Difference between revisions of "A Kite and its properties"

From Karnataka Open Educational Resources
Jump to navigation Jump to search
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- This portal was created using subst:box portal skeleton  -->
+
=   A Kite and its properties =
<!--        BANNER ACROSS TOP OF PAGE        -->
 
{| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;"
 
|-
 
|style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks]
 
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank]
 
|}
 
While creating a resource page, please click here for a resource creation [http://karnatakaeducation.org.in/KOER/en/index.php/Resource_Creation_Checklist '''checklist'''].
 
 
 
= Concept Map =
 
<mm>[[kite.mm|flash]]</mm>
 
 
 
= Textbook =
 
To add textbook links, please follow these instructions to:
 
([{{fullurl:{{FULLPAGENAME}}/textbook|action=edit}} Click to create the subpage])
 
 
 
=Additional Information=
 
==Useful websites==
 
# http://www.transum.org/software/Fun_Maths/kite. This website has good description and activities about kites.
 
==Reference Books==
 
 
 
= Teaching Outlines =
 
 
 
==Concept # 1. A Kite and its properties==
 
 
===Learning objectives===
 
===Learning objectives===
 
# A kite is a quadrilateral with two distinct pairs of adjacent sides that are congruent.
 
# A kite is a quadrilateral with two distinct pairs of adjacent sides that are congruent.
Line 49: Line 15:
  
 
===Notes for teachers===
 
===Notes for teachers===
 +
Source : http://www.ask.com/question/what-is-a-kite-in-geometry<br>
 +
Summary :
 
# A kite is sometimes also known as a deltoid.
 
# A kite is sometimes also known as a deltoid.
 
# A kite, may be either convex or concave, but the word "kite" is often restricted to the convex variety. A concave kite is sometimes called a "dart" or "arrowhead".
 
# A kite, may be either convex or concave, but the word "kite" is often restricted to the convex variety. A concave kite is sometimes called a "dart" or "arrowhead".
 +
 
===Activity No # 1. Paper kite===
 
===Activity No # 1. Paper kite===
 
{| style="height:10px; float:right; align:center;"
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
+
''[http://karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
|}
 
*Estimated Time: 30 minutes.
 
*Estimated Time: 30 minutes.
Line 82: Line 51:
 
# Compare kite with other quadrilaterals and make a list of similarities and differences between them.
 
# Compare kite with other quadrilaterals and make a list of similarities and differences between them.
  
===Activity No # ===
+
[[Category:Quadrilaterals]]
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time
 
*Materials/ Resources needed
 
*Prerequisites/Instructions, if any
 
*Multimedia resources
 
*Website interactives/ links/ / Geogebra Applets
 
*Process/ Developmental Questions
 
*Evaluation
 
*Question Corner
 
 
 
==Concept #2. Measurements in a kite==
 
===Learning objectives===
 
# A kite has two pairs of congruent sides.
 
# Its diagnols intersect at right angles.
 
# The sum of its four sides would be its perimetre.
 
# Its area is given by the formula <math>1/2 x product of its diagnols </math>
 
===Notes for teachers===
 
===Activity No # 1. Deriving formula for area of a kite===
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time : 30 minutes.
 
*Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
 
*Prerequisites/Instructions, if any
 
# They should know a kite and its properties.
 
# The students should know the concept of an area.
 
# They should know the formula to find the area of a triangle.
 
*Multimedia resources: Laptop
 
*Website interactives/ links/ / Geogebra Applets
 
*Process:
 
# The teacher can project the geogebra file on kite.
 
# Show them that a kite is made of two isosceles traingles.
 
# Sum of areas of these two triangles would be the area of the kite.
 
*Developmental Questions
 
# What is a kite /
 
# What are the properties of a kite.
 
# What other figures can you see in a kite ?
 
# What types of triangles are these ?
 
# Identify the two isosceles triangles ?
 
# What is the formula to find the area of a triangle ?
 
*Evaluation:
 
