Anonymous

Changes

From Karnataka Open Educational Resources
Line 165: Line 165:  
<ggb_applet width="800" height="485" version="4.0" ggbBase64="UEsDBBQACAAIANdNlEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ+sM8HPn5ZLiYmBg4PX0cAkC0ieAuISDDUgeCKidwMDA2uTp4hhScevt3YPZwZESbR//cT46FclxtEy5qUt5mobTnZ6ORWcOMW7XW5IhHiuyPGlxZETaAbGYK3NP6MTs2PxgWceCoMAlSZJaskucxLeGuB1/5KK5dev8uolXVJ7ce3KvuE/luQ0/y9pgpWJ1+3t37qTcUksJsZv/XKEiRrqdQYFFoEHAgcGJgZGDkQWZ08LAJMCEJobgKDYwoCqYJeihp170Ves4s4IIZ0pKy2NGgaj8ykrXPpmfvcyMAquu7rzfnvp9W7ylAMPCKFuL6jArs78qweHrCgwYnJ7u3VMZ/OzYMZXZZ0/ZX1938tAPC3ZWhSV758+cmD5dT7R+vcOW47W1m74842VnV0j8vjJggvvevZ8qU5cyeXydL+zQ9Mazfn9NTETE/10sLr/zs7z+yUk9UmBUOZOWd2dCePn7sD+RlhNWvFdsqIi/YhXCvHKrEcuEBeesXzE+rGFRcBT9zhWqqxD1UzuWRSB/dXmvMldH2K4wJ4aPm7ZPnly6ftJxxotqbGxPDt+RYRdW+De33ObNy5W/a782rNHTFX3f/lmwoWLqvBR9fT0p5ov/5s+durxmA5fCvi81KS7/5s7IeFEtzbjobF+fWD7LhGl+iTb+H04ud2vM2KW0Sw0o4DM/6GXwahVVxkXPFR/fvTunn2GJ6eXJmbaW5awul8O3fJmqy+ThvVT/+avTuzy9uVwuZytX9bYwXBJ62eqwV2HGMhMHk72n1oXf5lTwnbuv1eW+16RtWxy+2LjMv/SyVIjJI3gZf5Ctpn/VvUTmjmXvf1wt/yfkMMuo9veufb13VYQVZtWVudg7OzFkrsqxNfBtvNHkxbBx2tnlZmYNNypWuTNkzvrMd9vBQp7R43LK76eh0Q4mk6fP5lQ4tnOHQ7pwx7RvTaqMRzTC8z/e2FTbzdPDF3JHrz/WbNd5k/xKxQaJueU7dmlsr7ydNjN+zvodc/eX7vtx/tvfnfpXa2fF7VFpUDn19PYZb4dd/uXi8/OmMs+s/v528baZ9kZH469fuya17/6S/N3qDUtOfWWf+qgh52yu7r9bpjemvtq32n7H1W9f91/rk7XJYExaKf8x8PqO5RFmWv9frGeyLOth13XQKfmUEmdlxe/x71Dro37P4sLTKUabEh+z3ayuyT+qW62U/fb9i18/F2wpl5mm+G/+fgbDt7++5pu/PTe36Y1liZfa/X0F3777+vt7V1fvvly//OHt76n/F9Zpflgl5uBzWX6JpcWPv6+nnl996fuNt/71m2pll+y6537YxosxafnV0Imvwov+VxXeftm1g8XIqjr+3Vn7p4FcAuU74wSnO0TwN/yZELOuQ1thDbvDngjBcJBIxUYlvYYNcgwf01xjGBJtGR6d7brBdqiK4chq0Y28LV8ZOsK1k4Q5XjMKvA87oiZwjVnh3toOXbABMYLRYAN2KpmBDShzzQEb8LZrBhOI/oqgweJ/4fQSVqAFKh2intxACzwEtCexAS2YkBCmwguy4OAajyCQBU1RE5eALGDZquQJsoAzz3USyAChO10mXCCNE7QvaYA0OK7zUAYr3K3UC1bwpusKM8iGF6Ir2UEKL2gLgekPCJoVSHNoCzFDKEbcvKBtSk9Bhm9QCtUO4gMJha714AQFyKqNSqogd6441gV2hshGJZCzOFzXeDzXt47kbwhYe+5LzJRzsezX9597aqHGsPBr3H69mtquUhEFhoUrPv20YWeElFocCuCSbM0X1n18N5iW+2t