General Instructions :
i) The question-cum-answer booklet contains two Parts, Part - A \& Part - B.
ii) Part - A consists of 60 questions and Part - B consists of 16 questions.
iii) Space has been provided in the question-cum-answer booklet itself to answer the questions.
iv) Follow the instructions given in Part - A and write the correct choice in full in the space provided below each question.
v) For Part - B enough space for each question is provided. You have to answer the questions in the space provided.
vi) Space for Rough Work has been printed and provided at the bottom of each page.

PART - A

Four alternatives are suggested to each of the following questions / incomplete statements. Choose the most appropriate alternative and write the answer in the space provided below each question. $60 \times 1=60$

1. If set $A=\{2,3,4,5\}$ and set $B=\{4,5\}$, then which of the following is a null set?
(A) $A-B$
(B) $B-A$
(C) $A \cup B$
(D) $A \cap B$.

Ans. : \qquad
2. $\quad P, Q$ and R are three sets, then $(P \cup Q) \cap(P \cup R)=$
(A) $\quad P \cup(Q \cup R)$
(B) $P \cap(Q \cup R)$
(C) $P \cup(Q \cap R)$
(D) $P \cap(Q \cap R)$.

Ans. : \qquad
3. A and B are the subsets of set $U, A^{\prime} \cup B^{\prime}=\{2,3,5\}$ and $U=\{1,2,3,4,5,6\}$, then $A \cap B=$
(A) $\{2,3,5\}$
(B) $\{1,4\}$
(C) $\{1,2,3,4,5,6\}$
(D) $\{1,4,6\}$.

Ans. : \qquad
(SPACE FOR ROUGH WORK)
4. In a class of 50 students everyone should be a member of either Science club, or Maths club or even both. 29 students are the members of Science club and 11 students are the members of both the clubs. Then the number of students in Maths club only is
(A) 21
(B) 18
(C) 11
(D) 10 .

Ans. : \qquad
5. In sets A and B if $A-B=A$, then $A \cap B=$
(A) A
(B) B
(C) \cup
(D) ϕ.

Ans. : \qquad
6. In an arithmetic progression $T_{n}=3 n-1$, then common difference $=$
(A) 1
(B) 2
(C) 3
(D) 4 .

Ans. : \qquad
7. In an arithmetic progression $T_{n+5}=35$ and $T_{n+1}=23$ then common difference is
(A) 3
(B) 2
(C) $3 n$
(D) $2 n$.

Ans. : \qquad
8. Geometric mean of three numbers is 4 . Then their product is
(A) 16
(B) 64
(C) 128
(D) 256 .

Ans. : \qquad
9. The harmonic mean of P and Q is
(A) $\frac{2(P+Q)}{P Q}$
(B) $\frac{2 P Q}{P+Q}$
(C) $\frac{2(P+Q)}{P-Q}$
(D) $\frac{2 P+Q}{P Q}$.

Ans. : \qquad
10. If $\left[\begin{array}{cc}2 & 2 x-6 \\ 0 & 3\end{array}\right]$ is a diagonal matrix, then x is equal to
(A) 0
(B) 1
(C) 2
(D) 3 .

Ans. : \qquad
11. If $(A B)^{\prime}=\left[\begin{array}{ll}2 & 3 \\ 5 & 6\end{array}\right]$, then $B^{\prime} A^{\prime}=$
(A) $\left[\begin{array}{ll}2 & 5 \\ 3 & 6\end{array}\right]$
(B) $\left[\begin{array}{ll}2 & 3 \\ 6 & 5\end{array}\right]$
(C) $\left[\begin{array}{ll}2 & 3 \\ 5 & 6\end{array}\right]$
(D) $\left[\begin{array}{ll}5 & 6 \\ 2 & 3\end{array}\right]$.

Ans. : \qquad
12. ${ }^{n} P_{1}+{ }^{n} C_{1}=$
(A) $2 n$
(B) n
(C) 2
(D) $n+1$.

Ans. : \qquad
13. Value of ${ }^{20} C_{18}=$
(A) 360
(B) 300
(C) 180
(D) 190 .

Ans. :
14. If ${ }^{n} P_{3}=120$, then n is equal to
(A) 12
(B) 10
(C) 8
(D) 6 .

Ans. :
15. The correct relation is
(A) ${ }^{n} P_{r}={ }^{n} C_{r} \times \lcm{r}$
(B) ${ }^{n} C_{r}={ }^{n} P_{r} \times \bigsqcup \lcm{r}$
(C) ${ }^{n} P_{r}={ }^{n} C_{r} \div \bigsqcup r$
(D) ${ }^{n} C_{r}={ }^{n} P_{r}+\bigsqcup r$.

