Changes

Jump to navigation Jump to search
12 bytes removed ,  16:01, 17 May 2017
m
Text replacement - "</mm>" to ""
Line 19: Line 19:  
While creating a resource page, please click here for a resource creation [http://karnatakaeducation.org.in/KOER/en/index.php/Resource_Creation_Checklist '''checklist''']
 
While creating a resource page, please click here for a resource creation [http://karnatakaeducation.org.in/KOER/en/index.php/Resource_Creation_Checklist '''checklist''']
 
__FORCETOC__
 
__FORCETOC__
<mm>[[study of cell.mm|Flash]]</mm>
+
[[File:study of cell.mm|Flash]]
<mm>[[Structure of cell.mm|Flash]]</mm>
+
[[File:Structure of cell.mm|Flash]]
 
= Textbook =
 
= Textbook =
 
= Additional information =
 
= Additional information =
Line 59: Line 59:  
#An example of a situation in which bulk flow and diffusion can be differentiated is the mechanism by which oxygen enters the body during external respiration (breathing). The lungs are located in the thoracic cavity, which is expanded as the first step in external respiration. This expansion leads to an increase in volume of the alveoli in the lungs, which causes a decrease in pressure in the alveoli. This creates a pressure gradient between the air outside the body (relatively high pressure) and the alveoli (relatively low pressure). The air moves down the pressure gradient through the airways of the lungs and into the alveoli until the pressure of the air and that in the alveoli are equal (i.e., the movement of air by bulk flow stops once there is no longer a pressure gradient).
 
#An example of a situation in which bulk flow and diffusion can be differentiated is the mechanism by which oxygen enters the body during external respiration (breathing). The lungs are located in the thoracic cavity, which is expanded as the first step in external respiration. This expansion leads to an increase in volume of the alveoli in the lungs, which causes a decrease in pressure in the alveoli. This creates a pressure gradient between the air outside the body (relatively high pressure) and the alveoli (relatively low pressure). The air moves down the pressure gradient through the airways of the lungs and into the alveoli until the pressure of the air and that in the alveoli are equal (i.e., the movement of air by bulk flow stops once there is no longer a pressure gradient).
 
#The air arriving in the alveoli has a higher concentration of oxygen than the “stale” air in the alveoli. The increase in oxygen concentration creates a concentration gradient for oxygen between the air in the alveoli and the blood in the capillaries that surround the alveoli. Oxygen then moves by diffusion, down the concentration gradient, into the blood. The other consequence of the air arriving in alveoli is that the concentration of carbon dioxide in the alveoli decreases (air has a very low concentration of carbon dioxide compared to the blood in the body). This creates a concentration gradient for carbon dioxide to diffuse from the blood into the alveoli.
 
#The air arriving in the alveoli has a higher concentration of oxygen than the “stale” air in the alveoli. The increase in oxygen concentration creates a concentration gradient for oxygen between the air in the alveoli and the blood in the capillaries that surround the alveoli. Oxygen then moves by diffusion, down the concentration gradient, into the blood. The other consequence of the air arriving in alveoli is that the concentration of carbon dioxide in the alveoli decreases (air has a very low concentration of carbon dioxide compared to the blood in the body). This creates a concentration gradient for carbon dioxide to diffuse from the blood into the alveoli.
{{#widget:YouTube|id=v=EFCj9STCvdI}}
+
{{#widget:YouTube|id=EFCj9STCvdI}}
    
===Activities===
 
===Activities===
Line 70: Line 70:  
===Learning objectives===
 
===Learning objectives===
 
===Notes for teachers===
 
===Notes for teachers===
{{#widget:YouTube|id=v=w3_8FSrqc-I}}
+
{{#widget:YouTube|id=w3_8FSrqc-I}}
    
===Activities===
 
===Activities===
1,823

edits

Navigation menu