7AQtlBk9XP5d1TglNAFBLBwgTQJKCTwUAALsFAABQSwMEFAAIAAgA102UQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK4FAFBLBwjWN725GQAAABcAAABQSwMEFAAIAAgA102UQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzVWdty2zYQfU6+AsPnSCIA3pSRkqntdJoZJ+nUaafTN5CEKNQUyRLQxZn+VH+k39QFQIqUJTlWYqexxjYIYIHFnt09C8qT15tFjla8lqIspg4eug7iRVKmosimzlLNBpHz+tXzScbLjMc1Q7OyXjA1dTwtKdKpw3wSUBbjAfcxGXiUeIMopPFgxjwf42g8Y5HvILSR4mVRvmcLLiuW8KtkzhfsskyYMornSlUvR6P1ej1sVQ3LOhtlWTzcyNRBcMxCTp3m4SVst7NoTY04cV08+v3dpd1+IAqpWJFwB2kTluLV82eTtSjSco3WIlXzqRO5YMaci2wONgU0dNBIC1UASMUTJVZcwtJe19isFpVjxFih55/ZJ5RvzXFQKlYi5fXUcYcE7C9rwQvVzOJGy6hdP1kJvrYb6Sejw3OQKss8ZnoP9PffiLjERS90g21DoAkCO+XaMZfahtjGs41vZTy73LOinpXxrIxHHbQSUsQ5nzozlkvATBSzGvy17Ut1k3Nznmagsxe/AJuk+ATCVCNqQYZx132hfwP49fTEaNdI3NOq6uWJSluV4Ti6v0ryVYbSVic5ZCbxj5gZ3KHU2n0fO7Hf0wmqzI/53dNI7zLztkbb/5zCMBi/oOH4qMrA+yZGTkZtskya/EByrmWb+FF8IXXG0DHyxzrwMfIhO4IQ4txHeAxNSBDkA8I+8nzo4ggFug0RDWHCQxRFSMthikx6+BH88UKzWYB82EyPhpCVCIMiD/kUYZNVHoJcQiYzIUsJBQnfRz4s0uox0VvQAHkB9GiEPDijTsoQgyCFhdAH9QRRjKhejENEAhTo/bCnkz2I9NFhS4ICFwVYbwh5DTlt8xnkI0S1NUEDlyiqpWogalBPFmkLlyqr7TCIAyV1VGcpaocJn01yFvMcisOVdiVCK5brpDCaZmWhUOtFYseymlVzkcgrrhSskuhPtmKXTPHNjyAtW91GNikL+XNdqvMyXy4KiVBS5m57UHjGvWfSGVPmtDfh9Sf83kTQew4P6i1hBi0lB/1lLVtxlqZvtUTHDgDlhyK/Oas5u65KccyM92wlMhPdZ7ditMrZzdlSKR333cgFhz9ALLqwVrC+ldiaU8grxasW28nIFLQJXya5SAUrfoO00Pq1A1Bb3ww1tvXNC/z2iGWdXt1IyBW0+YPXJaiNgiHtfSB8buwMdYOh2//AlEyYznJKd9ZQYMebo1NGM19tI4FteAdqVmsK6XXeyrMy74YMzuesUsva3ExAU62N+qHIcm5i0VAIlP3kOi43VzYIqd3r400FPdeeIM6MfxGQEPGhMmdNG9vWyOijbaVcI+MaCbeNapFu5/GYGAnTxrY1UpAm9miNqbg1E7utGiENdbrOboKaJNO3iGUh1GXbUSK57kzVC94vFzHfhurunvih9pyMboXY5JrXBc+bWAdnLsultEzQS4OUJ2IBXTvRQMK0u36FA9jRlGc1bw+em1ufBczMuv1g3Rs2W/1Yl4u3xeojxMKtA0xG7SknMqlFpWMOxVBvrnkXVamQDMpV2l+n8wxMT3TiAjxKQwMssFTzsjYXOyAvaHXm5XwBlzqkTHiZCN3C/IO5H2o8URn/Cfy5rbJ2vnMYTB8MNROULK/mTN8hG6OBIXi9A4PZ78NsJrlCm6kzIODGGxP63fS7Mr2NHbjGGCgto4DrK85t1FhzsCUlk2w75AbOkFaTJqqWsD7Zdwd7edZI6AzcqQ529JYbIbYsiJ+B8+x/gtNa+OhYeg8MZVIuFqxIUWHuXlc80+NOdxtgro5QxLBG1sK2VO0Es7s1e