Line 5: |
Line 5: |
| {| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;" | | {| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;" |
| |- | | |- |
− | |style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
| [http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics] | | [http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics] |
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics] | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |[http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics] |
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
| [http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics] | | [http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics] |
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
| [http://karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus] | | [http://karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus] |
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
| [http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics] | | [http://karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics] |
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
| [http://karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks] | | [http://karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks] |
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
| [http://karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank] | | [http://karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank] |
| |} | | |} |
Line 113: |
Line 113: |
| *Multimedia resources; Laptop | | *Multimedia resources; Laptop |
| *Website interactives/ links/ / Geogebra Applets | | *Website interactives/ links/ / Geogebra Applets |
− | <ggb_applet width="1280" height="572" version="4.0" ggbBase64="UEsDBBQACAAIAA1+c0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ+sM8HPn5ZLiYmBg4PX0cAkC0ieAOIODDUhucdlfwMDAMsHTxTGk4tbbO/4eUzJlDnwMFHNr6lpkpVP96lmSuKKroZiZ+cKj3TrSqd7tS2K9zW61Srkk+RmyL2yWU7HxCFGfqLjIdk03e6L+4jxuvcUTjXfzGs0Nc95QtOH+ufe1tbXzK59Xbva22naf3+bM/vK4+Lj57/e8f5HhwtDStYGbgYmRg0VBoMEBmeGgwNC4gClWZqfGypxTc2tiBZkYfYLr/X9OPs/x5OL8/iXLdrtdu36dM+W7XL7yv4yMAn1paW/59evELEtX1fwsfu6yKHDiYnfv65Xv552YqPzuwutnxTZnz74z2O+Xv37/mbnWSr+/d1+5+rP/9jbLHOltgXWW+Xv3vy2bLXKNW8bRrsvjyt/f776y859izszVnT+nna/zzh7NSSenrHv/IXFiyClZKU+DCTlhS1adkq26G/3+3t5/RrvezZz5Kbfmfu4NtpP2k4Lux+lvjb/u9SdxT86RY0mp318Wc6RsZ9u07Vncde/bR3juzZsvvrPu7twl0axJu0pPz38AMubn53+b2PmnuYnypKzOvaG28+icmL8vtfIv/RdvzBF1+XB19757tntfvtCwP3rJo6RieYSabW5Wfnmzgf9COftv02UlBG5uP2/Pa7z/3e8cZo6U8OrPbk+Ocn9jbmRgYRLgAAUnkIEaxlAGXFaAoyzPyMd3ozBHS6evAsuniz5//Jctf3q7lXXnhLNeX4+x9EXolf758Wdn8c+fb9aUyt4ryvWfb9U/92yK2Xvj6+nR/I0LHs2ZM7980YVAY2PlmdfXz/399dud1eGqwtVv30bfDI5JKys1LZHddSf+6PPKha7dD//8+pQaqbDtqwCHlp+z1d6fXP9jP3IEbTVs3K8lx3gmvC5/Z/bOOcYvzwarFsseFDjUB1Zq16EdblZWwvouk9fB+ceyil+sTDefGdRNmzbt/U1BlqYFU6eKvnzzZor39HUbjTlYDlrs2rVLZf75zUD2MqeFChsjeiw4WLZZVFVVdTQ7CIi5W81NSxfgaPr16xeQnyDcf7wTKFz2ZMacOSnuQHGhTpZCAY6ctvZ2oHiCsYWFxuLFi99wMDleuHBBACQz6eQSYwcFjguL2/a9Z2g8INQOohQc6oOWvrd2UNhw5OL9++f7FARuPLpwfxIzi9CC+auV+AQ8PGR+PXRucNApfHG/5MX9MgaWpBnRMyYv+6b2iKGRxfb385kmZSanbnyZwfPH7EAPQ+OMQhnrSp95KfNOPLq0SKXO0+Pd/Tt9uf3f/Z85KFi/c3vPu/L3pjzjvt3770/NKL+yk2fx8oSbOdtSlgRpzpwx44bM48ePjYyMgoy+fNf89ey+9K9go8/fPj5ee+nKF+bNEx203M/O039y+db5J0dmCp+zuFDjEHVuy4mX3Mud1Tf1PXhynd9gVuMLDrctW7Z8OZd78umnS3dlk82EPJ7uqNl5/Kd6/rynV1PTmDmOCPd+OsuOktqgDPSsDWJgUQZiQGUfNP/m/yH1dPORnvKlwCKKwdPVz2WdU0ITAFBLBwj/L72XlQQAAMkEAABQSwMEFAAIAAgADX5zQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAAIAA1+c0MAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVpbctw2Fv12VoHihyupcrPxBmi3nLJSccZViu2KPFMz88cm0S1GbLJDsqWWKwuYrCKf8zvOEmYBXkRWMhcAyWbrZbUky+OyBBK4eNxz7gu0J9+uFzk6MVWdlcVeQEIcIFMkZZoV871g1cxGOvj2+VeTuSnnZlrFaFZWi7jZC7iVzNK9gBpBosSY0ZRP+YhLikeRkXiEmU7MjFEiNQ0QWtfZ06J8HS9MvYwTc5gcmUV8UCZx4zY+aprl0/H49PQ07LYKy2o+ns+n4bpOAwTHLOq9oH14CsttTTplTpxiTMZ///HALz/KirqJi8QEyKqwyp5/9WhymhVpeYpOs7Q5AoWpBj2OTDY/AqUU5QEaW6klILI0SZOdmBrmDl6d0s1iGTixuLDjj/wTynt9ApRmJ1lqqr0Ah4QJIiQVASqrzBRNK0PavcbdKpOTzJz65eyT2wkO1JRlPo3tSujXXxHFFKMntiG+odBI6Yew78PMN9Q33DfCy3A/nXtR7mW4l+EsQCdZnU1zsxfM4rwG6LJiVgFt/XvdnOXGnaft2GhNnoBOdfYehBkGXD3W0I/xE/sj4YfbgfG2kmSwa1Otdty025LgSNx8T3qXPVm/p2IXt6TiCjXlNej6M9xITzGAFrZyf93PhR0Z3WFH/363DSV/EBUn485VJq13oPrIyrZMNmZRW39hERKRNXuCBPiGVGDlApEIGkUReAMiAnEBr0QjaVuFmIIBjhjSyMoRhpxzCA2/uHKLSSRgMdurwCcRgY04EgwR51McgSch55fgo5SBhBBIwCS7PaF2CSYRl/DGNOJwRuuSioAgg4nwDttTxAhidjJRiEok7XqEW1eX2h4dlqRIYiSJXRC8GjzaezPIa8SsNrKFKyuWq2YLomSRdo9Nuey5AGmIR5to5+PTVjB8NMnjqckhQRxaJhE6iXPrEW6jWVk0qCOR+r55FS+PsqQ+NE0Ds2r0c3wSH8SNWb8E6brb28kmZVG/rcrmuzJfLYoaoaTMcX/mMieDZ9qfGl7YYIAPB8RgQA6e1aX7ljCCVrWB/cuq7sTjNH1lJTahAZB8U+Rn+5WJj5dltq3GZOxyzcSskjxLs7j4Gxir3cXigvrU48JVl3qEwt1Jyio9PKvBhNH6n6YqIVRxHXKOiZQ6YgLiPzjZmR9iWocC0hYXDAsmifWgJLbOx3EYMYWlEhFmXFjHPLtiSHO/tTnpKYrXZqPtvLKuPXh5Ve+X+abLAfBdvGxWlSsbICRWVqsXxTw3zkica0NOTo6n5frQWwfza707W8Jbq/x07oBHEByoAHTmbTv1rZOxR+ulsJPBTgJ35pal/TiJqJNw7dS3Tgrs1x+tVZV0ahLcbZPVLqThoHWcLlxZ67cZflVkzUH30mTJ8UZVO+H1ajE1vQ1tr0nua83J+JyRTY5NVZi8tWkgc1Wuau+iA3NPTZIt4NUPtJDElq6/wgF8b2rmlekOnruSzAPmRres9UK3W+plVS5eFSfvwBbOHWAy7k45qZMqW1qbQ1PIA8dmY1VpVseQRtLhPOuEoHpi0wXA01howD1XzVFZuaILogq01vdys4BSCzXOvNx5epg/fnDFG5xp1R07VFqwSBPJWKQ41204q3Nbw6FFVjg7WMRrSHEh1YyAOFZERUJDjI2nNcSrBqpaQKzYVLU+erT+rqgtmWEBzaV9OoMnZR9m2dr0wRgUyd4DcfZUG8Ox3KNy+jME4T5Pe102MjB8zi0I7hwDxfnyKHa1aGv+8RnoNaTMrfdmNqtNYw/J3QGHYz+WaYsWOe9CDYT3Y6hha1dWNa1Hu4e/ZGlqin5OXCXW/duc0VsLGKOjFKLe0p4SEwURjUYU7hYRhweIAZCCLEw4tIV0v8cSNHFBZ2BcLfcXrMDFqR65F8HtkcV9SNogi69FdoPeFUqTXkPSqUcuU6/1udqSBOajPU+hrS3f+wucv8BYXQdQD3vPuetNAdt/UMA2pjiCQsIqST87njRkLZz4fuBMysUiLlJUuPr3pxKufibYFGQxtmaIYuJiEoqpBdkjuGp6gcfxsqyf+aXbBT9l2u2UL2rgG1hFKDG4cqSYiCBsck8nCwXBUkMZRAnUIYKozwC5K0EuR3zfAz6Adwv2j39cj/i5lPLHjVPKA4XyDR8XKp67hus8L09/MrPcrB28fnRQkVzBxaGZ2/7zbLT4t5ycpyG+noW6XbPDMP6EzQ/c/iqjx/dh8izk4rxxg82PWMi2XUE4ox+pUDGNrbjSGksqb8+Z+aXwU2pfOmaLZZ4lWdNDm9sI+KpooJA0rpK6WB8eG7O0hfmb4l0VF7X96Hc3lvc9vy8u8Dvdjd/p/wm/I+t+llEObu4phNXgKoUHf+7geA9OolkvKziYzZ9dODLrBnSEgb3g8S+rsnkWJ1DjIhf4fIdbZJswOyvYXuLGjEF1n2Y+hdv7dSv9Nf7vf9DjvHmGPn74Bv35r3+jrz9+8B0RDH1zFdvumjxt29sy7r5n1KbKZpu7v7++yqDjpqWsbuKqeWvTE/K1maBDYyBt0tuyENu7yXmf5oNt8eEu2bvywe7KB4D/52+/O+wvQk8Eu6/64fbQk5CwaPhHtdir84zsgj3fwr6cNqt6Z2fgd3aG6GpvIPpyd+g4ce3dAuDtORkRQD+SGHKbYhyyIhNtqQ1FEpOaU6ngF4nkbqzIbY9wVcmurMg7s+Kgv4IWJi+nRRDHim2+oKvAdTqiUIwQxqiy3HQXIOhSEsOxMNNaarEjL2qLF0jvy9zsnjzUPQUrx8FFClxq6KOVZeLhGdAhjhSJmFaYasyl6C/0FCsOVwdq60hB1W74iy3866aKb5MsxI2vkNfC79zjs1Vlt8ee2k95nAktIywFpIS2SschE5QTxSVhWGkITWI39OkW+vZT/a7I03uy/Mvtvv22jh+mQMKXgg/pGCwbbsecU601F6otqCmVAhKFiriiXOvdkNdbyL/7x9vvD9Gbl+jF6x8Ovj+8Ofz6dveMbWC/iE3zEJNIUy4BVRn5z4MqJJRyIYQSgstrKp/x8AO7+4es9j9jPP8fUEsHCGeWpqHrCAAAKSIAAFBLAQIUABQACAAIAA1+c0P/L72XlQQAAMkEAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgADX5zQ0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAA2QQAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAANfnNDZ5amoesIAAApIgAADAAAAAAAAAAAAAAAAAA3BQAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAAFwOAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | + | <span> </span> |
| + | |
| + | <span></span><div id="ggbContainer4a44ef2dc4b78417b74d34b3b537830b"></div><span></span> |
| *Process: | | *Process: |
| # The teacher should recaptulate the concept of a point, line segment, ray, vertex and angles. | | # The teacher should recaptulate the concept of a point, line segment, ray, vertex and angles. |
Line 297: |
Line 299: |
| Laptop<br> | | Laptop<br> |
