Changes
From Karnataka Open Educational Resources
41 bytes added
, 13:43, 6 January 2014
Line 32: |
Line 32: |
| # Circle and its basic parts should have been done. | | # Circle and its basic parts should have been done. |
| *Multimedia resources: Laptop | | *Multimedia resources: Laptop |
− | *Website interactives/ links/ / Geogebra Applets | + | *Website interactives/ links/ / Geogebra Applets : This file was done by ITfC-Edu-Team. |
| <ggb_applet width="1280" height="572" version="4.0" ggbBase64="UEsDBBQACAAIAOtdXUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ4WUfTTTCxjHR1utzU9DenGZJcr1HpJxvUzTbFRY3pa7hMzLMWG7tca92pXXZLmUd8Uy4lpu8nYiOeswc/NSxDYtzFs7XqIiu7ju/eue2z3nfs/5fp/zPH88f3z/+KR7nsEBMC0YCAQC8G5Y7+3ZvW0ydOd2hlHOd4BAkFA8FnPuqmi+5Lybtt+BpERhxbuTFzKylTAIQnhElXm9p5HpUJAAWNc3hUeOpjomj/RkHInuwBp4G/tmWX+bGH7oUUSh3g2WQXAuAbAGvyIAYR8Gq0ZPeVX8pOibrhXTY6yY0gRdFStmmGSoYGUePeO0PxMMKvfmm4KcESCw0tfxj4UNzi8YT1diYUMpOJlM0IEEYToP6O5H09xkn6NLtVDdjiLxDlaxg5D484w/Ig+Vq3EU29jk+vCh8gyNxwvZkIgKu4eHN+PHFwF2PKsYrTGiAgDXb9aI60Oub6yvk1NsCkg1vtP+falh6y3o2wJBm3yP7r5RiQpHHuXAzY/yWL99WI9O18NlL7RRMvQjo6M17woNykrdn/JrqqpGmBaurmrZ1418Mf1isfHQ0FDcp/d5QaSAgILaujrSwfaGhtciufyyWo9Q+GvIWG/sLD0JxejTtVoNZQiObj7RpO5kgVBQEMs5bGRsbOoICoqt4PGyi5JQiPSsLMDY8gHTmX2zf6zE6Zmcz0826ObMlSmB8Zp7NgPYMQtbhqUCx+qExWiGPIs4HKvg7VieL3MSDJ5aSPZxQGbTaDS3xMREi+jY2GMjXQNS6bOt69/Zc2uLVInO7HyfHG7R8otFqaBLo8z9TQlvaqGnNs/RafGXPcZnA7rE9menXkpXpx5XC4fpfmFU/4hRDpeLk1CbrI8fh7wiEAgmSpFRUavpXkTi4W1h8BmZmZdSB4RQdfjvs9wuc0GvKDCXFxHDl1VPMSfa6RiqY3PeE+nYe5PA1y9drj1X03+x1lTajQv53rLRQoeLnMxirK9fqPDVNBE/wNsmM9T4x9qPCie0HCjzk34f22LNB4wCJs1nTOfiIJ1PoRPNsv7e4qUTPyqzbK9JaY3V0BW9NGLDGNtTcJGIIOaE043FiGlXBC6BsVo41Nx4A8B4FOkTgSvAiqqqKuGKH8XClJR/wvopHKpeD+MMGCla+qMUuIbcHqyPOySCSr2zrSBSgwVv92Jk1Zu08nhn2tu0gpPKffUonWeJl3iReckoEiFizXbsj6U2v5SUnaFTA+poAJNz0n61OPE000rBSEIVHKmOoaWywrOZZoC7Ejg9oC1Oghv3ROjcKQ9pAsWR2RwX3tbucnjFiOs3c3YdXujLSTdBEJM0jUruxvKgvVkcaG8diroaUZ1wH4O8hhS9fajabv7AHNl0p0/Z0A2T4FjWfMFhYS3e6aD8rFQq+9C9tPSIRievbQHZg2VqreHaKLfhGn/8T1RtkUjEqa/3sjMnq1TOdcaOwzsPXuyduHyf2ZYCmUTwYS3vOVUesPLJ32hhwa3NjMnWQKQWGyeEyyzB+Fte0tzAog10BWu2F1vSDmevsAw/cnaw+M4KfV8bXQoWUdJeEy9RWj6F0Pl80W5h0DTtltYPkmklsGCfnSz084cEEmQAvVBwQACH5sTR1lLnWyZtwAPjH1sRYGcyLNiy/kw44QnKqMwMfNsdfgLEsnVRGJ7LSbaMV2ZV0UiW6EI2BJqTme+h03RaHYd4nKRtsGtvLqqSxAFW8w+9o7BmnRqB/R4VPn/9w8CCLQ4FzUteIa9olH9SbAx+md71XN6Q2w/NI999rW+SlKCuv/fv/mn3xo0X2814bYEUHXml9wjZBnqP/RWM/hNP/2bU/50Nr25CYEaqFl/uDiduYxeEdz2DrXMJYv0JUEsHCB1AVCFvBQAAnQUAAFBLAwQUAAgACADrXV1DAAAAAAAAAAAAAAAAEgAAAGdlb2dlYnJhX21hY3JvLnhtbN1YS1PbMBA+t79Co3sUP+IQGEynMLxmSukUDr0qsnDU2pJrKYTw67uSbLAJlL5ok/pgy6v17vr7Vruyd9/clAW65rUWSqY4JAFGXDKVCZmneG6uBhP8Zu/1bs5Vzqc1RVeqLqlJ8chqohstdqR6T0uuK8r4BZvxkr5TjBpnbmZMtTMcLhYL0hogqs6HeW7Ijc4wAudSp7gZ7IC53kOL2KlHQRAOP5298+YHQmpDJeMYQWAlZbVCrMxsEClmXJpaCTBtlCoek53worIeBVPySBTcjvVMLU7lJczu0zrFpp6Dcaaq5QGt7JvoRtb6O5XV3CAapPgtRjRM8T5cohQf4GGrcj43rc6xk4I7DUaYtYeMMN4znZuZqu0oo8ZKQJMXvISQkVlWIKmUkAajgk55Yf3tvX61a+NFavqZM9NG28y7m6HVgekDVagagXWgKnfnqTvToppRGAGFTrWgS16ja1rY2UYC1s5UxntSKkXpmEXacAAxBOQqzjM38tHCoAJzLnuuaKGbYJhSdabRTYpjkowxWqY4IeMRRrc+55ySe9MLcds4jbtSsyy6sewOG5CegWt/0+EaBGTLwRWTMHpxuA42Ha6oQSsikz+TXEyVJZUZkq6SfFDFMlfSoSS+VwMAoPv1X8FToddhXofCJU7x1HtrfDzCjffWou/tOACF5D5qMxPsi+QaKlTUohT4wYnIMm5rug+ox6oHrzXcgfKP8/p06mme27u7KNhq8v29MPtJlITb3cMXrMGIRGOfVAkJkiRqrP0CF/yr9I9oe06xKKtCMGHuUqewOX4qDfRl7jqG9rF2IPjCeXUJps/lZU2ltn3Z67SL9MeRp+uCfECiSdA9oqQpfqOeOPCLexAGZBT+PzxM14WHAdRPB3xAJklvKWw74BMShlvdiWSDOOiX9DOR+R7Yr+nTlSp++Fyx7jbSw+eYfNFO2t1thbEjEmrXSzTEJ9CjK+gd/Qx6R2uCnvsacruJ7ckLgPeRLh/gduR3CW9X4Mu+D18NllpssjUqIuN+8Wj3Zolvo9BQt8eTTsEPN7aKrFJ52G4KH1LJf5xKvi5Uhu7jw+6BYjKJ/VKArXYcjzeWsTvDD3jLPG98hbfjn6lgx//yQ6rDm/3a3krC8MEKnJA4GMf3m1zH6BaJo6C7YH+