+w5Rja7tdCzz7imZ/Ax37j39swe+h2GboNh0GA4wGS72ZaIFdxFruGdS5r3ANXUBfPwk0hTbi6itlD9Vdgl0rKjWFS5SITawpVrf74tFHAlN2SxT4HXnFe69nwoPtaskPrV2cr0qPWIz96J1GbAPZ12frfTdrPp/IuySd/vM9vEtvl6p+FHDfwPNZB2VhYsv4QIuAXluYWS7UEZ3w2lDqYtUvF3EvyDoAHSbYAMHiv2j6P984F4jffQvTglUC++KFAxsdc6055I/Y9C77ijJvqt+f1izwPJafyefFmIY58+eJB7Bj9dkLccD0PBkyX5w467OMbx6WmOS78bx+37jZAh3ntLejJ+ux/TvTmF6d58c6brLrnWNxg/Ng26w/Gtj1E8oMNx8K1p8c2eu/hp2cW/pvKbHAN/+fgh0ss3+PXSCwaebnIddtvZMbfNTnPb7Dt026ArZ+Ew8p6s58x3cYf9pi/b5NBl5N9/7vaf+ZZn6x2Q1uvhPMsGVTz0QzccB5QE4diLxkFzG/iyrwqwu1/18J3+7VgUN848TKNfkY+sTnpU2PJxnpfrX/gs5xsD+4NcOfazKzstu7Lv5HVoPGxrCx5i7BJCXeIFxMd+4L8ZYFttBiAV9atR9IQyb9T/mtL8M6D5r/mr/wBQSwcIcr2X3zIHAADSHwAAUEsBAhQAFAAIAAgA102UQxNAkoJPBQAAuwUAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADXTZRD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAACTBQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIANdNlENyvZffMgcAANIfAAAMAAAAAAAAAAAAAAAAAPAFAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAXA0AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
<ggb_applet width="800" height="485" version="4.0" ggbBase64="UEsDBBQACAAIANdNlEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ+sM8HPn5ZLiYmBg4PX0cAkC0ieAuISDDUgeCKidwMDA2uTp4hhScevt3YPZwZESbR//cT46FclxtEy5qUt5mobTnZ6ORWcOMW7XW5IhHiuyPGlxZETaAbGYK3NP6MTs2PxgWceCoMAlSZJaskucxLeGuB1/5KK5dev8uolXVJ7ce3KvuE/luQ0/y9pgpWJ1+3t37qTcUksJsZv/XKEiRrqdQYFFoEHAgcGJgZGDkQWZ08LAJMCEJobgKDYwoCqYJeihp170Ves4s4IIZ0pKy2NGgaj8ykrXPpmfvcyMAquu7rzfnvp9W7ylAMPCKFuL6jArs78qweHrCgwYnJ7u3VMZ/OzYMZXZZ0/ZX1938tAPC3ZWhSV758+cmD5dT7R+vcOW47W1m74842VnV0j8vjJggvvevZ8qU5cyeXydL+zQ9Mazfn9NTETE/10sLr/zs7z+yUk9UmBUOZOWd2dCePn7sD+RlhNWvFdsqIi/YhXCvHKrEcuEBeesXzE+rGFRcBT9zhWqqxD1UzuWRSB/dXmvMldH2K4wJ4aPm7ZPnly6ftJxxotqbGxPDt+RYRdW+De33ObNy5W/a782rNHTFX3f/lmwoWLqvBR9fT0p5ov/5s+durxmA5fCvi81KS7/5s7IeFEtzbjobF+fWD7LhGl+iTb+H04ud2vM2KW0Sw0o4DM/6GXwahVVxkXPFR/fvTunn2GJ6eXJmbaW5awul8O3fJmqy+ThvVT/+avTuzy9uVwuZytX9bYwXBJ62eqwV2HGMhMHk72n1oXf5lTwnbuv1eW+16RtWxy+2LjMv/SyVIjJI3gZf5Ctpn/VvUTmjmXvf