Ans. : \qquad
16. Sheela is one among 5 girls in a group. 5 chairs are kept in a row. In how many ways can Sheela sit in the middle chair ?
(A) ${ }^{5} P_{5}$
(B) ${ }^{4} P_{4}$
(C) ${ }^{5} P_{4} \times{ }^{2} P_{2}$
(D) ${ }^{4} P_{4} \times{ }^{2} P_{2}$.

Ans. : \qquad
17. If the value of standard deviation is $0 \cdot 9$, then the value of variance is
(A) 0.81
(B) $8 \cdot 1$
(C) $0 \cdot 3$
(D) 0.03 .

Ans. : \qquad
18. If the value of standard deviation of 10 scores is 0 , then the scores
(A) are equal to one another but opposite in signs
(B) are equal to each other
(C) are unequal to one another
(D) increase by one.

Ans. : \qquad
19. Coefficient of variation of price of 4 foodgrains namely rice, wheat, jowar and ragi are $9 \cdot 2,9 \cdot 9,9 \cdot 8$ and $9 \cdot 0$ respectively. Then which foodgrain's rate is more consistent ?
(A) Rice
(B) Wheat
(C) Jowar
(D) Ragi.

Ans. : \qquad
20. H.C.F. of $(a+b)$ and $(a-b)$ is
(A) $(a+b)$
(B) $a^{2}-b^{2}$
(C) 1
(D) 0 .

Ans. :
21. When $\sum_{x, y, z}(x+y)$ is expanded, we get
(A) $x+y+z$
(B) $2 x+2 y+2 z$
(C) $3 x+3 y+3 z$
(D) $3 x y z$.

Ans. : \qquad
22. The value of $\sum_{a, b, c}(a-b)$ is equal to
(A) $a-b-c$
(B) $a+b+c$
(C) 1
(D) 0 .

Ans. : \qquad
23. $(a+b)$ and $\left(a^{2}+b^{2}-a b\right)$ are the factors of
(A) $a^{3}+b^{3}$
(B) $a^{3}-b^{3}$
(C) $(a+b)^{3}$
(D) $(a-b)^{3}$.

Ans. :
24. If $a-2 b-3 c=0$ then $a^{3}-8 b^{3}-27 c^{3}=$
(A) $3 a b c$
(B) $-6 a b c$
(C) $18 a b c$
(D) $-27 a b c$.

Ans. :
25. The order and radicand of $a \sqrt[n]{x}$ respectively are
(A) $\quad a$ and n
(B) $\quad a$ and x
(C) n and x
(D) x and n.

Ans. : \qquad
26. $\sqrt{32}+\sqrt{50}=$
(A) $\sqrt{82}$
(B) $5 \sqrt{3}$
(C) $7 \sqrt{2}$
(D) $9 \sqrt{2}$.

Ans. : \qquad
27. Rationalising factor of $5 \sqrt{p-q}$ is
(A) $5 \sqrt{p+q}$
(B) $\sqrt{p-q}$
(C) $\sqrt{p+q}$
(D) $5 \sqrt{p}+5 \sqrt{q}$.

Ans. : \qquad
28. When $2 \sqrt{x}-\sqrt{y}$ is subtracted from $5 \sqrt{x}+2 \sqrt{y}$, the answer is
(A) $3 \sqrt{x}+3 \sqrt{y}$
(B) $3 \sqrt{x}-\sqrt{y}$
(C) $3 \sqrt{x}+\sqrt{y}$
(D) $3 \sqrt{x}-3 \sqrt{y}$.

Ans. : \qquad
29. An example for pure quadratic equation is
(A) $2 x^{2}-x=0$
(B) $5 x=3$
(C) $4 x=9 x^{2}$
(D) $2 x^{2}=16$.

Ans. : \qquad
30. If an equation has only one root, then the equation is
(A) quadratic equation
(B) linear equation
(C) cubic equation
(D) simultaneous equation.

Ans. : \qquad
31. If $F=\frac{m v^{2}}{r}$ then $v=$
(A) $\sqrt{\frac{F m}{r}}$
(B) $\sqrt{\frac{m r}{F}}$
(C) $\sqrt{\frac{F r}{m}}$
(D) $\sqrt{\frac{F}{r m}}$.

Ans. : \qquad
32. One of the positive roots of the equation $(2 x-7)(3 x-5)=0$ is
(A) $\frac{7}{2}$
(B) $\frac{2}{7}$
(C) $\frac{3}{5}$
(D) $\frac{5}{7}$.