r1A27/zvsvfsrYgftn6C9b1BLBwhz5lWOdQMAAHwSAABQSwMEFAAIAAgA611dQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK4FAFBLBwjWN725GQAAABcAAABQSwMEFAAIAAgA611dQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzdWVtv2zgWfu78CkIP+9TYvOrScTpIUgy2QKcdIN3FYgf7QEu0wokseSTacYr58XMOKdlybpM000V2jdgUyUOe+8dDZfbDdlmRjWk729THEZvQiJg6bwpbl8fR2i2O0uiHt9/NStOUZt5qsmjapXbHkURKWxxHJmFMJkwfZXquj2Re6COdmuTImCzJ0qIwMU8jQradfVM3H/XSdCudm/P8wiz1hybXzjO+cG71Zjq9urqaDKwmTVtOy3I+2XZFREDMujuO+oc3sN3BoivhyTmlbPqvnz6E7Y9s3Tld5yYiqMLavv3u1ezK1kVzRa5s4S5AYZ6CHhfGlhegVMJlRKZItQKLrEzu7MZ0sHbU9Uq75SryZLrG+VfhiVQ7fSJS2I0tTHsc0QlTCRWMq4g0rTW162lYz2s67DLbWHMVtsMnzwkEck1TzTXuRH7/nXDKKXmNDQsNhyaOwxQNY1SEhodGhkYFGhmWy0AqA40MNFJEZGM7O6/McbTQVQems/WiBbft+p27royXpx/Ya81eg06d/QLEgoJdg61hnNLX+I3hK3FieqgkG3F17fpBpmF+xHPgyGicPJ4lfwZLMbDklN3myNU9SsYP2DaweMi0OzXVyLDAyv/57y2Ogj+B4/12fTzDWP5XVJxNh0SZ9blBuguk7R3pzLLDbBEZURkGPSMKMiNOIMYVYRk0CSeQC4QpIhV0WUpibBMiEpiQRJCUIB0TxKeGSuFHJn6zmCjYDEcTyEjCgJEkShDmM0oSyCPisxIylAugUIooWITsGcctRExkDD2REgkyYkImDAgFLIQ+sOdEMCJwMUsIj0mM+zGJiR6nKDpsyUlMScxwQ8hpyOeQy0CfEoHaxF46+AxIY+vV2h3YKl8Ww6NrVjunADXA0h70AkwdYOKrWaXnpoJz4hxdSshGV5gantGiqR0ZvMnDWNnq1YXNu3PjHKzqyK96oz9oZ7Y/AnU38Pa0eVN3P7eNO2uq9bLuCMmbiu5kbio2euY7qaEjRhNyPKFGE/HoObmTbwMzZN0Z4N+03UCui+I9UuwhAiz5qa6uT1ujL1eNvU+Nj3pjSx/lpzdidVXp69O1cxj/+5F3Bn4AXvCMXcH6gWKnTt2dOwPuYizyrvJn28ys88oWVtf/hPRA/ugAsjvqPD4OR52i8SBj0xbn1x0kDdn+27QN8JVqIjnnIs1YissAua7DlOBqkvFY4KGfKYaY1uUa011kEykl5QmViRA8lXDcXd8zFzibzS4U9NbsrVq2iCWjzvvutKn2Q97QZ3rl1q2vUgCOW1TqpC4r44PRYwmUAPnlvNmehygUYa/P1yvo0SDBvPQOJoBGXIG8Zd/OQ+tpULQdFfU01FPQIaxtsZtnGfcUvp2H1lNBngTRelXZoCajAxvbeQylUR8gAz5ilmFBsa6t+zB0nM0v96rigo/r5dzsYxUJ3tlQ/oS67pAN+4ZsZtMbkTi7NG1tqj4lwOXrZt0FwBhlS2Fyu4RumOgNp9Gp/wCZwmhhytb09LrydWIwq5+l45C+Ney3+rFtlu/rzWeImBsCzKaDlLMub+0KI5PM4Xi6NPvYK2yn4XQrxuswHcEaOeY3GMShtQAs1u6iaX0lCBgHLSZoZZZQ/xHng9DH8c7yJ76gRBOTZv4rwOzuSA7zvjOgSmE9M48/PfEiTMLaO6PVx7WuVhcaK9LeIoAypj2wkWf2U1PctBw4JnAMsAOxsDImhFFQhgXk8gl5gIDgio5skSmWIx7VODx8GQWlNwSm6cEZEkZveBFCK9jwT6x5+mhrvliD8b3BxF9ir7xZLnVdkNqXY2e2zSsT7csCTTEIiWZovWCatRsm8rBZv8Ut40NI2nxn3PxPjH94Qt4Ry+V9rmFKeOco9vW+2UOxg3LkEq5enb8OuP5k8A9/t3Bz9TVpOKpsaeoNyAbVANxlaX9TvqaBP/kyjGzBekd+6Jr1Q1/YyHUQFa3dkpOB/mSgOuH+gcMxufvgmXUiehYn0u+MMXECxcyRT6Mg3G910KcLSI1Fml3Y/GH/n5sSxx8bAPrhAOj63QYX6+eGQHE7BOB6Os5P7H1tDOyzDJ2VZONPLHzWsUl2+El9Eh7JiWRjJ1H1jLC64Tm7XFU2t25n/Qrx4X3t4MQ1/ny5fWpeGrPCouZT/bnVdYfvZwLNAHH3h8DPHjIPAyC/5fmzhz1/iLtnX4W7/t1I2bcvAXsxz+j4w3xMSMg5prJMxBRqX5mm6hsA811eCWD9yxncQf9zy0HvnuKgd/83DqJZQjMq4JqieJrF3kEUHRSDlFmqhFKpyr6Bg+5GzrOAnO9uuWf+NOScPxc573DfcLkJyMko/yuQU3iATOF2yLJEZZQHFyCgAoeMZnGSxDJhVGH2IHSyCRexUkxymmZJIsX/EHKa7aoFwdDYQ6aYrQPFYOI4+ttv68Z9f0JCnpJmQUq7MTVpdWHhpoOxA7ehpQFxJoHW738YCbhhdLj7o0PhLm9jkfTMWmlht6Y4NEr/cqczrV3sX4T4OzaNBnf0XoJ7Yes8nhF/1vIJuB7jhUr/q3zEqInIWEozxYX/leOcvb/gnzdNZXS9s0bhrQWyrs1NiZ9zD6CPtt6nxaIzDhWVQw2hHs4lvfLZ68fOUcYQL0/T27xAvdPsaXoPyfE0zRcvSHOVBM0pf7TmZ6BZ68EiD3exJylfvjzluUgerzyovF4uTGvw/3M3NJ+OX6n495v9/wTf/gFQSwcIdux7CPgHAACwHAAAUEsBAhQAFAAIAAgA611dQx1AVCFvBQAAnQUAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADrXV1Dc+ZVjnUDAAB8EgAAEgAAAAAAAAAAAAAAAACzBQAAZ2VvZ2VicmFfbWFjcm8ueG1sUEsBAhQAFAAIAAgA611dQ9Y3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAaAkAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADrXV1Ddux7CPgHAACwHAAADAAAAAAAAAAAAAAAAADFCQAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQAAgEAAPcRAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" /> | | <ggb_applet