1wt/yfkMMuo9veufb13VYQVZtWVudg7OzFkrsqxNfBtvNHkxbBx2tnlZmYNNypWuTNkzvrMd9vBQp7R43LK76eh0Q4mk6fP5lQ4tnOHQ7pwx7RvTaqMRzTC8z/e2FTbzdPDF3JHrz/WbNd5k/xKxQaJueU7dmlsr7ydNjN+zvodc/eX7vtx/tvfnfpXa2fF7VFpUDn19PYZb4dd/uXi8/OmMs+s/v528baZ9kZH469fuya17/6S/N3qDUtOfWWf+qgh52yu7r9bpjemvtq32n7H1W9f91/rk7XJYExaKf8x8PqO5RFmWv9frGeyLOth13XQKfmUEmdlxe/x71Dro37P4sLTKUabEh+z3ayuyT+qW62U/fb9i18/F2wpl5mm+G/+fgbDt7++5pu/PTe36Y1liZfa/X0F3777+vt7V1fvvly//OHt76n/F9Zpflgl5uBzWX6JpcWPv6+nnl996fuNt/71m2pll+y6537YxosxafnV0Imvwov+VxXeftm1g8XIqjr+3Vn7p4FcAuU74wSnO0TwN/yZELOuQ1thDbvDngjBcJBIxUYlvYYNcgwf01xjGBJtGR6d7brBdqiK4chq0Y28LV8ZOsK1k4Q5XjMKvA87oiZwjVnh3toOXbABMYLRYAN2KpmBDShzzQEb8LZrBhOI/oqgweJ/4fQSVqAFKh2intxACzwEtCexAS2YkBCmwguy4OAajyCQBU1RE5eALGDZquQJsoAzz3USyAChO10mXCCNE7QvaYA0OK7zUAYr3K3UC1bwpusKM8iGF6Ir2UEKL2gLgekPCJoVSHNoCzFDKEbcvKBtSk9Bhm9QCtUO4gMJha714AQFyKqNSqogd6441gV2hshGJZCzOFzXeDzXt47kbwhYe+5LzJRzsezX9597aqHGsPBr3H69mtquUhEFhoUrPv20YWeElFocCuCSbM0X1n18N5iW+2t7AQtlBk9XP5d1TglNAFBLBwgTQJKCTwUAALsFAABQSwMEFAAIAAgA102UQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK4FAFBLBwjWN725GQAAABcAAABQSwMEFAAIAAgA102UQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzVWdty2zYQfU6+AsPnSCIA3pSRkqntdJoZJ+nUaafTN5CEKNQUyRLQxZn+VH+k39QFQIqUJTlWYqexxjYIYIHFnt09C8qT15tFjla8lqIspg4eug7iRVKmosimzlLNBpHz+tXzScbLjMc1Q7OyXjA1dTwtKdKpw3wSUBbjAfcxGXiUeIMopPFgxjwf42g8Y5HvILSR4mVRvmcLLiuW8KtkzhfsskyYMornSlUvR6P1ej1sVQ3LOhtlWTzcyNRBcMxCTp3m4SVst7NoTY04cV08+v3dpd1+IAqpWJFwB2kTluLV82eTtSjSco3WIlXzqRO5YMaci2wONgU0dNBIC1UASMUTJVZcwtJe19isFpVjxFih55/ZJ5RvzXFQKlYi5fXUcYcE7C9rwQvVzOJGy6hdP1kJvrYb6Sejw3OQKss8ZnoP9PffiLjERS90g21DoAkCO+XaMZfahtjGs41vZTy73LOinpXxrIxHHbQSUsQ5nzozlkvATBSzGvy17Ut1k3Nznmagsxe/AJuk+ATCVCNqQYZx132hfwP49fTEaNdI3NOq6uWJSluV4Ti6v0ryVYbSVic5ZCbxj5gZ3KHU2n0fO7Hf0wmqzI/53dNI7zLztkbb/5zCMBi/oOH4qMrA+yZGTkZtskya/EByrmWb+FF8IXXG0DHyxzrwMfIhO4IQ4txHeAxNSBDkA8I+8nzo4ggFug0RDWHCQxRFSMthikx6+BH88UKzWYB82EyPhpCVCIMiD/kUYZNVHoJcQiYzIUsJBQnfRz4s0uox0VvQAHkB9GiEPDijTsoQgyCFhdAH9QRRjKhejENEAhTo/bCnkz2I9NFhS4ICFwVYbwh5DTlt8xnkI0S1NUEDlyiqpWogalBPFmkLlyqr7TCIAyV1VGcpaocJn01yFvMcisOVdiVCK5brpDCaZmWhUOtFYseymlVzkcgrrhSskuhPtmKXTPHNjyAtW91GNikL+XNdqvMyXy4KiVBS5m57UHjGvWfSGVPmtDfh9Sf83kTQew4P6i1hBi0lB/1lLVtxlqZvtUTHDgDlhyK/Oas5u65KccyM92wlMhPdZ7ditMrZzdlSKR333cgFhz9ALLqwVrC+ldiaU8grxasW28nIFLQJXya5SAUrfoO00Pq1A1Bb3ww1tvXNC/z2iGWdXt1IyBW0+YPXJaiNgiHtfSB8buwMdYOh2//AlEyYznJKd9ZQYMebo1NGM19tI4FteAdqVmsK6XXeyrMy74YMzuesUsva3ExAU62N+qHIcm5i0VAIlP3kOi43VzYIqd3r400FPdeeIM6MfxGQEPGhMmdNG9vWyOijbaVcI+MaCbeNapFu5/GYGAnTxrY1UpAm9miNqbg1E7utGiENdbrOboKaJNO3iGUh1GXbUSK57kzVC94vFzHfhurunvih9pyMboXY5JrXBc+bWAdnLsultEzQS4OUJ2IBXTvRQMK0u36FA9jRlGc1bw+em1ufBczMuv1g3Rs2W/1Yl4u3xeojxMKtA0xG7SknMqlFpWMOxVBvrnkXVamQDMpV2l+n8wxMT3TiAjxKQwMssFTzsjYXOyAvaHXm5XwBlzqkTHiZCN3C/IO5H2o8URn/Cfy5rbJ2vnMYTB8MNROULK/mTN8hG6OBIXi9A4PZ78NsJrlCm6kzIODGGxP63fS7Mr2NHbjGGCgto4DrK85t1FhzsCUlk2w75AbOkFaTJqqWsD7Zdwd7edZI6AzcqQ529JYbIbYsiJ+B8+x/gtNa+OhYeg8MZVIuFqxIUWHuXlc80+NOdxtgro5QxLBG1sK2VO0Es7s1e+w5Rja7tdCzz7imZ/Ax37j39swe+h2GboNh0GA4wGS72ZaIFdxFruGdS5r3ANXUBfPwk0hTbi6itlD9Vdgl0rKjWFS5SITawpVrf74tFHAlN2SxT4HXnFe69nwoPtaskPrV2cr0qPWIz96J1GbAPZ12frfTdrPp/IuySd/vM9vEtvl6p+FHDfwPNZB2VhYsv4QIuAXluYWS7UEZ3w2lDqYtUvF3EvyDoAHSbYAMHiv2j6P984F4jffQvTglUC++KFAxsdc6055I/Y9C77ijJvqt+f1izwPJafyefFmIY58+eJB7Bj9dkLccD0PBkyX5w467OMbx6WmOS78bx+37jZAh3ntLejJ+ux/TvTmF6d58c6brLrnWNxg/Ng26w/Gtj1E8oMNx8K1p8c2eu/hp2cW/pvKbHAN/+fgh0ss3+PXSCwaebnIddtvZMbfNTnPb7Dt026ArZ+Ew8p6s58x3cYf9pi/b5NBl5N9/7vaf+ZZn6x2Q1uvhPMsGVTz0QzccB5QE4diLxkFzG/iyrwqwu1/18J3+7VgUN848TKNfkY+sTnpU2PJxnpfrX/gs5xsD+4NcOfazKzstu7Lv5HVoPGxrCx5i7BJCXeIFxMd+4L8ZYFttBiAV9atR9IQyb9T/mtL8M6D5r/mr/wBQSwcIcr2X3zIHAADSHwAAUEsBAhQAFAAIAAgA102UQxNAkoJPBQAAuwUAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADXTZRD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAACTBQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIANdNlENyvZffMgcAANIfAAAMAAAAAAAAAAAAAAAAAPAFAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAXA0AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
*Process:
 