# Choosing which two traingles out of the 8 visible types would be easy to deduce the area of kite ?
 
*Question Corner:
 
# Recall the two formulae that you know to find the area of a triangle.
 
 
 
===Activity No # ===
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time
 
*Materials/ Resources needed
 
*Prerequisites/Instructions, if any
 
*Multimedia resources
 
*Website interactives/ links/ / Geogebra Applets
 
*Process/ Developmental Questions
 
*Evaluation
 
*Question Corner
 
 
 
==Concept # 3. Construction of a kite==
 
===Learning objectives===
 
# Learn steps for constructing a kite with given measures.
 
===Notes for teachers===
 
===Activity No # 1. Construction of a kite. ===
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time : 20 minutes.
 
*Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
 
*Prerequisites/Instructions, if any:
 
# Students should have prior knowledge about a kite and its properties.
 
# They should know a perpendicular line and its construction.
 
# They should know to construct a line segment of given length by constructing arcs.
 
*Multimedia resources: Laptop
 
*Website interactives/ links/ / Geogebra Applets
 
<ggb_applet width="800" height="485" version="4.0" ggbBase64="UEsDBBQACAAIANdNlEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ+sM8HPn5ZLiYmBg4PX0cAkC0ieAuISDDUgeCKidwMDA2uTp4hhScevt3YPZwZESbR//cT46FclxtEy5qUt5mobTnZ6ORWcOMW7XW5IhHiuyPGlxZETaAbGYK3NP6MTs2PxgWceCoMAlSZJaskucxLeGuB1/5KK5dev8uolXVJ7ce3KvuE/luQ0/y9pgpWJ1+3t37qTcUksJsZv/XKEiRrqdQYFFoEHAgcGJgZGDkQWZ08LAJMCEJobgKDYwoCqYJeihp170Ves4s4IIZ0pKy2NGgaj8ykrXPpmfvcyMAquu7rzfnvp9W7ylAMPCKFuL6jArs78qweHrCgwYnJ7u3VMZ/OzYMZXZZ0/ZX1938tAPC3ZWhSV758+cmD5dT7R+vcOW47W1m74842VnV0j8vjJggvvevZ8qU5cyeXydL+zQ9Mazfn9NTETE/10sLr/zs7z+yUk9UmBUOZOWd2dCePn7sD+RlhNWvFdsqIi/YhXCvHKrEcuEBeesXzE+rGFRcBT9zhWqqxD1UzuWRSB/dXmvMldH2K4wJ4aPm7ZPnly6ftJxxotqbGxPDt+RYRdW+De33ObNy5W/a782rNHTFX3f/lmwoWLqvBR9fT0p5ov/5s+durxmA5fCvi81KS7/5s7IeFEtzbjobF+fWD7LhGl+iTb+H04ud2vM2KW0Sw0o4DM/6GXwahVVxkXPFR/fvTunn2GJ6eXJmbaW5awul8O3fJmqy+ThvVT/+avTuzy9uVwuZytX9bYwXBJ62eqwV2HGMhMHk72n1oXf5lTwnbuv1eW+16RtWxy+2LjMv/SyVIjJI3gZf5Ctpn/VvUTmjmXvf1wt/yfkMMuo9veufb13VYQVZtWVudg7OzFkrsqxNfBtvNHkxbBx2tnlZmYNNypWuTNkzvrMd9vBQp7R43LK76eh0Q4mk6fP5lQ4tnOHQ7pwx7RvTaqMRzTC8z/e2FTbzdPDF3JHrz/WbNd5k/xKxQaJueU7dmlsr7ydNjN+zvodc/eX7vtx/tvfnfpXa2fF7VFpUDn19PYZb4dd/uXi8/OmMs+s/v528baZ9kZH469fuya17/6S/N3qDUtOfWWf+qgh52yu7r9bpjemvtq32n7H1W9f91/rk7XJYExaKf8x8PqO5RFmWv9frGeyLOth13XQKfmUEmdlxe/x71Dro37P4sLTKUabEh+z3ayuyT+qW62U/fb9i18/F2wpl5mm+G/+fgbDt7++5pu/PTe36Y1liZfa/X0F3777+vt7V1fvvly//OHt76n/F9Zpflgl5uBzWX6JpcWPv6+nnl996fuNt/71m2pll+y6537YxosxafnV0Imvwov+VxXeftm1g8XIqjr+3Vn7p4FcAuU74wSnO0TwN/yZELOuQ1thDbvDngjBcJBIxUYlvYYNcgwf01xjGBJtGR6d7brBdqiK4chq0Y28LV8ZOsK1k4Q5XjMKvA87oiZwjVnh3toOXbABMYLRYAN2KpmBDShzzQEb8LZrBhOI/oqgweJ/4fQSVqAFKh2intxACzwEtCexAS2YkBCmwguy4OAajyCQBU1RE5eALGDZquQJsoAzz3USyAChO10mXCCNE7QvaYA0OK7zUAYr3K3UC1bwpusKM8iGF6Ir2UEKL2gLgekPCJoVSHNoCzFDKEbcvKBtSk9Bhm9QCtUO4gMJha714AQFyKqNSqogd6441gV2hshGJZCzOFzXeDzXt47kbwhYe+5LzJRzsezX9597aqHGsPBr3H69mtquUhEFhoUrPv20YWeElFocCuCSbM0X1n18N5iW+2t7AQtlBk9XP5d1TglNAFBLBwgTQJKCTwUAALsFAABQSwMEFAAIAAgA102UQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK4FAFBLBwjWN725GQAAABcAAABQSwMEFAAIAAgA102UQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzVWdty2zYQfU6+AsPnSCIA3pSRkqntdJoZJ+nUaafTN5CEKNQUyRLQxZn+VH+k39QFQIqUJTlWYqexxjYIYIHFnt09C8qT15tFjla8lqIspg4eug7iRVKmosimzlLNBpHz+tXzScbLjMc1Q7OyXjA1dTwtKdKpw3wSUBbjAfcxGXiUeIMopPFgxjwf42g8Y5HvILSR4mVRvmcLLiuW8KtkzhfsskyYMornSlUvR6P1ej1sVQ3LOhtlWTzcyNRBcMxCTp3m4SVst7NoTY04cV08+v3dpd1+IAqpWJFwB2kTluLV82eTtSjSco3WIlXzqRO5YMaci2wONgU0dNBIC1UASMUTJVZcwtJe19isFpVjxFih55/ZJ5RvzXFQKlYi5fXUcYcE7C9rwQvVzOJGy6hdP1kJvrYb6Sejw3OQKss8ZnoP9PffiLjERS90g21DoAkCO+XaMZfahtjGs41vZTy73LOinpXxrIxHHbQSUsQ5nzozlkvATBSzGvy17Ut1k3Nznmagsxe/AJuk+ATCVCNqQYZx132hfwP49fTEaNdI3NOq6uWJSluV4Ti6v0ryVYbSVic5ZCbxj5gZ3KHU2n0fO7Hf0wmqzI/53dNI7zLztkbb/5zCMBi/oOH4qMrA+yZGTkZtskya/EByrmWb+FF8IXXG0DHyxzrwMfIhO4IQ4txHeAxNSBDkA8I+8nzo4ggFug0RDWHCQxRFSMthikx6+BH88UKzWYB82EyPhpCVCIMiD/kUYZNVHoJcQiYzIUsJBQnfRz4s0uox0VvQAHkB9GiEPDijTsoQgyCFhdAH9QRRjKhejENEAhTo/bCnkz2I9NFhS4ICFwVYbwh5DTlt8xnkI0S1NUEDlyiqpWogalBPFmkLlyqr7TCIAyV1VGcpaocJn01yFvMcisOVdiVCK5brpDCaZmWhUOtFYseymlVzkcgrrhSskuhPtmKXTPHNjyAtW91GNikL+XNdqvMyXy4KiVBS5m57UHjGvWfSGVPmtDfh9Sf83kTQew4P6i1hBi0lB/1lLVtxlqZvtUTHDgDlhyK/Oas5u65KccyM92wlMhPdZ7ditMrZzdlSKR333cgFhz9ALLqwVrC+ldiaU8grxasW28nIFLQJXya5SAUrfoO00Pq1A1Bb3ww1tvXNC/z2iGWdXt1IyBW0+YPXJaiNgiHtfSB8buwMdYOh2//AlEyYznJKd9ZQYMebo1NGM19tI4FteAdqVmsK6XXeyrMy74YMzuesUsva3ExAU62N+qHIcm5i0VAIlP3kOi43VzYIqd3r400FPdeeIM6MfxGQEPGhMmdNG9vWyOijbaVcI+MaCbeNapFu5/GYGAnTxrY1UpAm9miNqbg1E7utGiENdbrOboKaJNO3iGUh1GXbUSK57kzVC94vFzHfhurunvih9pyMboXY5JrXBc+bWAdnLsultEzQS4OUJ2IBXTvRQMK0u36FA9jRlGc1bw+em1ufBczMuv1g3Rs2W/1Yl4u3xeojxMKtA0xG7SknMqlFpWMOxVBvrnkXVamQDMpV2l+n8wxMT3TiAjxKQwMssFTzsjYXOyAvaHXm5XwBlzqkTHiZCN3C/IO5H2o8URn/Cfy5rbJ2vnMYTB8MNROULK/mTN8hG6OBIXi9A4PZ78NsJrlCm6kzIODGGxP63fS7Mr2NHbjGGCgto4DrK85t1FhzsCUlk2w75AbOkFaTJqqWsD7Zdwd7edZI6AzcqQ529JYbIbYsiJ+B8+x/gtNa+OhYeg8MZVIuFqxIUWHuXlc80+NOdxtgro5QxLBG1sK2VO0Es7s1e+w5Rja7tdCzz7imZ/Ax37j39swe+h2GboNh0GA4wGS72ZaIFdxFruGdS5r3ANXUBfPwk0hTbi6itlD9Vdgl0rKjWFS5SITawpVrf74tFHAlN2SxT4HXnFe69nwoPtaskPrV2cr0qPWIz96J1GbAPZ12frfTdrPp/IuySd/vM9vEtvl6p+FHDfwPNZB2VhYsv4QIuAXluYWS7UEZ3w2lDqYtUvF3EvyDoAHSbYAMHiv2j6P984F4jffQvTglUC++KFAxsdc6055I/Y9C77ijJvqt+f1izwPJafyefFmIY58+eJB7Bj9dkLccD0PBkyX5w467OMbx6WmOS78bx+37jZAh3ntLejJ+ux/TvTmF6d58c6brLrnWNxg/Ng26w/Gtj1E8oMNx8K1p8c2eu/hp2cW/pvKbHAN/+fgh0ss3+PXSCwaebnIddtvZMbfNTnPb7Dt026ArZ+Ew8p6s58x3cYf9pi/b5NBl5N9/7vaf+ZZn6x2Q1uvhPMsGVTz0QzccB5QE4diLxkFzG/iyrwqwu1/18J3+7VgUN848TKNfkY+sTnpU2PJxnpfrX/gs5xsD+4NcOfazKzstu7Lv5HVoPGxrCx5i7BJCXeIFxMd+4L8ZYFttBiAV9atR9IQyb9T/mtL8M6D5r/mr/wBQSwcIcr2X3zIHAADSHwAAUEsBAhQAFAAIAAgA102UQxNAkoJPBQAAuwUAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADXTZRD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAACTBQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIANdNlENyvZffMgcAANIfAAAMAAAAAAAAAAAAAAAAAPAFAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAXA0AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
*Process:
 