width="1280" height="572" version="4.0" ggbBase64="UEsDBBQACAAIAOtdXUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ4WUfTTTCxjHR1utzU9DenGZJcr1HpJxvUzTbFRY3pa7hMzLMWG7tca92pXXZLmUd8Uy4lpu8nYiOeswc/NSxDYtzFs7XqIiu7ju/eue2z3nfs/5fp/zPH88f3z/+KR7nsEBMC0YCAQC8G5Y7+3ZvW0ydOd2hlHOd4BAkFA8FnPuqmi+5Lybtt+BpERhxbuTFzKylTAIQnhElXm9p5HpUJAAWNc3hUeOpjomj/RkHInuwBp4G/tmWX+bGH7oUUSh3g2WQXAuAbAGvyIAYR8Gq0ZPeVX8pOibrhXTY6yY0gRdFStmmGSoYGUePeO0PxMMKvfmm4KcESCw0tfxj4UNzi8YT1diYUMpOJlM0IEEYToP6O5H09xkn6NLtVDdjiLxDlaxg5D484w/Ig+Vq3EU29jk+vCh8gyNxwvZkIgKu4eHN+PHFwF2PKsYrTGiAgDXb9aI60Oub6yvk1NsCkg1vtP+falh6y3o2wJBm3yP7r5RiQpHHuXAzY/yWL99WI9O18NlL7RRMvQjo6M17woNykrdn/JrqqpGmBaurmrZ1418Mf1isfHQ0FDcp/d5QaSAgILaujrSwfaGhtciufyyWo9Q+GvIWG/sLD0JxejTtVoNZQiObj7RpO5kgVBQEMs5bGRsbOoICoqt4PGyi5JQiPSsLMDY8gHTmX2zf6zE6Zmcz0826ObMlSmB8Zp7NgPYMQtbhqUCx+qExWiGPIs4HKvg7VieL3MSDJ5aSPZxQGbTaDS3xMREi+jY2GMjXQNS6bOt69/Zc2uLVInO7HyfHG7R8otFqaBLo8z9TQlvaqGnNs/RafGXPcZnA7rE9menXkpXpx5XC4fpfmFU/4hRDpeLk1CbrI8fh7wiEAgmSpFRUavpXkTi4W1h8BmZmZdSB4RQdfjvs9wuc0GvKDCXFxHDl1VPMSfa6RiqY3PeE+nYe5PA1y9drj1X03+x1lTajQv53rLRQoeLnMxirK9fqPDVNBE/wNsmM9T4x9qPCie0HCjzk34f22LNB4wCJs1nTOfiIJ1PoRPNsv7e4qUTPyqzbK9JaY3V0BW9NGLDGNtTcJGIIOaE043FiGlXBC6BsVo41Nx4A8B4FOkTgSvAiqqqKuGKH8XClJR/wvopHKpeD+MMGCla+qMUuIbcHqyPOySCSr2zrSBSgwVv92Jk1Zu08nhn2tu0gpPKffUonWeJl3iReckoEiFizXbsj6U2v5SUnaFTA+poAJNz0n61OPE000rBSEIVHKmOoaWywrOZZoC7Ejg9oC1Oghv3ROjcKQ9pAsWR2RwX3tbucnjFiOs3c3YdXujLSTdBEJM0jUruxvKgvVkcaG8diroaUZ1wH4O8hhS9fajabv7AHNl0p0/Z0A2T4FjWfMFhYS3e6aD8rFQq+9C9tPSIRievbQHZg2VqreHaKLfhGn/8T1RtkUjEqa/3sjMnq1TOdcaOwzsPXuyduHyf2ZYCmUTwYS3vOVUesPLJ32hhwa3NjMnWQKQWGyeEyyzB+Fte0tzAog10BWu2F1vSDmevsAw/cnaw+M4KfV8bXQoWUdJeEy9RWj6F0Pl80W5h0DTtltYPkmklsGCfnSz084cEEmQAvVBwQACH5sTR1lLnWyZtwAPjH1sRYGcyLNiy/kw44QnKqMwMfNsdfgLEsnVRGJ7LSbaMV2ZV0UiW6EI2BJqTme+h03RaHYd4nKRtsGtvLqqSxAFW8w+9o7BmnRqB/R4VPn/9w8CCLQ4FzUteIa9olH9SbAx+md71XN6Q2w/NI999rW+SlKCuv/fv/mn3xo0X2814bYEUHXml9wjZBnqP/RWM/hNP/2bU/50Nr25CYEaqFl/uDiduYxeEdz2DrXMJYv0JUEsHCB1AVCFvBQAAnQUAAFBLAwQUAAgACADrXV1DAAAAAAAAAAAAAAAAEgAAAGdlb2dlYnJhX21hY3JvLnhtbN1YS1PbMBA+t79Co3