Ans. : \qquad
33. Value of x in the equation $p x^{2}+q x+r=0$ is
(A) $\frac{-p \pm \sqrt{p^{2}-4 p q}}{2 p}$
(B) $\frac{-q \pm \sqrt{q^{2}-4 p r}}{2 p}$
(C) $\frac{-p \pm \sqrt{r^{2}-4 p q}}{2 r}$
(D) $\frac{-p \pm \sqrt{p^{2}-4 p q}}{2 q}$.

Ans. : \qquad
34. The length of a rectangle is 4 cm more than the breadth. The area is 60 sq.cm. This can be represented as
(A) $x+(x+4)=60$
(B) $x+(x+4)-60=0$
(C) $(x+4) x+60=0$
(D) $(x+4) x-60=0$.

Ans. :
35. The nature of the roots of the equation $a x^{2}+b x+c=0$ is decided by
(A) $b^{2}-4 a c$
(B) $b^{2}+4 a c$
(C) $b-4 a c$
(D) $b+4 a c$.

Ans. : \qquad
36. The product of the roots of the equation $2 x^{2}=3 x$ is
(A) $-\frac{2}{3}$
(B) $\frac{3}{2}$
(C) 0
(D) $\frac{1}{2}$.

Ans. : \qquad
37. The positive value of m for which the roots of the equation $x^{2}-m x+25=0$ are equal, is
(A) 20
(B) 10
(C) 15
(D) 5 .

Ans. : \qquad
38. If the sum of the roots of a quadratic equation is -5 and the product is 4 , then the equation is
(A) $x^{2}+5 x+4=0$
(B) $x^{2}-5 x+4=0$
(C) $x^{2}+x-20=0$
(D) $x^{2}-x-20=0$.

Ans. : \qquad
39. If a and b are the roots of the equation $x^{2}-5 x+7=0$, then $a b(a+b)=$
(A) 5
(B) 25
(C) 35
(D) 49 .

Ans. : \qquad
40. The product of the roots of the equation $x^{2}+5 x+(k+4)=0$ is zero, then $k=$
(A) -5
(B) -4
(C) 4
(D) 5 .

Ans. : \qquad
41. The greatest remainder obtained when an integer is divided by $(m+1)$ is
(A) 0
(B) 1
(C) $m-1$
(D) m.

Ans. : \qquad
42. Value of x, if $x \oplus_{10} x \equiv 2$, is
(A) 2
(B) 3
(C) 6
(D) 7 .

Ans. :
43. If ${ }^{n} C_{3}={ }^{n} C_{8}$, then the value of ${ }^{n} C_{1}=$
(A) 3
(B) 11
(C) 24
(D) 336 .

Ans. : \qquad
44. $A B$ and $C D$ are two equal and parallel chords in a circle. If the distance from the centre of the circle to the chord $A B=2 x$ units, then the distance between the chords is
(A) $4 x$ units
(B) $2 x$ units
(C) x units
(D) 1 unit.

Ans. : \qquad
45. $\angle A B C$ is an angle in a major arc. Then $\angle A B C$ is
(A) Obtuse angle
(B) Right angle
(C) Acute angle
(D) Straight angle.

Ans. : \qquad
46. Which of the following is a correct statement ?
(A) All the rectangles are similar
(B) All the rhombuses are similar
(C) All the right-angled triangles are similar
(D) All the equilateral triangles are similar.

Ans. : \qquad
47. In $\triangle A B C, P Q| | A B$. The correct relation is

(A) $\frac{B Q}{B A}=\frac{C P}{C A}$
(B) $\frac{A P}{P C}=\frac{B Q}{Q C}$
(C) $\frac{P Q}{B Q}=\frac{A B}{B C}$
(D) $\frac{P Q}{Q C}=\frac{A B}{A P}$.

Ans. : \qquad
48. If the perimeters of two similar triangles are in the ratio of $4: 1$, then the ratio between their areas will be
(A) $16: 1$
(B) $4: 1$
(C) $2: 1$
(D) $\sqrt{2}: 1$.

Ans. : \qquad
49. In the figure, $\angle A B C=\angle A Q P=90^{\circ}$. Then, $\frac{A Q}{A B}=$

(A) $\frac{B C}{P Q}$
(B) $\frac{A C}{P Q}$
(C) $\frac{Q P}{B C}$
(D) $\frac{A P}{A B}$.

Ans. : \qquad
50. In the figure, $A B$ is tangent to the circle with centre O. If $\angle A O B=30^{\circ}$, then $\angle A$ and $\angle B$ respectively are

(A) $75^{\circ}, 75^{\circ}$
(B) $100^{\circ}, 50^{\circ}$
(C) $80^{\circ}, 70^{\circ}$
(D) $90^{\circ}, 60^{\circ}$.

