Difference between revisions of "Simultaneous Linear Equations"
Jump to navigation
Jump to search
(19 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
+ | <div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#ffffff; vertical-align:top; text-align:center; padding:5px;"> | ||
+ | ''[http://karnatakaeducation.org.in/KOER/index.php/ಏಕಕಾಲಿಕ_ರೇಖಾತ್ಮಕ_ಸಮೀಕರಣಗಳು ಕನ್ನಡದಲ್ಲಿ ನೋಡಿ]''</div> | ||
<!-- This portal was created using subst:box portal skeleton --> | <!-- This portal was created using subst:box portal skeleton --> | ||
<!-- BANNER ACROSS TOP OF PAGE --> | <!-- BANNER ACROSS TOP OF PAGE --> | ||
{| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;" | {| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;" | ||
|- | |- | ||
− | |style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics] | [http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics] | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics] |
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics] | [http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus] | [http://karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics] | [http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks] | [http://karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank] | [http://karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank] | ||
|} | |} | ||
Line 20: | Line 22: | ||
= Concept Map = | = Concept Map = | ||
− | + | [[File:Simultaneous_Linear_Equations.mm|Flash]] | |
+ | |||
__FORCETOC__ | __FORCETOC__ | ||
= Textbook = | = Textbook = | ||
Line 70: | Line 73: | ||
*Question Corner | *Question Corner | ||
− | ==Concept #== | + | ==Concept #2 - Graphical Method of Simultaneous Equations== |
===Learning objectives=== | ===Learning objectives=== | ||
+ | #State a given problem in algebraic terms | ||
+ | #Identifying the variables | ||
+ | #Interpret a linear equation as a line | ||
+ | #Understand that the solution is a point on both the lines, they intersect | ||
===Notes for teachers=== | ===Notes for teachers=== | ||
− | ===Activity No | + | It is better to use the graphical method before the algebraic manipulation.<br> |
+ | {{#widget:YouTube|id=MRAIgJmRmag}} | ||
+ | |||
+ | ===Activity No 1: [[Simultaneous linear equation activity|Simultaneous linear equation]] === | ||
{| style="height:10px; float:right; align:center;" | {| style="height:10px; float:right; align:center;" | ||
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | |<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;"> | ||
''[http://karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div> | ''[http://karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div> | ||
|} | |} | ||
− | * | + | * |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
===Activity No # === | ===Activity No # === | ||
Line 100: | Line 103: | ||
*Evaluation | *Evaluation | ||
*Question Corner | *Question Corner | ||
− | |||
− | |||
= Hints for difficult problems = | = Hints for difficult problems = | ||
Line 107: | Line 108: | ||
== Applications of Simultaneous Linear Equations - Exercise 3.5.5 == | == Applications of Simultaneous Linear Equations - Exercise 3.5.5 == | ||
− | ===Problem #5=== | + | ===Problem #5, Exercise 3.5.5, Page 213 === |
− | + | The measure of the sides (in cms) of a triangle are :<br> | |
− | + | <math>\frac{5}{3}x+y+\frac{1}{2}</math><br> | |
− | + | <math>2x+\frac{1}{2}y</math><br> | |
+ | <math>\frac{2}{3}x+2y+\frac{5}{2}</math> | ||
+ | When does it becomhttp://karnatakaeducation.org.in/KOER/en/skins/common/images/button_bold.pnge an equilateral triangle? | ||
+ | '''How to solve''' | ||
+ | #These are measurements of the sides of the triangle | ||
+ | #Equate the three | ||
+ | #Substitute and solve for x and y. | ||
− | + | '''Competencies''' | |
+ | #Equilateral triangle must have all sides equal | ||
+ | #The sides of a triangle are line (segments) and can be expressed as a linear equation. Though this is not used for solving this problem | ||
+ | #Infer that if the sides are same, the expressions must be the same numerical value | ||
+ | #If that is true, I can use combine the expressions to express one in terms of the other | ||
+ | #Rearranging terms and combining expressions to form equations | ||
+ | #Solve | ||
= Project Ideas = | = Project Ideas = | ||
Line 122: | Line 135: | ||
Create a new page and type <nowiki>{{subst:Math-Content}}</nowiki> to use this template | Create a new page and type <nowiki>{{subst:Math-Content}}</nowiki> to use this template | ||
+ | |||
+ | [[Category:Simultaneous Linear Equations]] |
Latest revision as of 20:09, 19 December 2020
Philosophy of Mathematics |
While creating a resource page, please click here for a resource creation checklist.
Concept Map
Textbook
To add textbook links, please follow these instructions to: (Click to create the subpage)
Additional Information
Useful websites
Reference Books
Teaching Outlines
Concept #1 - Where do I use simultaenous equations
Learning objectives
- There are two quantities/ parameters that are used together to describe something.
- This is of the forms ax+by = c
- You need two sets of equations to find the solutions.
- Extend this understanding for different sets of variables.
Notes for teachers
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Concept #2 - Graphical Method of Simultaneous Equations
Learning objectives
- State a given problem in algebraic terms
- Identifying the variables
- Interpret a linear equation as a line
- Understand that the solution is a point on both the lines, they intersect
Notes for teachers
It is better to use the graphical method before the algebraic manipulation.
Activity No 1: Simultaneous linear equation
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ / Geogebra Applets
- Process/ Developmental Questions
- Evaluation
- Question Corner
Hints for difficult problems
Applications of Simultaneous Linear Equations - Exercise 3.5.5
Problem #5, Exercise 3.5.5, Page 213
The measure of the sides (in cms) of a triangle are :
When does it becomhttp://karnatakaeducation.org.in/KOER/en/skins/common/images/button_bold.pnge an equilateral triangle?
How to solve
- These are measurements of the sides of the triangle
- Equate the three
- Substitute and solve for x and y.
Competencies
- Equilateral triangle must have all sides equal
- The sides of a triangle are line (segments) and can be expressed as a linear equation. Though this is not used for solving this problem
- Infer that if the sides are same, the expressions must be the same numerical value
- If that is true, I can use combine the expressions to express one in terms of the other
- Rearranging terms and combining expressions to form equations
- Solve
Project Ideas
Math Fun
Usage
Create a new page and type {{subst:Math-Content}} to use this template