sUP+IQGEynMLxmSukUDr0qsnDU2pJrKYTw67uSbLAJlL5ok/pgy6v17vr7Vruyd9/clAW65rUWSqY4JAFGXDKVCZmneG6uBhP8Zu/1bs5Vzqc1RVeqLqlJ8chqohstdqR6T0uuK8r4BZvxkr5TjBpnbmZMtTMcLhYL0hogqs6HeW7Ijc4wAudSp7gZ7IC53kOL2KlHQRAOP5298+YHQmpDJeMYQWAlZbVCrMxsEClmXJpaCTBtlCoek53worIeBVPySBTcjvVMLU7lJczu0zrFpp6Dcaaq5QGt7JvoRtb6O5XV3CAapPgtRjRM8T5cohQf4GGrcj43rc6xk4I7DUaYtYeMMN4znZuZqu0oo8ZKQJMXvISQkVlWIKmUkAajgk55Yf3tvX61a+NFavqZM9NG28y7m6HVgekDVagagXWgKnfnqTvToppRGAGFTrWgS16ja1rY2UYC1s5UxntSKkXpmEXacAAxBOQqzjM38tHCoAJzLnuuaKGbYJhSdabRTYpjkowxWqY4IeMRRrc+55ySe9MLcds4jbtSsyy6sewOG5CegWt/0+EaBGTLwRWTMHpxuA42Ha6oQSsikz+TXEyVJZUZkq6SfFDFMlfSoSS+VwMAoPv1X8FToddhXofCJU7x1HtrfDzCjffWou/tOACF5D5qMxPsi+QaKlTUohT4wYnIMm5rug+ox6oHrzXcgfKP8/p06mme27u7KNhq8v29MPtJlITb3cMXrMGIRGOfVAkJkiRqrP0CF/yr9I9oe06xKKtCMGHuUqewOX4qDfRl7jqG9rF2IPjCeXUJps/lZU2ltn3Z67SL9MeRp+uCfECiSdA9oqQpfqOeOPCLexAGZBT+PzxM14WHAdRPB3xAJklvKWw74BMShlvdiWSDOOiX9DOR+R7Yr+nTlSp++Fyx7jbSw+eYfNFO2t1thbEjEmrXSzTEJ9CjK+gd/Qx6R2uCnvsacruJ7ckLgPeRLh/gduR3CW9X4Mu+D18NllpssjUqIuN+8Wj3Zolvo9BQt8eTTsEPN7aKrFJ52G4KH1LJf5xKvi5Uhu7jw+6BYjKJ/VKArXYcjzeWsTvDD3jLPG98hbfjn6lgx//yQ6rDm/3a3krC8MEKnJA4GMf3m1zH6BaJo6C7YH+r1A27/zvsvfsrYgftn6C9b1BLBwhz5lWOdQMAAHwSAABQSwMEFAAIAAgA611dQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK4FAFBLBwjWN725GQAAABcAAABQSwMEFAAIAAgA611dQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzdWVtv2zgWfu78CkIP+9TYvOrScTpIUgy2QKcdIN3FYgf7QEu0wokseSTacYr58XMOKdlybpM000V2jdgUyUOe+8dDZfbDdlmRjWk729THEZvQiJg6bwpbl8fR2i2O0uiHt9/NStOUZt5qsmjapXbHkURKWxxHJmFMJkwfZXquj2Re6COdmuTImCzJ0qIwMU8jQradfVM3H/XSdCudm/P8wiz1hybXzjO+cG71Zjq9urqaDKwmTVtOy3I+2XZFREDMujuO+oc3sN3BoivhyTmlbPqvnz6E7Y9s3Tld5yYiqMLavv3u1ezK1kVzRa5s4S5AYZ6CHhfGlhegVMJlRKZItQKLrEzu7MZ0sHbU9Uq75SryZLrG+VfhiVQ7fSJS2I0tTHsc0QlTCRWMq4g0rTW162lYz2s67DLbWHMVtsMnzwkEck1TzTXuRH7/nXDKKXmNDQsNhyaOwxQNY1SEhodGhkYFGhmWy0AqA40