| '''*Website interactives/ links/ / Geogebra Applets'''<br> | | '''*Website interactives/ links/ / Geogebra Applets'''<br> |
− | <ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAAGeV0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwE/FcDqiVBORw0KGgoAAAANSUhEUgAAAMgAAABcCAYAAAArr/rLAAAVBklEQVR42u1dCVQVR9ZuN0BcI4gibsmMoEZBZUQWQUZxQXAJGsVgYDRGRREVFFlckCXsi2wPwQQXokFEgqBGCe5RETUTTcL8/vp7PJPFuGRxMomJ6Pf3rcd7PuCB+8p953ynqrurb1VX3a9v1a2uepIkSWAwGPWCK4HBYIIwGEwQBuMpEgTSbK4gBhOkPmJohipwhTHYgjAYjPoJ4ix1g5v0KlZJlg+FCVJPrlgGWxAGgwnCYDBBnj309PQaPKft+v1AX18fmZmZMDMzq/dcs2bN0Lx580fOVzOttnxrp6svH2336ujo4JVXXlEft2/fvsGy1H6mB63vex0bGxvXuKZZtoetm4bqrFEQZNy4cWjRogX8/PywevVq0ehjxoyBu7s7IiMj0b17d5FOdS48PFwdf++99zBs2DAsW7YMQUFB6NWrF1q3bo2uXbti4cKFSEtLQ0xMTA3Z1CjR0dG4ceMGpk2bBktLS3Ts2BGDBw/GTz/9JGSR/BkzZuDdd9+Fra2tKMPKlStr5KsqF2HQoEEwNDQUcVX+2tKSLMpjyZIl6nw101E8IiICs2fPVj+rSqG13RsWFobt27cL5dHV1UVlZaVIr5KZnJysrhfNZ6pd95p1+/rrr2PKlCl12kAzTe32oGOSc/DgQbi5uaFbt26wsLBARUWFqAs7Ozt06dKlwboZMWKEeD5qq5YtW8LZ2VkQetKkSaKtNMvdaAgydOhQUUGLFi1CYmIitmzZgg4dOgglGTVqlKjAefPmiYqlxnz77beF8ri6ugqlIBKQ4g8cOBD0KywsxKpVq8S5FStWYPfu3Th37lwN2ZRvcHAw1qxZI+IbNmwQ5Zg1axZycnKEAlK+o0ePxvjx4/HBBx+IMixevFiUgchAZFGVi2RQeUeOHCnkqPJPSEhA7969sXz5cnVaehNaWVkJWap8KS9VuqSkJHzyySeYOXOmeL4FCxYIUB7a7qVymJqaIjAwUBzTfUQCUlo6Ty8IVb1oPlPtuqf6dHFxgY+Pj8jH3t6+ThtMnjxZXSa6X/MeejZScKpnwtKlS0Udz5kzR9QXvZCoLA3VTVRUlHh+yofKRM9JbUKEKygoQEhISOMjCDVwbm6ueGtTw6ampqoVeP369aJSqcHatWsHb29v0WhUcXQfKS41PDWIgYEBdu7cKRSAZGVkZIh0Z86cEek0ZRPIctBbjeJEOIoTYY4cOSLyoLzojUeEoG7DsWPHRCPOnTtXXFeVa+zYsUIGNTTlExAQoM6fykiE03wGf39/0djz589X50vPSunozUnkJItHCkREobc/KRvl0dC9dJ+qfkiO6jy9JFT1ovlMteteVVYqP+WjrQ2IKPSMqvJo3kNvd19fX4SGhgpSUDwvL0+kz8/PF8pPlqihuqH8KD1dJ0JR2YjMJIuIRXXPY5DHiCZNmghT/yRkU784PT1d/TZ+ENjY2NxXOuq/k4Wk7tGD3vu0QPXr5OSEt956iwfpjJqgvjp1UxpzHRCJ+/Xrx14sBoPxHBHkft2oqnT36wpUpW/IhfugZaCxSatWrR7YrcxggtwXaFAZHx8vvC613X+a7llN119tFyO5An/++Wcx+NZMV58rVZsLV5s7mdyoNPCkwTL1szXlqNyncXFxKCsrEwNiVVlJlqabWeWqpEEqKxcT5IGwZ88efP3110KZartRyfOkcs9quv40XYwkQ+Ue7dmzZ410KneoplxtLlxS7DfeeAN9+vSp4U4mDxC5Lzdt2oTjx4+rXZ2xsbFq9yl5sGgOhfJXlZVkkltS5WYmspHs58xVyXgRCEJvcXLteXh41HGjqkji6OhYw/Wn6WIkGSr3KE1waaZTuUNVcskiaXPhkuWhPE1MTGq4k0nBS0tLsXXrVmEhVO5lcjvWdp8SSamsNIdAZSd3qMrNrOnKpbkMVjAmSKMHdfGI2Gw1mCCPHTh58qUgiLW1Nfr27csKxQR5dDSXFWqOm5sIuQEYTJBaWCiPAyzeeUeE3AAMJkjt+QR9fUTIA9oOvXtzAzCYIFq7WYaG6FI9t8FgMEG0fQCXlISmD7kQisF46QnSytoaHTw8uBEYTJD60F2h4EZgNG6CHKmeBdeGjnPmQP9vf4OenoSePZWgeINzJ6gLOn/tGq0N4UZlvAAEMWzdGli7VoDi1xITxcKm2ulGy+QIv7oOhw71QVVVC+zf74jffpNw+HBXzJvHDcR4SQnSkNUQXqymTbFl3jycS05G4i9Z+KmqI06dGiSsweefDxDh7t1jUFmpAyOjps9dxVlYSGjb9sWT/bDIzJQQG8sEeTouXpkcOxYtwpdr1qAiKQkXit5HxhWFIAV9HEjhzp1jcetWC2Rnv4OzZzuiffvnp9I6dZLQt68yXlJCmxpICAmhrXDok35aLivB11eCrq6EwkIJ9vYSli2TYGV1/7K1yaLrRUVKAtE1Ol9QQB+BSlAopHvW0auvKsujGbe0lODsrMxHlc7OTolu3SQUFyufLyuLCfLUkO7hgaMyMb6SCfKfzExBipgb7yMlKURNkhs3OiAhYTG++aaHTJbx2L7d6LmosKZNJTg63j3eu1eCjw8tlJKwfr0EAwMJAwZImDNHeT03VxlOnUprWZTxXr2UMgik3Npka5NFKC2VYG2tJAYRIj9fmSY6+m6a+uQTDhyoGTcxkWBuLmHBgrvnDx2SX2LNJcTEKO8fN467WE8NfzUywuEVK1AUE4Nb8vhEWAw5jN6XiUN/Oovj69eNERa2UnzIWFDgKVuQfrhypQ1MTZ99V4sUnd6upKQjR0rYvJn2eaLdUyR4e0uYOFGCp6cELy8JDg4ScnJo2x3aqYQ+alTKMDOT4OSkBFkXbbLJOmjKouvDhysJR0pdVqbMn97sw4ZJiIq6K6c++V27SnI3Vhmq4i4uErZuVZLczU1J9IQE5TPNny9h+nQJGRlMkPtG5bZtj5Rh+IQJSFy+HLdlUqyuJgeRoio7G+E3PsLt203FcW6uF64e3oXQ0JXy4L05duxwxcaNT75CTIyMeGDKeDCCqL6+fRwZFnp7i27V53IXCxoWhMLMCxtw9mgWtuXPwvEZbohZEYTLl3siMjJIdL1KSjry18WM548gUT4+OBkWixyp50PjnwOn47y9N666rMDV0f64NjZEhFedVWEwfsz4CGf2HUVVbDb+sPXEnW6u+N11Pqpcl+HWxHmoclmGX0b44dLgmY9Ulto44xOCfUGrETJzJisE49mMQQID03H06K8oLPychhbCYqjCY8f+K8KsrDws+fevyFTk4jdvBeL8A+VxiDINheGrw0W4b90+bjjGy0WQ5cuzxU4fRIrQ0NVqchw6dE0cZ2dvRWZmLiKLP8X6/7mpJoVmePP4TVQUVCBrZdaznQMxNUXbe2z/8yLkcc+5j+BgxPr6MkGeBtzc5mDNml14//0iNTkqKqpEmJ6+CampOSJ+4sSf8Pv+Zh1y3K64jWNbj+H8rvMYOvDZ7XLYqUMH9H3ttbtjqvh42A8ciGVeXhhrZwc/Dw/YmJvD190dujo6yrmLxESh8HSNzj9IHgWxsbCV5SmCgtC+TRutskqSkzHaxgYBnp71yiR5DoMGwaxHD/hMmYLUgADMrjWunDF+PCz79MGetDS42tsjKySECfK0Mmrf3hDBwRmCHMXFX+Hw4R+F4q9bl4+MjI1YLXefDh78QZyLvvAnMj4+XIMcqXGpuLz/Mk5/dPoZzoE0haOlZY1zudVrWqaOGoX9a9fCoF07DJAVWNOpUZqRAev+/YWyk5KLuYru3YUsAhGgvjzyY2KEvOjqnda1ydqVkoK5kyaJe+uTTWUjgowcMkQQ110ub7OmNd3msyZOxDgHB6TJlp5C7l495XmQoCAF3N295DHHr9i+/STWrt0iulVEgsOHr6vHJTFrFFj+7S1x/Nvx3wQ5rhy4gq+Lv4aFmUX9n7e8f+TJzoHISmVnYSEUVE9WMlK4HLmMQwcMgP/06Zj/5puY6OgITxcXeLm6KucuBg8WJCL3cZlCgZa6usq5CvlN7mRlJUAWSFseTrIy01t8mJwPOUq0yaJrdK6Fxu6R2mSTJXAbPlxYDzqOmDdPadnlc/rVa3I8nJ3F+eWzZiEjMJDJ8bQJ0qZNe8TFbcesWe/iww9LsXfvJaSlbcBnn92oMWinMOTfv+Gnz+8gLzMP35V9J7pWYxzG1P0oUrZMZGkIFL9Wdk3rR5EMxgsxkz5gwFCEhW2Er2+gHEbK5PgFJSWVghQZGR+qw6Kzt5Fw/r+4WHpRWI4RtiOeidVgMEEeu1BS8tqg82XVb3dT0wFISPgYAQGpWLJkqbgeH58uwnXrCuXB+21s21YO/8u3kBaaJjaE5oZiNKoVhfr6rTFt2kLExm6TLcYeFBRUYsOGQ7I1uYTExDx4efmh81seaCP36bmRGI12yW1DaCIPPLtp/J0ag8EEqQVjedDeonNnbigGE0QbdLp2hXFICDp3ljBhgvLTb8Lo0dIzXURlamqBVq3avnCyHxbBwZnw9Y1lgjxvmGBhgcBv12Nz3isoKmqClSsd5PFKD6Sm9sPOnQYoLm4miPM0y9ShQye89lpfGBoaY/p0f1hY2GH27FB06fIqPDz8YG5uA3d3X+joKOc8EhOLhNLTNTp/P7I1z/n4RKFXL/N6ZSUnl8DGZjQ8Petf5kxli48vrBPv08cStrbOoszK5b52Ap06Kf8UNSmpGPb2rggJyWKCPE+gjR42zZyJjTNmYPsXASi9PRlr1izApUt/xRdfDMDZs/3xww/dkZ39D5w+3VQmjU4di/Ikdj+h2WpLS6XjYNWqHLRrZyDi9MYPDV0vjslLR5/WqO7JyChF//7WiI0tEHNBYruj7r2EHIK5uW0d2SrY2o7B0qUpGDv27XplpaTswqRJc9Uz6dpkE7KyDtSJGxmZCPJNnaqcqc/OPoRmzZrLZIgRHke638FhHHexnid0btsWB5cuxREZNHF4Z0MCwm9+KBOiGzZt+oesEItw/PjfERfnjzt3msiEMceNG/QPVvqiK/YkyzZq1FTxhiUlpTe4g8N4oUSklJMne8PRcSJcXDzh6uol0g8ePBzh4blCERWKMujqthTne/Qwg5WVk8DAgfZ1ZOvo6KFfvyFYuDBOWCkio5XViDqyBg0aJs41b95CXUZtso2MuiI395QINeN9+w5GdPRWTJnig+HD3WQyrhH5UFmMjXvIxJyOwMAMJsizhOYOKLShQwmtP5HHHZGhoUBmJgpjYrDhcgzit8YhJiYYFRWOym+0bjdTb/JQWdkbVVW0E0prHlgyXnyC1Ldvlv/Ikdi1YIGSHPK11PBwnE5Lw+b1IYi4lo9Tp5TkIMuhIofqmEhy/rwJFi/W4YZlvNgE0bZvll6LFigPChL/EXinmhxfZGTgvdWrES/HE37JQnh8RB1yqMJr10zw2Wd2Moy5YRkv3xjEY8gQrJYH5XfkbtX++HicSE1FfEQEYmRynEpPR87OVcivmqeVHBcu9JP74ivwr3+9jjNnBsHJiXeNZzxDgqTdY+fEh0GOlxcuRUWJzeS+ki0HkSNJRnlKirIbJRNnxX8+rtGtog+4Ll3qjaioYGRkLEB5+d9RWjoChYWP94vem0ePsrIwQZ7tDiDF8+cLxf9ZoRDdquiwMGFFBBk8FiEyKASFleE4Wv4hcEc5QP/uu1erVyUuwo4dbmIHFCJOQUF33u2E8fQJQv8rGNnFHOXT5j/WnUUIF81G47rTIvzoHIirI/1wfdQSOVwsh0vx8+CZuGniil8ispG18wj+jEjFrfHeuOk6GzfHzcGf4+fidzl+e7wfbk18F/8ZO/mRy0PP6N/l9Xr/S9HC1AJtn8CM95OS+3Dr0jMR2zgnCB+OIPT/grT+uvUT+gR97drdsiX4Etu2Hatet35HhN8sWC92OTl98jb2fXURF078iMjwSCgSFdi5YafSypy8g8qSSrF4Ki8675HL0tCzdurQCX2rZ7xLkkvgSrPNM0NgbGgMPw8/2JjbwNfdFz2Me8B/uj/sLOwQOjsULavnQepfj35Xbm1Zujq6KEosEgSi874as/JRPlEw72XeoGyS6zDIAWY9zOAzxQepAamY7TZbY036DFj2sUTHVzqiOKlYPFNWSBYT5HlCWloJysq+RUKCAidO3Kqz0pDCosPfIPH8dSiSFNi9aTdCV4WKpblREVGCHMmRybJiL3vCa9PvznjvTd8rFE5fTx/rQ9fDoJ0BBpgOkLtnc5CzKkccUzpNq9Crey8hg2CrMZOuKbe2LOWa9FJY97dGQWwB2lfPpI+xHYOUpSl4u3q2XZts5br0/YIgI4eMFGRzH+WOZk2baaxJnyVIEeAVIO4b17hn0J9PgsyYsUzsclKbFCpLUlp6EREyEVZc/gO7N+8V5/4o/0O9A0pBdgHOFZ5D755P7h90p46aKiwCKSop2+bIzRhhNQLTRk+D92RvTHScCE8XT3i5eonj8Q7jhcKR4t5dN24GJysnAfvq2W5NuXo6enVkDR88HLnhuTAxMkGZokxYoyH9hiBuYZywUkRGmkvSJlu5Lj0WbsPdBJmV69Ijqteluwlyezh7CDkuQ10wfex0ZDTuGfTnkyC0kOrTT69AodhShyQHDnwvh6GydUnHppPfI/7QKdGtUpHj7I6zIixMLOSGZby832KFhChQXl4l9tCqqFBuNLdnz/8iXB5zJMndqs2y5UiKS0HE91VqchR/UCzCE1tOiM0beP0646UlCFmRrKxSYTlSUnJw/PjvYveTRHlAvnHjrmqrcgepF37FxS+B0k2lghxntp+BTX8b3vWE8eIT5F4bO9DuJ+npu2TL8X9iU7mCghNy1+tbbJLJUF5+C5mZefjn6SrEf/O7UP5T+adE352tBqPRLJj6y1/6yZZjN8LC0kW3iixHeflNYVWIUHkfHUbUd1WIDIxDq5atuDEZjW9FIXW3aD1EYuLHyMk5irVr9yI//yvExm7Gm2/OQ2srKxi+8w43JKNxEuR+0F2h4IZkMEHqg4GXF1pZW3NjMpggWme29fTQLSmJG5PBBKl3147wcDQ3NOQGZTBBtEGnZ0908vfnBmUwQXiwzmCCPARWRUXBYNzdL1BpsoQbmMEEUa1ITE5GZHo6NyqDCcJgMEEYDCYIg8EEYTCYIAwGE4TBYIIwGAwmCIPBBGEwmCAMBhOEwWCCMBhMEAaDCcJgvPD4fyz2ZB1mSMoMAAAAAElFTkSuQmCCUEsHCB8BxkNEFQAAPxUAAFBLAwQUAAgACAABnldDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgAAZ5XQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzlXN1u48YVvk6eYqAGQYKuKc6QQ1IbeYO1vbYXcLJBvS2CFr2gyJHMmCIVkrLlRW5aoOkf2osCbS5aoCmwSINcdDdyNtmr5g32GYQ8Sc/MkBJpSrJoW9q1641Nzu+ZOd93zpwZkmm+O+j66IhFsRcG6zWsqDXEAid0vaCzXusn7TWr9u6d15sdFnZYK7JRO4y6drJe03lNz4UmjVZbhz9rjkaNNV0jZK3havaa09KorlqmozlmDaFB7N0OwvftLot7tsP2nQPWtfdCx06E4IMk6d2u14+Pj5VMlBJGnXqn01IGsVtDMMwgXq+lN7ehu0KjY01UJ6qK6x++tye7X/OCOLEDh9UQn0Lfu/P6a81jL3DDY3TsuckBjJ5YMI8D5nUOYFImJTVU57V6oJEecxLviMXQNpcUk066vZqoZge8/DV5h/zxfGrI9Y48l0XrNVXRdNOgBqE1FEYeC5K0Dk5l1bNemkceO5bd8TshSa+hJAz9ls17Qp98gohKVHSLX7C8ELgYhixSZZ6qyQuRF11eqKyjy+a6rKrLOrqso2s1dOTFXstn67W27cegOi9oRwDbOB0nJz4T40kzJrPGt2BOsfcIKmsq6FXqGvJV9Rb/NeBX5wX14iRxTmoS9SsKzURiYlqLyySXmqmWCdV1WpZJ6Ix5GnOEyokvNFGa0y2IEv+J35JEbd40z0qU6csJNPSVTLFZz2ylmZoHig943ZQ+CevG3GC0BqINznuMKBiHYQLNKcINuJgEgTkgTJFOIYktZPCriTQTCnSkIQvxelhDwjqoBX90U3RmIAqd8VwTjBJhEKQjqiEsjEpHYEpIGCYYKdGgBqWIQiMuHhPehWYg3YCUZiEdxsht0sRQUYOGkAbxBGkYabwxNhExkMH7wzq3dcPiQ4cuCTJUZGDeIZg1mLQ0Z6hvIY3PxkjV5QW9flJQkdN1s9sk7I2xgNrgkCbuTjqogjd8renbLebDCrHPkUToyPa5RQhB7TBI0NggZV4nsnsHnhPvsySBVjH6yD6y9+yEDbahdpzJFnWdMIg/iMJkM/T73SBGyAl9dTzm0Me5ezIeNSS0XIGeL6C5AiN3b06VG0IJ6scM5IdRnFW3Xfc+rzFxDaDJB4F/shEx+7AXesVpNOtisWmyvuN7rmcHPwOycilcL2iy9nB/la091LKykYSRu38SA4XR4OcsCrkBKBgbDcNqEEw1ywAzOZElhOiKpRLdbJg6VNAN8EaxY3PjI6ZikYZpkuwfcOFkRplmSNnsaIyRPWCT6XYibtu5xP14I/QnWUIDm3Yv6UcicAD3GPFp3Q06PhMsEbYNq7Jz2AoH+5Iemuzr4UkPUqocQasjNI/4cgfF4m9rXMoHNa+cdzcuxw0iaohrS15FLaCuHFQ6SZxNEI/FeLHwZmottZnMU3Hi89W9H3jJXpZIPOdwMkne4P1+t8XG9Cn2ia+qz2b9DL+ahywKmJ/SGWDsh/1YWmeO6S5zvC4kZUGqEpsD9VMYgMx1WSdi2cB9EY5JhYlSNU/UUrboajsKu/eDo4fAgjMDaNazUTZjJ/J6nG2oBUvAIZvwyfViG1YQN9+O2x9M3eErBagn4aoBy+wnB2EkAi5wKHDlZuezLoRZKBHEEtwcq/muiNu4PlHY+gh82njZk+UTwKB4TCVCqaASREiCSuJq+70Dm8d36cR9+4RFBVWIPt8L3bMKAv2LWYCN9yS+PcYkNeSY4aYH3QlbKjgp0HiMBjxQJzCCk/XaGlUsuHskY3cZu/IJcxOTUmk+d4IWSSkkdXWO1jZuiNZ0pXHFWnPCbtcOXBSIAGcPPEttst7aKiccsjHXoFRPP8kKbNlV2kEJAO6kxvq1y/oveo/cdKchIJ0kxRdX/0SJvCnXIdYUwxA6NBuKaer6WeeawJp/CDsbcFlmBpEqb3Y912Ui3pPLzseBbBJLj+d1e77neEkVim7eDIqqCt+Dcoqqirkahm5KhtolhrYqMLT1SjO0ocD+e/n8LKr6A8HPoq5bJSVvzVdykeRbN4PkAIxuXC3L52nt3s3QGs3WfCK0t2Slba9caQ/a7ZglfKamNF+8dB7CvioNoxqKsaKA4J50t9slT+BUcLfOBd0tbB8lPhynVpq+vMfFRMFq/gcLrYpwC3S6ZlJFp9aqHfD9IIENEyin5IQFAk4JgZ0qvnjnJRoIlX5gQXBU01QMwMdKwUkDDIypYkIqDxo3AAMcjWVMsNSu0B5mQWLPgmS3CiS7LxESSyhVWxASnWDFoKqVeR+uc1Ml+uqQEEcz013TDlwIjwvPgvHi6/loiK3/WNtQm7eHwfTTIWEFw3QIKFwlhmGaqilFLIIYbP9dT/p7fvaWVg7QD7//J8Loh9/9G73FE58j8vZsiIW7K7k9KDuwE+dAqAS8Vpbe8uTjo8nB0LksAE8nESWNqUwg4zOYMJKrV7ZUzfaN1nzfaEfOhAtGtjr6fnj8E9b22UDMSpbmTo4qsGJHsmJXsuJumRXDSqwYrpIVXyJ5T14qJ6zU4Ro3hhNbBU9xr8yJ00qcOC1zokEpNVWsahrRgBzGij1FFiCpy+GEnroJjd4YSmwU3MROmRLfVKLEN+dSwlqpm1g2Icwbt27cLRCivN958awSIZ6tkhDzfQQPEPMBI6fGclYOyQoyfSd8HUmxW1g4tsqk+LYSKb59xYKJpVOCyqNNMn2jcR0ZsVlgxG6ZEd9VYsR3qwwl5jFidU5CHqWSmxNKbBdWjvKjsxfPK1Hi+blOQlt1dLlsUujyYAFb15IT+6zD86c7ivKa4c5nQ5z2lmHpnnNKtPQnVSW962fPh8ZPsIjS0NXcD04fZ6nLOk0VivX5mfn4qA7GWX6L5JCxHn9x50HwMLKDmL8WfDl0Zz4nZ9XQZdcI3dU8QX9pkM580tGuBmn7gg87ii+IvQqPOchNQrFTDcXOxQyTm2Ju+11cMa/lA6ulIMkGvQgGxr1OFrKwQQKzgoL12psf98PknTcgPPn83s4WWofrzu7GusxGP0Zv7dkP2Ye/eHH6y7chlWa/Ia/yneAitrzvWlHQwuDODaCqnb9UhN+LxTSLSkxfWY5Z5LXHb6jL91ONWgZfOi4Iw6JEvNaBBImoQnEj9yMfrGFFLTxKPh8mUoZpa2eXo7Sxu11G6euLokSWj9JVvCyxBJz0PEwNLXv3xLIKTqBRDTZtmnVtSuO6W4ZteFHYtNXBdhnvugTYTC2HmmVl727SAmykGmp6GbVNaWx3pxnbhV2ivjzU5h4tvHzUaMHY0gcdCjm73lYBjRZAGw3/PBo+HQ3/NTr9FRoNn4+G/xkN/zsa/no0fAwFiBee/nY0/Nvo9NPR8LPR8HQ0/HJ0+ifxl7f4i6j7hUz8XdT9YjT862j47EzW96L378U9CPgMpaJ5X1/JAUAjxBM866kYAFR/Mjr9Q17GP0T6MYznzR9h9R3I+Y0cjOgM6n2FuPzTP/JcOeLc1J5J4aLnp6LRYyHusej/UyVl5QKkpCtbpy9Fyjz7si9uFqOfrqjWGZ6JuM6a7SUKGgv6XRDrjBUSlM+O1MUPi2bvMDF3W2P14AXVk83Z55+Woq4nP5nr2gOxtbBbcej3E7bvRIwFk49r5eCyr45Usf2EFpqZ7kP1Br9pewM2/iTsIIy8RwBC0SlcZE+zwHt66rT39M73CcaN8QlIVE67eCJ6fZL5iRU4BeNqnMICD0+X7hTUqU5BU6hRWH1o6hVgi1dpGTJnBupXG/GZ1wORJcQORvaujEILAQM2qiFlzYzyrnbja/2fImUoKp4W5dHCcbU2E7V6/nM+8cVs+r99uPM/UEsHCEFFfXgmCwAAk0IAAFBLAQIUABQACAAIAAGeV0MfAcZDRBUAAD8VAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAAZ5XQ0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAiBUAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAABnldDQUV9eCYLAACTQgAADAAAAAAAAAAAAAAAAADmFQAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAAEYhAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | + | <span> </span> |
| + | |
| + | <span></span><div id="ggbContainer507e2592e2313aaf5f5d11fe1655c6bb"></div><span></span> |
| + | |
| + | * This is a resource file on 'vertically opposite angles' |
| + | |
| + | It has been created and uploaded by Sucheta, Mathematics teacher, GHS Thyamangondlu |
| + | |
| '''*Process:''' | | '''*Process:''' |
| #Reiterate that when a transversal intersects parallel lines, several pairs of congruent and supplementary angles are formed. | | #Reiterate that when a transversal intersects parallel lines, several pairs of congruent and supplementary angles are formed. |