Ans. : \qquad
51. Radii of two circles are 5 cm and 3 cm respectively and the distance between their centres is 6 cm . Then they are
(A) touching externally
(B) intersecting circles
(C) touching internally
(D) concentric circles.

Ans. : \qquad
52. In the figure, A and B are the centres of two circles with radii 6 cm and 2 cm respectively. $C D$ is the diameter, then $M D=$

(A) 8 cm
(B) 6 cm
(C) 4 cm
(D) 2 cm .

Ans. : \qquad
53. In the figure, $A B, A C$ and $B D$ are the tangents as shown in the figure. If $A B=x \mathrm{~cm}$, $B D=y \mathrm{~cm}$, then $A C=$

(A) $x \mathrm{~cm}$
(B) $y \mathrm{~cm}$
(C) $(x-y) \mathrm{cm}$
(D) $(x+y) \mathrm{cm}$.

Ans. : \qquad
54. The formula used to find the total surface area of a solid cylinder is
(A) $2 \pi r h$
(B) $2 \pi r^{2}(r+h)$
(C) $\pi r(r+h)$
(D) $2 \pi r(r+h)$.

Ans. : \qquad
55. The number of plane surfaces in a solid cone is
(A) 0
(B) 1
(C) 2
(D) 3 .

Ans. : \qquad
56. Ratio between the radii of two solid spheres is $2: 3$, then the ratio between their volumes is
(A) $8: 27$
(B) $4: 9$
(C) $2: 3$
(D) $\sqrt{2}: \sqrt{3}$.

Ans. : \qquad
57. The volume of a solid cone is $60 \mathrm{~cm}^{3}$ and the area of the base is $20 \mathrm{~cm}^{2}$. Then the height is
(A) 6 cm
(B) 9 cm
(C) 12 cm
(D) 18 cm .

Ans. : \qquad
58. A metal sheet of length 2 m and breadth 44 cm is rolled to form a hollow pipe of length 2 m . Then the radius of that pipe is
(A) 44 cm
(B) 22 cm
(C) 11 cm
(D) 7 cm .

Ans. : \qquad
59. The numbers of vertices and edges respectively in a tetrahedron are
(A) 4,6
(B) 6,4
(C) 8, 6
(D) 6,8 .

Ans. : \qquad
60. The numbers of regions and nodes in the given network are

(A) 3,2
(B) 3,3
(C) 4,2
(D) 4,5

Ans. : \qquad

PART - B

61. A person deposits Rs. 1,000 in the first month. Then every month he increases the monthly deposit by Rs. 60. Calculate his total investment at the end of 2 years. 2
62. If $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 1\end{array}\right]$ then find $A A^{\prime}$. 2
63. Calculate the standard deviation of $10,12,14,16,18,20$. $($ Given mean $=15)$
64. If $a+b+c=0$, then prove that $(b+c)(b-c)+a(a+2 b)=0$. 2
65. Simplify by rationalising the denominator :

$$
\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} .
$$

66. The height of a triangle is 5 cm less than the base. If the area of the triangle is 150 sq.cm, find the base.
67. The H.C.F. and L.C.M. of two expressions are ($x-3$) and $x^{3}-5 x^{2}-2 x+24$ respectively. If one of the expressions is $x^{2}-7 x+12$, then find the other.
68. Draw a circle of radius 3.5 cm . Draw two radii such that the angle between them is 110°. Draw tangents at the ends of the radii.
69. If one diagonal of a trapezium divides the other in the ratio $2: 1$, then prove that one of the parallel sides is twice the other.
70. In the figure, $T P$ and $T Q$ are the tangents drawn to a circle with centre O. Show that $\angle P T Q=2 \angle O P Q$.

71. Draw a plan by using the data given below :
(Scale : $20 \mathrm{~m}=1 \mathrm{~cm}$)

	To D	
E 80	200	
	160	60 C
	100	
	40	$50 B$
	From A	
	(metres)	

72. Construct the matrix for the given network. Write the relation between the sum of the elements of the matrix and the sum of the order of the nodes.
81-E28
73. State and prove 'Pythagoras theorem'. 4
74. Draw two circles of radii 2.5 cm and 2 cm with their centres 8 cm apart. Draw the transverse common tangents to them.
75. The 10 th term of a geometric progression is 8 times the 13 th term. The first term is 3 . Then find the sum up to infinite terms.
76. Draw the graph of the equation $y=2 x^{2}$.

$\boldsymbol{x}:$	0	1	-1	2	-2
$\boldsymbol{y}:$	0	2	2	8	8

graph