MNFJEZGM7O6/McbTQVQems/WiBbft+p27royXpx/Ya81eg06d/QLEgoJdg61hnNLX+I3hK3FieqgkG3F17fpBpmF+xHPgyGicPJ4lfwZLMbDklN3myNU9SsYP2DaweMi0OzXVyLDAyv/57y2Ogj+B4/12fTzDWP5XVJxNh0SZ9blBuguk7R3pzLLDbBEZURkGPSMKMiNOIMYVYRk0CSeQC4QpIhV0WUpibBMiEpiQRJCUIB0TxKeGSuFHJn6zmCjYDEcTyEjCgJEkShDmM0oSyCPisxIylAugUIooWITsGcctRExkDD2REgkyYkImDAgFLIQ+sOdEMCJwMUsIj0mM+zGJiR6nKDpsyUlMScxwQ8hpyOeQy0CfEoHaxF46+AxIY+vV2h3YKl8Ww6NrVjunADXA0h70AkwdYOKrWaXnpoJz4hxdSshGV5gantGiqR0ZvMnDWNnq1YXNu3PjHKzqyK96oz9oZ7Y/AnU38Pa0eVN3P7eNO2uq9bLuCMmbiu5kbio2euY7qaEjRhNyPKFGE/HoObmTbwMzZN0Z4N+03UCui+I9UuwhAiz5qa6uT1ujL1eNvU+Nj3pjSx/lpzdidVXp69O1cxj/+5F3Bn4AXvCMXcH6gWKnTt2dOwPuYizyrvJn28ys88oWVtf/hPRA/ugAsjvqPD4OR52i8SBj0xbn1x0kDdn+27QN8JVqIjnnIs1YissAua7DlOBqkvFY4KGfKYaY1uUa011kEykl5QmViRA8lXDcXd8zFzibzS4U9NbsrVq2iCWjzvvutKn2Q97QZ3rl1q2vUgCOW1TqpC4r44PRYwmUAPnlvNmehygUYa/P1yvo0SDBvPQOJoBGXIG8Zd/OQ+tpULQdFfU01FPQIaxtsZtnGfcUvp2H1lNBngTRelXZoCajAxvbeQylUR8gAz5ilmFBsa6t+zB0nM0v96rigo/r5dzsYxUJ3tlQ/oS67pAN+4ZsZtMbkTi7NG1tqj4lwOXrZt0FwBhlS2Fyu4RumOgNp9Gp/wCZwmhhytb09LrydWIwq5+l45C+Ney3+rFtlu/rzWeImBsCzKaDlLMub+0KI5PM4Xi6NPvYK2yn4XQrxuswHcEaOeY3GMShtQAs1u6iaX0lCBgHLSZoZZZQ/xHng9DH8c7yJ76gRBOTZv4rwOzuSA7zvjOgSmE9M48/PfEiTMLaO6PVx7WuVhcaK9LeIoAypj2wkWf2U1PctBw4JnAMsAOxsDImhFFQhgXk8gl5gIDgio5skSmWIx7VODx8GQWlNwSm6cEZEkZveBFCK9jwT6x5+mhrvliD8b3BxF9ir7xZLnVdkNqXY2e2zSsT7csCTTEIiWZovWCatRsm8rBZv8Ut40NI2nxn3PxPjH94Qt4Ry+V9rmFKeOco9vW+2UOxg3LkEq5enb8OuP5k8A9/t3Bz9TVpOKpsaeoNyAbVANxlaX9TvqaBP/kyjGzBekd+6Jr1Q1/YyHUQFa3dkpOB/mSgOuH+gcMxufvgmXUiehYn0u+MMXECxcyRT6Mg3G910KcLSI1Fml3Y/GH/n5sSxx8bAPrhAOj63QYX6+eGQHE7BOB6Os5P7H1tDOyzDJ2VZONPLHzWsUl2+El9Eh7JiWRjJ1H1jLC64Tm7XFU2t25n/Qrx4X3t4MQ1/ny5fWpeGrPCouZT/bnVdYfvZwLNAHH3h8DPHjIPAyC/5fmzhz1/iLtnX4W7/t1I2bcvAXsxz+j4w3xMSMg5prJMxBRqX5mm6hsA811eCWD9yxncQf9zy0HvnuKgd/83DqJZQjMq4JqieJrF3kEUHRSDlFmqhFKpyr6Bg+5GzrOAnO9uuWf+NOScPxc