Activity1 Pi the mathematical constant

From Karnataka Open Educational Resources
Revision as of 16:45, 5 November 2019 by Vedavathi (talk | contribs) (added Category:Circles using HotCat)
Jump to navigation Jump to search


Objectives

Estimated Time

Prerequisites/Instructions, prior preparations, if any

Materials/ Resources needed

Process (How to do the activity)

  1. Click here for Finding Pi by Archimedes Method. Archimedes approximated the value of Pi by starting with the fact that a regular hexagon inscribed in a unit circle has a perimeter of 6. He then found a method for finding the perimeter of a polygon with twice as many sides. Applying his method repeatedly, he found the perimeter of a 12, 24, 48, and 96 sided polygon. Using the perimeter as an approximation for the circumference of a circle he was able to derive an approximation for Pi equivalent to 3.14. This video uses a somewhat simpler method of doing the same thing and carries it out to polygons with millions of sides. All that is needed to understand the calculation is knowledge of the Pythagorean Theorem.
  2. Geogebra file for explaining how 'circumference / diameter' is a constant, denoted as pi (Greek letter), using a number line
  3. An animation of the same concept.

Pi 121.gif

  • Process/ Developmental Questions

Open the Geogebra file. Move the slider to 'unravel' the circumference' over the number line. Since the diameter is 1 unit (measuring from -0.5 to 0.5 on number line), the circumference ends at 3.14, showing the ratio between circumference

  • Evaluation
  • Question Corner

if the diameter is increased from 1 to 2, what will the circumference be?