Resources needed:
+
*Evaluation:
Coloured paper, pair if scissors, sketch pen, carbon paper, geometry box
+
# Compare the cyclic quadrilateral to circumcircle.
*Prerequisites/Instructions, if any
+
*Question Corner
*Multimedia resources
+
# Can all quadrilaterals be cyclic ?
*Website interactives/ links/ / Geogebra Applets
+
# What are the necessary conditions for a quadrilateral to be cyclic ?  <span></span><span></span>
*Process:
 
# Draw a circle of any radius on a coloured paper and cut it.
 
# Paste the circle cut out on a rectangular sheet of paper.
 
# By paper folding get chords AB, BC, CD and DA in order.
 
# Draw AB, BC, CD & DA. A cyclic quadrilateral ABCD is obtained.
 
# Make a replica of cyclic quadrilateral ABCD using carbon paper.
 
# Cut the replica into 4 parts such that each part contains one angle .
 
# Draw a straight line on a paper.
 
# Place angle BAD and angle BCD adjacent to each other on the straight line.Write the observation.
 
# Place angle ABC and angle ADC adjacent to each other on the straight line . Write the observation.
 
# Produce AB to form a ray AE such that exterior angle CBE is formed.
 
# Make a replica of angle ADC and place it on angle CBE . Write the observation.
 
Observations :
 
1) angle BAD and angle BCD , when placed adjacent to each other on a straight line, completely cover the straight angle. This means their sum is 180 degrees.
 
2) angle ABC and angle ADC , when placed adjacent to each other on a straight line, completely cover the straight angle. This means their sum is 180 degrees.
 
3) The replica of angle ADC completely covers angle CBE.
 
RESULT: a)The sum of either pair of opposite angle of a cyclic quadrilateral is 180 degrees.
 
  
b)In a cyclic quadrilateral, the exterior angle is equal to interior opposite angle.
+
[[Category:Circles]]
*Developmental Questions;
 
*Evaluation
 
*Question Corner
 
 
 
===Activity No # 2. When one side of a cyclic quadrilateral is produced, the exterior angle so formed is equal to the interior opposite angle===
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time
 
*Materials/ Resources needed
 
*Prerequisites/Instructions, if any
 
*Multimedia resources
 
*Website interactives/ links/ / Geogebra Applets
 
*Process/ Developmental Questions
 
*Evaluation
 
*Question Corner
 
 
 
===Activity No #3. Suppose a quadrilateral is such that the sum of two opposite angles is a straight angle, then the quadrilateral is a cyclic quadrilteral. ===
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time
 
*Materials/ Resources needed
 
*Prerequisites/Instructions, if any
 
*Multimedia resources
 
*Website interactives/ links/ / Geogebra Applets
 
*Process/ Developmental Questions
 
*Evaluation
 
*Question Corner
 
 
 
= Hints for difficult problems =
 
 
 
= Project Ideas =
 
 
 
= Math Fun =
 
 
 
'''Usage'''
 
 
 
Create a new page and type <nowiki>{{subst:Math-Content}}</nowiki> to use this template
 

Latest revision as of 11:01, 31 October 2019

A quadrilateral ABCD is called cyclic if all four vertices of it lie on a circle.In a cyclic quadrilateral the sum of opposite interior angles is 180 degrees.If the sum of a pair of opposite angles of a quadrilateral is 180, the quadrilateral is cyclic.In a cyclic quadrilateral the exterior angle is equal to interior opposite angle.

Objectives

Understanding cyclic quadrilaterals

Relation between angles of a cyclic quadrilateral.

Estimated Time

10 minutes

Prerequisites/Instructions, prior preparations, if any

Circle and quadrilaterals should have been introduced.

Materials/ Resources needed

Digital : Laptop, geogebra file, projector and a pointer.

Geogebra file: Cyclic quadrilateral.ggb


Download this geogebra file from this link.


Process (How to do the activity)

  1. The teacher can recall the concept of a circle, quadrilateral, circumcircle.
  2. Can explain a cyclic quadrilateral and show the geogebra applet.
  3. Move points, the vertices of the quadrilateral and let the students observe the sum of opposite interior angles.
  • Developmental Questions:
  1. What two figures do you see in the figure ?
  2. Name the vertices of the quadrilateral.
  3. Where are all the 4 vertices situated ?
  4. Name the opposite interior angles of the quadrilateral.
  5. What do you observe about them.
  • Evaluation:
  1. Compare the cyclic quadrilateral to circumcircle.
  • Question Corner
  1. Can all quadrilaterals be cyclic ?
  2. What are the necessary conditions for a quadrilateral to be cyclic ?