Changes

Jump to navigation Jump to search
1,219 bytes added ,  11:25, 14 August 2014
Created page with "=Hints for difficult problems = #If P & q are the roots of the equation <math>2a^2-4a+1=0</math> find the value of <math>p^3+q^3</math> '''Pre requisites''': #Standard form ..."
=Hints for difficult problems =
#If P & q are the roots of the equation <math>2a^2-4a+1=0</math> find the value of
<math>p^3+q^3</math>
'''Pre requisites''':
#Standard form of quadratic equation
#Formula to find the sum & product of quadratic equation
#Knowledge of using appropriate identity
'''Interpretation of the Problem''':
#Compare the equation with standard form and identify the values of a,b,c
#To find the sum formformof the roots of the quadratic equation using the formula
#To find the product of the roots of the equation
# Using the identity & rewriting <math>p^3+q^3</math> as <math>(p+q)^3-3pq(p+q)</math>
#Substitute the values of m+n & mn in <math>(p+q)^3-3pq(p+q)</math>
#Simplification
'''Concepts''':
#Formula to find the sum and product of the roots of the quadratic equation
#Identity <math>(a+b)^3=a^3+b^3+3ab(a+b)</math>
'''Algorithm''': <br>
Consider the equation <math>2a^2-4a+1=0</math><br>
Here a=2,b=-4 & c=1<br>
If p & q are the roots of the quadratic equation then<br>
<math>p+q={\frac{-b}{a}}={\frac{-(-4)}{2}=2}</math><br>
<math>pq={\frac{c}{a}}={\frac{1}{2}}</math><br>
Therefore,<br>
<math>p^3+q^3=(p+q)^3-3pq(p+q)</math><br> =<math>(2)^3-3[{\frac{1}{2}}](2)</math><br>
=8-3<br>=5
203

edits

Navigation menu