Line 74:
Line 74:
{{#widget:YouTube|id=XYP8oPVdrZw}}
{{#widget:YouTube|id=XYP8oPVdrZw}}
*Website interactives/ links/ / Geogebra Applets
*Website interactives/ links/ / Geogebra Applets
− <ggb_applet width="1366" height="568" version="4.0" ggbBase64="UEsDBBQACAAIAKlW+kIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZy1WezzT+x/+boYl01xG7YSR4hziKNdc2tylXIdWzSkd7dgoywihxSmTGMcltyLJ/RJp5DaOyeSWe0jkZ0cuszL365nO74/n83m9ntf78/7n87yf5x3taG8NE0OKAQAAs7WxcBbcbAGuQ0UE5+dIh9cAcEDL1gKDDRrlPiX5yLjKtA3rbzaPWkiZ+3hCWw/FQ1vfn6bmynSchhejdH9Ov6p+yE4YBCqUjabnJS3FhQMaqAiRqjxiq16OFPPDOZ+i5nioyu++fUMMoo8v/W5g2urqYsOdG9XjiwuLe1mZC52Zdwl5p9eGt1KNCMYyD+s9tHR1dOCQ1jrjLzfqKbNSZQoQNAD9ARAc+kgNpUDPHyaSSOSV7OdarxTod0EYGNjSLkb2pBj4zyf9/f0gKOT5ITBGJDklxdndXQ64L+VO6M58npOj/PK4qqrLjRt5Q1pInigVDSfCoWAUXOeVWaj/7+pS5k3XuORpdkKQBPit1eDgIIb6bSlZ3d0xEu2Iw+FYVjUAdPpMmtVrbMpff5l5e3tLHmkHoxw7i1+9ih8dGxt3jez0xVkeLEBNMR4zsiHo3p8AqP71G/MHsWaKatynZS1JW7Ygk7WRjh0GbyEoS2x+YuAfF5xeQ0QdpFUO5aNerN9bdKt680nMZQknMh+zd/vauAQAbtVHxcbG6vDpCCXEsh+MitYWZQ8UuviS4AD4ebQwGgWA/wOUKt4oEbYwqezwIV+fo8/xz/lypLunQ/MkAEJdm73f2cjpjRl8QH/SZorI/Jw0oam4pZHoxbXm9HMnftQIgVV8DXtP0osOau193k09Ajdk4k2fsnZSieLBex9QYGcnJ8yxxgwr3upRWPEHgmMjr0lajR54BpxbV5dR9htzsZrB0HPXq1DoFCvTxe4VBlzQ2O+Ah+WM0hOREKQF+p/ONPPXl90eCov2lIak622AJLtsYc4uLuYcDmen++WLF5Fz8/NkVaU1oG90FJl8YihaWrUgN5fF/NTXZ9bV1bXLqa0988kWGrb/a2QRaDWfwDz8VTxjU8Sz7aiAAbFrvCwur0nH3su7lWHAKqrM9N2xTsPOzjTI/Eq6+/5KkxDaEx5voir0IIzX3lRrjB0bQRh/MvI51cspbp7dWJvoRqcbqQqfh4iCUdqiNvwsi7Uu8e1KlpLbd/crsiS4dpiVaW/p7P2VEl2QCyfKE4BLFJ5qyYgxFYhTIBIAIlAUEM0WlnlINu/SZ6KqlvMCRqJ2xQAyDFUELkQ2JrfKh+I8TUlBT2bs0v7xLowDoQFaMSDJoVhx390OMyUzq19GmUo/2TExUZsEWA+o7JaGIp16U6U2U0XS+cAgXfa9cbVJoUamR/mwolWVwYRdhn96iO944vBmaUejyfWlgtARlZdcjzNO86+3xVO7DXLj3xjn607cC08hY4PJeL3Es5eCyR4VG/qCCVseREU9CmU09JwbvrN8+Qn3Yt9ck52YGEndsGSlIiyZ0WRz0vynuJ7S/x58r5SFMySfKTPlPw7JTxs9qx+CNp/r2RkIm0zqcz9N1nZ1c3P28HhW/rTkppq+rq73Hm1gABsQoBbaNt6tFdUhF1bEF/OaOMP82YK5WK8xMfKa8GY4Zkf/5qdfF+8OFDidyxonJI2UG2mtpi0e2wpYSwir3WJXqisuzPDnFhawm5WVlVUbI1kZGcUrx48fX9l8TE3tlIAnaqO2+5ILm/z8av+AznDi+JVj5e09pruT+e1nvd7LWG/FIvcLfkLMBcNcsYmVj5jmSB3HhhySyZ1e+f5RzcB11zFWwEa9yLxB4FrzNCHr6URhzyEbV1cE9/MnWVkUl9P2dXOMt3JpZpd+FCSldfsyVpqER0w3hywqb7K2i7i1Vc8VrNf0x+TbEC31cloeudVi5Q/wkVg5n3xzw2BKeEsc6nD4WIWWEkC2w0q/bSp8Vkcz/W7MMXvf5ZdP/SjfBqHNGpQFS5yKP+HGmXOffRM8snzhy/zuSgreujB4WHJvKQFB+prVoPjuJOpmDNGT6InrwVtklW0QTKwrSJ6GJnFlOO87malCLOTIKRj/hLP0wUe3LEsTJTD7YhSAxYqVHV2d7UnfQtSGlrzMiE65FUC4p5RDXbjkgG1sfyvv4CGKviIecXN9LSqrM/JAXoL20LgLbTFtrlsynwbuUw+/zUOcf1E0gANU3jVVEIF8akGEJQAfEs4iY3u0wk6cLd37TLgHir9Ygvm4mGpD4VF2ZILxppKv/vTxXOkPztpZfF0e9s6fYZC92fVBb/mgk4u5tGtcJgidzZrNNeqe/L5OMFawRdqZiDoIwaFU9tQRumsh/YXIfYB2zvh/ToOiCaqac8TDwJQErqXBkwlGQtAXa+3POFzR6PLAMBsrVNlt/m8+2tN7/k5WnLKv1SDXuCukRShDoQ5XOtMMIjXleAfTa9Zni7qWW0d9KcRt6ZolJwi7SBewkQEwiip6RDi5Ru6CBgDGmAtBD/H19PSmDAXjTJmS++60P9IXNKBUIN6vlefMn39Ze7gmL27pm/hWN6O/KoVSXvMowaokbMTyulMDeF5HS2Ci4fgaGTXjbRLihItFYMrhhnEJuPZqmWas5tcIDfU+WmJV5W/PBud1qBDA1g9tECIqZ6z+KApvEZjvNFG64sg0zBGDqTwr7q/6Bc26JEUF4NYhQbbZ376Vi9N+Ua775XZ0IpKVZIUIvZBsH6fCq4r24sgda30R7XVMYi7mmgeUWnAqyHg3u6UAgwIiTsgKItNGmZbPmPHxT9FMWt6XwxBs8Lxb5mr9zmM8Waw+8QcXG76dpuZt9ev5HNbP34p+UL6wv3u8GAunZxD5TUa2h37Er5mNRmgUjx+V59JVs3ENxz3GJ3Oer5dh1k+/hf8/oG2UD3wJB2ymPjtmZMOga0JoFMzArVRgclAi/AIswu8sAInIEaKtH53+9Na/JgQOCIIbBAdOTXbzroZ5t7fPl0xVTC/nbeeF2stE22gAKs0ArvL+H24eE3rq7w8wL18T9oH3s6WElB97lGiGTm3N3QaE8eF1oXndO1etPEGoA1DaxVeL6ecppJB7iqTUW1sCX/emUGmSjtPXaZIOFCp7g7s0KzP7ozUxfiF2pxrX4QlTznfSTZiGqtUiLYZZzpaO2pz+QVSkfLQwFe2YA1aW4GteqYkPoWjrK6klkOC7NAIeL7+/lGCn6EE50cLHI3ZFKTYGuJaOrwaCDQqwtbS3KDO7GvEvUEsHCGRcHD9rCQAAaAkAAFBLAwQUAAgACACpVvpCAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgAqVb6QgAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzlXHtz2kgS/zv7Kaa4qi17A7ZGb2UhW35hcCWbVNl3lbtsKjWSBlAsJFYSGGf3vlQ+Qj7Z9cxIQjyEAZsU5lKx9Zie7plf/3q6JQbXfxv3fTSiUeyFQaOCj6QKooETul7QbVSGSadmVn57/VO9S8MutSOCOmHUJ0mjojJJz4UusmW5Hd2puRYxaqphSDVCXLlmyo7VkTRTI5RWEBrH3qsg/J30aTwgDr12erRP3oQOSbjhXpIMXh0f393dHWWmjsKoe9zt2kfj2K0gGGYQNyrpyStQN9XpTuHisiTh4w9v3wj1NS+IExI4YJ9NYei9/ulF/c4L3PAO3Xlu0oPRK7peQT3qdXswKUOGSR0zqQEgMqBO4o1oDH0Ll3zSSX9Q4WIkYO0vxBny8/lUkOuNPJdGjYp0hDVLsyRJVSxZMXVNqaAw8miQpLI4tXmcaauPPHon1LIzblGtoCQMfZswjejvv5EsyRKqsgMWBxkOui6aJHFPUsRBFgdVHDQho4ruqhBVhYwqZFQY48iLPdunjUqH+DFA6AWdCNyXX8fJvU/5eNIbk9njKswp9r6CsCIBpAJzuC9JVfajw48qpVgXJokLVpNouKbRzCQGp65uU36MTSWzKWNz3qSslUxTX4KuGMNK89QK0IIp/p//zFlU5DUsiuvHGdTVHzLF+nEWKvU0OlDcY7KpJxPaj1m8KBbSLEZ7jDSIDd0AlmsIW3AwZATRgLCGVA0usYl0djSQYkCDihRkIiaHFcSDQzPhl2pwZTrSQBm7a0BMIgyGVKQpCPOYUhFEEuJxCTEqKyChaUiDTsw8lpkKRUeqDleKiVQYIwtJA4OgAh3hGszLSMFIYZ2xgWQd6UwfVlmo6yYbOqiUkS4hHTOFENUQ0SKaQd5ECpuNnsLlBYNhMgWR03ez0yQc5L4AaViPJqueWJ+mFsUXdZ/Y1IdEcc08idCI+CwiuKFOGCQoc6Is7nUjMuh5TnxNkwR6xegLGZE3JKHjJkjHmW0u64RB/D4Kk7PQH/aDGCEn9KV8zKGPC+dyPmq4UAoNarFBKzTohXNjod0QWtAwpmA/jOJMnLhum0lMlgZA8l3g359GlNwOQm96GvVjnnPqdOj4nuuR4F9AVmaF4YLyFMSXqywFaZCP0pGEkXt9HwOF0fg/NAobFRMfyQrGuiFDHlElA7rdixZZNY4sVZVVU5cMWHYg3GOH+HxhOtIUSdd1E6uyrJmmBp1K2jRDmKaj3EVkTPPZdyMW2enM2UU7Pg39yS0+/zMySIYRrx5gcYzYpE6Crk85R3hkQ2p2bu1wfC3IoQhdN/cDuJLEAOwuxx3B2iBrMOBuerTFkcuwkeVSEpeRuISUsc1z83ZsyVyCH21x5FJAXzG0dKY4myaWMjNezFc0qTIVN5z7LM8PAy95k10knnM7mSmT/33Yt2nOoGmV+MlUsjFDxREnH9Iajp3/u3B+06MJYbWIJiuaZRqGBr9lyzQFT2cYWr+lUUD9NCCACcNwGIv4LsSKSx2vD5eiIQWUMGf/EyYg7rq0G9Fs3j6v6wTcvFUqUn3uNlfVjMJ+OxjdAJNmBlA/zkZZj53IGzDCIhuSyC2dcBLmTiAHucV+LIIBOoflGoA3YdBCbA+TXhjxyg2WJDiywPVpH+o0lHByBsM+jTwndxThJSAMapiOu6YcpUNnbkKh/QUWyxnvTnwGzSX8RcQf9Li3cMpSck+jKWy4trehm1pO5WKflZyo70EOrWEImD4ZsyQKGu0YVtIE6m5wRzCpu8XYspVIkhhfoIslW+zsHtYjXuh3vHEBVMDJ+wq8IFPzmYRSAqv8LZSyMa+ukjSy+UnLc10a5AMmATCI+wHWuYFg+IBSERt5xwHMn68oBd+nrnnQSfask4y98ZFipj4yrZ330XgQgS2mJMX4BJ4zx6DtgKCXyK4i6TBTxtOIqECmXZs25ArmnJjVkcu8iGWRT/gxzScTX0or+rK4cMXMGWrqCu6cr2LhFQ+SbNAs1U2VR+LuzIq3HLDTGcAIqiF7XdBONwOtSP0nBqyGtwfZWQaZtCFcZzvFMenJIXPCfp8ELgr4Y1k7SKCsgFlWJo8KBIru8QkULDABqLnv+amY8DDJBM6F3lTbA5ieb4Ype6DsioMtDk8I6HbwvKZddn8GzTOB5Pkcis5yFONUWwaTM4/jVBIrFGqrZLGNQUzZWFj7Jso2yDb0z0B0iUXN6/UHvud4SQ6Xz9JMTlWI9vnC9JbSAXueeBfcRCSI2StLIZNRa12fnQufncz5zF3PZ+6u+Cxzmbq3LjsRLjudcxldz2V0R1w2F2U1df+cdiqcdjbntM56TuvsiNPyBKM+U6fN11QXeRm6Qc1+sVP1FH9c327R3iygRdZFq7kzxXqOlDjZClSXxWJ9XagudwYqaftItTKkNnlsbu1UCBpbj8B2Aay1n//aO0OrDChja0BdFeJvbaCudgYo6YmBmi5b3of+fTcMFj8eQFwSmTOOKAyS2SJmAJ2xEHU/YyHcE8IeHNRG5ctDD9LCegaqULhpMbHZ+8/scxgNF7ylauu4q/zl7dzz0mf8mEpu4Vgf/9CUUeuZlXJLke7tEM6zSUG19ghob3eAzksVYx+B/rI7QM8Suva8Vo41UuCFyGpNkdUuF6ZAOUuBshCmPBeCeIefQBrsrp8G5S2kwRKGME6UVC1bS4PyZmReMtTHp8H8Ced5sfmB132bVhzbgHr2/cQ+Lc+dXQI6o7Syh0B3dwfmuRduz2vlWCMPnojUdioS2/z7bJaylCwPKkKYZHnQzvKg8xmvnwmVH5cJs7150oInwm1lQmUzOi8Z6v/rp2jLkSabrs/bQPrZf/i1HGt7l7B+/p9ZLd82sUtY79feiXMv/bbVdEos/STeTeVPTpdnudktnYV+TGNhbyfO4Vt54+byl+I3dJycZDvvfv5zGCa//hGOaMS885e4Ri/RAfta28eTT4f5+Sk/FwL/RX9UUYP9yjsUZrDg1XoCRiszI3jEu4xHf57txW/IDf0wTYP0Kx4xeKYz+ToE39IvVTICZjttExIl79mbdgHkW8/l790/nlTR6aeC6XedTkwTHhmaIVYh6zGcm99klSP/wJ61Us6dz3JO3Qblzten3PmKlDtfjXILtuntC+XOSyinYE45WdmIcpeCcs1Syl02N6PcZXOWcsoWKHfZXI1ylwXKNVejHFO9AuUuF+x3WCcxs5T82GfV7fHusoqaJbwDwvFvWmxEu2b24rWMds2LzWjXvPgRtGterEa7ZoF2F6vRjqlegXbNBZuS9mKla1bRRVlyVdON5HNeWolzLcG5dinnWu3NONdql35b5wk512qvxrlWgXPt1TjHVK/AudaCjSV7wblWFbUXc05LGbdZcm0Lxs3vqciAb19txrj21Y9gXPtqNca1C4y7Wo1xTPUKjGsv2KGzF4xrV9FVWT0nVjn5YR8xuPCUiw7IS/sQHZAa/G4g8v0b+/rQ928//wNLv44IDNgT3857xe+0O4g0cteQ3G+IEduetNh5C+82beTjwQINhy8PFvQ+/FQiXUOLxbk5NPcPjE4YyL9XNuEcmEDFxtpUY6nCQp9M4y9Z98Pp6Z8AODmy0PcALZjS92+HaPGsoKV0FMWB/4LIxDDomrTZ0GbPDGoFbWzAC3q2KIRjFZUxhws+GKuCiY8I1aeogkvDkv3hktK45C9qjSOs66pu6Zam6opmph+rWRbWNE1WDBnuSVpxZ14xMo+LX81m19nfAnr9P1BLBwjp+je2+goAAKhIAABQSwECFAAUAAgACACpVvpCZFwcP2sJAABoCQAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIAKlW+kJFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAK8JAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAqVb6Qun6N7b6CgAAqEgAAAwAAAAAAAAAAAAAAAAADQoAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAMIAAABBFQAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" />
+
*Process/ Developmental Questions
*Process/ Developmental Questions
1. Demonstrate multiplying polynomials using tabular method
1. Demonstrate multiplying polynomials using tabular method
Revision as of 13:53, 4 September 2013
Usage
Create a new page and type {{subst:Math-Content}} to use this template
Please click here for a resource creation checklist .
Concept Map
Error: Mind Map file Multiplication.mm
not found
Textbook
To add textbook links, please follow these instructions to:
(Click to create the subpage )
NCERT Books
Class IX Chapter Polynomials
