Line 1:
Line 1:
=Problem 1=
=Problem 1=
−
If n =10, = 12 and
+
If n =10, <math>\bar x </math> = 12 and<br>
−
<math>\sum{x^2}= 1530 find the standard deviation </math> <br>
+
<math>\sum{x^2}= 1530 find the standard deviation </math> <br>
=INTERPRETATION OF PROBLEM=
=INTERPRETATION OF PROBLEM=
Line 143:
Line 143:
|32
|32
|128
|128
−
|-2
+
| -2
−
|-8
+
| -8
|4
|4
|16
|16
|-
|-
|34-38
|34-38
−
|128
+
|7
−
|080
+
|36
−
|064
+
|252
−
|0640
+
| -1
+
| -7
+
|1
+
|7
|-
|-
|38-42
|38-42
−
|-2
+
|9
−
|195
+
|40
−
|169
+
|360
−
|2535
+
|0
+
|0
+
|0
+
|0
|-
|-
|42-46
|42-46
−
|10
+
|11
−
|180
+
|44
−
|324
+
|484
−
|3240
+
|1
+
|11
+
|1
+
|11
|-
|-
|46-50
|46-50
−
|08
+
|6
−
|184
+
|48
−
|529
+
|288
−
|4232
+
|2
+
|12
+
|4
+
|24
|-
|-
|50-54
|50-54
+
|3
+
|52
+
|156
+
|3
+
|9
+
|9
+
|27
+
|-
|
|
+
|n=40
|
|
+
|Σfx=1668
|
|
−
|
+
|Σfd=17
−
|n=50
−
|Σfx=660
|
|
−
|Σfx²=10710
+
|Σfd²=85
|}
|}
+
A=assumed average.<br>
+
c=4<br>
+
d=<math>\frac{x-A}{c}</math>=<math>\frac{32-40}{4}</math>=<math>\frac{-8}{4}=-2</math><br>
+
+
assumed mean A=<math>\frac{\sum fx}{n}</math>=<math>\frac{1668}{40}=41.7</math><br>
+
+
Varience σ²=[<math>\frac{\sum {fd^2}}{n}-({\frac{\sum fx}{n})^2}]c^2</math> <br>
+
+
σ²=[<math>\frac{85}{40}-({\frac{17}{40})^2}]4^2</math> <br>
+
+
σ²=[2.125-0.180]16<br>
+
σ²=[1.945]16<br>
+
σ²=31.12<br>
+
standard deviation, σ=<math>\sqrt{varience}</math> <br>
+
σ=<math>\sqrt{31.12}</math> <br>
+
σ=5.58
−
Standard deviation σ=<math>\sqrt{\frac {\sum {fx^2}}{n}-({\frac{\sum fx}{n})^2}}</math> <br>
+
[[Category:Statistics]]
−
σ=<math>\sqrt{\frac{10700}{50}-({\frac{660}{50})^2}}</math> <br>
−
σ=<math>\sqrt{214-174.24}</math> <br>
−
σ=<math>\sqrt{39.96}</math> <br>
−
σ=6.3