573DfcLkJyMko/yuQU3iATOF2yLJEZZQHFyCgAoeMZnGSxDJhVGH2IHSyCRexUkxymmZJIsX/EHKa7aoFwdDYQ6aYrQPFYOI4+ttv68Z9f0JCnpJmQUq7MTVpdWHhpoOxA7ehpQFxJoHW738YCbhhdLj7o0PhLm9jkfTMWmlht6Y4NEr/cqczrV3sX4T4OzaNBnf0XoJ7Yes8nhF/1vIJuB7jhUr/q3zEqInIWEozxYX/leOcvb/gnzdNZXS9s0bhrQWyrs1NiZ9zD6CPtt6nxaIzDhWVQw2hHs4lvfLZ68fOUcYQL0/T27xAvdPsaXoPyfE0zRcvSHOVBM0pf7TmZ6BZ68EiD3exJylfvjzluUgerzyovF4uTGvw/3M3NJ+OX6n495v9/wTf/gFQSwcIdux7CPgHAACwHAAAUEsBAhQAFAAIAAgA611dQx1AVCFvBQAAnQUAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADrXV1Dc+ZVjnUDAAB8EgAAEgAAAAAAAAAAAAAAAACzBQAAZ2VvZ2VicmFfbWFjcm8ueG1sUEsBAhQAFAAIAAgA611dQ9Y3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAaAkAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADrXV1Ddux7CPgHAACwHAAADAAAAAAAAAAAAAAAAADFCQAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQAAgEAAPcRAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" /> |
| *Process: | | *Process: |
Line 41: |
Line 41: |
| # Given diameter, radius = D/2. | | # Given diameter, radius = D/2. |
| # Also the other way i.e. If a circle is given, then its radius can be measured by using scale which is the linear distance between centre of the circle and any point on the circumference. | | # Also the other way i.e. If a circle is given, then its radius can be measured by using scale which is the linear distance between centre of the circle and any point on the circumference. |
− | #To measur diameter, measure the length of that chord which passes through the centre of the circle. | + | # To measure diameter, measure the length of that chord which passes through the centre of the circle. |
| Then she can project the digital tool 'geogebra.' and further clarify concepts. | | Then she can project the digital tool 'geogebra.' and further clarify concepts. |
| *Developmental Questions: | | *Developmental Questions: |