From Karnataka Open Educational Resources


(14 intermediate revisions by 3 users not shown) 
Line 1: 
Line 1: 
 ''[http://karnatakaeducation.org.in/KOER/index.php/ಸ್ವಯಂ_ಸಿದ್ಧಗಳು_,_ಆಧಾರ_ಪ್ರತಿಜ್ಞೆಗಳು_ಮತ್ತು_ಪ್ರಮೇಯಗಳು ಕನ್ನಡದಲ್ಲಿ ನೋಡಿ]''   ''[http://karnatakaeducation.org.in/KOER/index.php/ಸ್ವಯಂ_ಸಿದ್ಧಗಳು_,_ಆಧಾರ_ಪ್ರತಿಜ್ಞೆಗಳು_ಮತ್ತು_ಪ್ರಮೇಯಗಳು ಕನ್ನಡದಲ್ಲಿ ನೋಡಿ]'' 
−  <! This portal was created using subst:box portal skeleton >
 
−  <! BANNER ACROSS TOP OF PAGE >
 
   
−  While creating a resource page, please click here for a resource creation [http://karnatakaeducation.org.in/KOER/en/index.php/Resource_Creation_Checklist '''checklist'''].
 +  __FORCETOC__ 
   
−  === Concept Map ===
 +  [[Category:Introduction to Euclid's Geometry]] 
−   
−  === Additional resources ===
 
−   
−  ==== OER ====
 
−  ==== NonOER ====
 
−   
−  ===== Web resources =====
 
−  # Video on angles  http://study.com/academy/lesson/typesofanglesverticalcorrespondingalternateinteriorothers.html
 
−  # Additional information on axioms and postulates
 
−  ## http://www.themathpage.com/abooki/first.htm
 
−  ## http://www.friesian.com/space.htm
 
−  # __FORCETOC__To learn types of angles [https://www.mathsisfun.com/angles.html click here]
 
−  #The following videos provide an introduction to axioms, postulates and lines
 
−  { class="wikitable"
 
−  {{#widget:YouTubeid=bJVKaGqiKoE}}
 
−  
 
−  {{#widget:YouTubeid=UgfSwlqi4Qg}}
 
−  
 
−  {{#widget:YouTubeid=P3AOoLbA3us}}
 
−  }
 
−   
−  ===Teaching Outlines===
 
−   
−  ==== Concept 1  Introduction to planar geometry ====
 
−  It is useful to discuss with students about Euclid and his great contribution to Mathematics. The below two statements helps to understand and prove the theorems in geometry. Also, through a combination of activities, help the students understand results in the nature of axioms and postulates.
 
−  # Certain statements which are valid in all branches of mathematics whose validity is taken for granted without seeking mathematical proofs is called axioms
 
−  # Some statement which are taken for granted in a particular branches of mathematics is called postulates.
 
−   
−  ===== Activities =====
 
−   
−  ======Activity 1 Introduction to angles ======
 
−  ======Activity 2  Introduction to pairs of angles ======
 
−   
−  ===== Solved problems =====
 
Latest revision as of 08:16, 29 October 2019