*Process:
# The teacher after recaptualating the concept of a kite and its properties.
+
# The teacher can initially have a recaptualation of the concept of a kite and its properties.
# Give them measures say, "Construct a kite which has its congruent sides as 4 cm and 5 cm a pair with one of its diagnols measuring 6cm.
+
# Give them measures say, "Construct a kite which has its congruent sides as 4 cm and 6 cm a pair with one of its diagnols measuring 5cm.
 
# Can project the geogebra file and explain the steps of construction for the given measures.
 
# Can project the geogebra file and explain the steps of construction for the given measures.
 +
* Draw a rough small kite labelling with the given measures.
 +
* Begin with drawing a line segment, the diagnol of a given measure, here 5 cm. label it as AB.
 +
* Draw a perpendicular bisector to this line segment AB.
 +
* With A as centre construct an arc with 4cm as radius. Mark the intersecting point of arc with the perpendicular bisector as D. Join AD.
 +
* With B as centre construct another arc with the same radius 4cm. You get the same point D as point of intersection .
 +
* Join AD and BD which would measure 4cm each and would become one pair of congruent sides of the kite.
 +
* Similarly draw arcs on the other side taking radius as 6cm to get other pair of congruent sides.
 +
* ADBE would be the specified kite.
 +
 
*Developmental Questions:
 
*Developmental Questions:
 
# What are the properties of a kite ?
 
# What are the properties of a kite ?
# What are the given measures for constructing a kite.
+
# What measures are given for constructing a kite ?
# Draw a rough small kite labelling with the given measures.
+
# By which given measure can we begin the kite construction ?
#  
+
# What is the angle between the two diagnols in a kite ?
#  
+
# For what purpose are we drawing the perpendicular bisector ?
*Evaluation
+
# What is the purpose of drawing an arc ?
*Question Corner
+
# What should be measure of the radius of the arc ?
 +
# Why should AD and BD be same ?
 +
# Check if the constructed kite satisfies all the properties of a
 +
*Evaluation:
 +
# For what purpose are drawing the perpendicular bisector ?
 +
*Question Corner:
 +
# Can you think of any other method of kite construction for the given measures ?
    
===Activity No # ===
 
===Activity No # ===
1,040

edits