# The teacher can initially have a recaptualation of the concept of a kite and its properties.
 
# Give them measures say, "Construct a kite which has its congruent sides as 4 cm and 6 cm a pair with one of its diagnols measuring 5cm.
 
# Can project the geogebra file and explain the steps of construction for the given measures.
 
* Draw a rough small kite labelling with the given measures.
 
* Begin with drawing a line segment, the diagnol of a given measure, here 5 cm. label it as AB.
 
* Draw a perpendicular bisector to this line segment AB.
 
* With A as centre construct an arc with 4cm as radius. Mark the intersecting point of arc with the perpendicular bisector as D. Join AD.
 
* With B as centre construct another arc with the same radius 4cm. You get the same point D as point of intersection .
 
* Join AD and BD which would measure 4cm each and would become one pair of congruent sides of the kite.
 
* Similarly draw arcs on the other side taking radius as 6cm to get other pair of congruent sides.
 
* ADBE would be the specified kite.
 
 
 
*Developmental Questions:
 
# What are the properties of a kite ?
 
# What measures are given for constructing a kite ?
 
# By which given measure can we begin the kite construction ?
 
# What is the angle between the two diagnols in a kite ?
 
# For what purpose are we drawing the perpendicular bisector ?
 
# What is the purpose of drawing an arc ?
 
# What should be measure of the radius of the arc ?
 
# Why should AD and BD be same ?
 
*Evaluation:
 
# Check if the constructed kite satisfies all of its properties.
 
*Question Corner:
 
# Can you think of any other method of kite construction for the given measures ?
 
 
 
===Activity No # ===
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
*Estimated Time
 
*Materials/ Resources needed
 
*Prerequisites/Instructions, if any
 
*Multimedia resources
 
*Website interactives/ links/ / Geogebra Applets
 
*Process/ Developmental Questions
 
*Evaluation
 
*Question Corner
 
 
 
= Hints for difficult problems =
 
 
 
= Project Ideas =
 
 
 
= Math Fun =
 
 
 
'''Usage'''
 
 
 
Create a new page and type <nowiki>{{subst:Math-Content}}</nowiki> to use this template
 

Latest revision as of 13:55, 5 August 2020

A Kite and its properties

Learning objectives

  1. A kite is a quadrilateral with two distinct pairs of adjacent sides that are congruent.
  2. The two pairs of congruent sides meet at two different points.
  3. A kite can also be described as a quadrilateral with an axis of symmetry along one of its diagonals.
  4. Kites have a couple of properties that will help us identify them from other quadrilaterals.
  • The diagonals of a kite meet at a right angle.
  • Kites have exactly one pair of opposite angles that are congruent.
  • Diagnols intersect at right angles.

<K = <M. This is the only pair of congruent angles because <J and <L have different measures.

Kite.jpeg


Notes for teachers

Source : http://www.ask.com/question/what-is-a-kite-in-geometry
Summary :

  1. A kite is sometimes also known as a deltoid.
  2. A kite, may be either convex or concave, but the word "kite" is often restricted to the convex variety. A concave kite is sometimes called a "dart" or "arrowhead".

Activity No # 1. Paper kite

  • Estimated Time: 30 minutes.
  • Materials/ Resources needed :
  1. A4 sheet of paper.
  • Prerequisites/Instructions, if any
  1. Neat paper folding skills.
  2. Ability to follow instructions.
  • Multimedia resources
  • Website interactives/ links/ / Geogebra Applets

This activity has been taken from the website : http://www.transum.org/software/Fun_Maths/kite/

  • Process:
  1. Fold an A4 sheet of paper as shown in the figures to make a kite.

Kite 1.jpeg Kite 2.jpeg Kite 3.jpeg Kite 4.jpeg


  • Developmental Questions:
  1. Which is the figure formed ?
  2. What is special about this quadrilateral ?
  3. How many sides does a kite have ?
  4. Are all sides equal ?
  5. Mark the diagnols ? What do you notice about them ?
  • Evaluation:
  1. Were the students able dto recognise the properties of a kite.
  • Question Corner
  1. Compare kite with other quadrilaterals and make a list of similarities and differences between them.