Tamilnadu Text Books
Class IX text book
Additional Information
Useful websites
multipying polynomials with tabular method is explained in a very simple manner which could help you in classroom teching
Maths is fun website here you can understand polynomial in easy way
Reference Books
Teaching Outlines
Concept #1
Learning objectives
1. Can multiply Polynomial by monomial, binomial and Trinomial
2. Can find the product of any two Polynomials by formal multiplication
Notes for teachers
Activity No #1
Multiplying Polynomials Using Algebra Tiles
Estimated Time
Materials/ Resources needed
1. Algebra Tiles activity sheet ,
2. Algebra tiles
Prerequisites/Instructions, if any
Knowledge Of the terms monomial, binomial, trinomial, polynomial, term, degree, base, exponent, coefficient
VIDEO
Website interactives/ links/ / Geogebra Applets
Process/ Developmental Questions
1. Demonstrate multiplying polynomials using algebra tiles, as shown below:
(x x 1)(x + 6) = x2 + 7x + 6
2. Distribute algebra tiles and copies of the Multiplying Polynomials Using Algebra Tiles
activity sheet. Instruct students to model each expression with the tiles, draw the model,
simplify the expression, and write the simplified answer.
o Draw a model of the multiplication of two binomials. Simplify your expression.
o Explain why (2x)(3x) = 6x and not 6x.
Activity No #2
Multiplying Polynomials Using Tabular method
Estimated Time
Materials/ Resources needed
Whiteboard, marker pens
Prerequisites/Instructions, if any
Knowledge Of the terms monomial, binomial, trinomial, polynomial, term, degree, base, exponent, coefficient
VIDEO
Website interactives/ links/ / Geogebra Applets
Process/ Developmental Questions
1. Demonstrate multiplying polynomials using tabular method
(x x 1)(x + 6) = x2 + 7x + 6
2. Distribute copies of the Multiplying Polynomials Using Tabular method
activity sheet. Instruct students to model each expression with the tabular method , draw the table,
simplify the expression, and write the simplified answer.
What is the product of (2x+3y)^2
Hints for difficult problems
Project Ideas
Math Fun