Changes

Jump to navigation Jump to search
1,082 bytes removed ,  11:33, 14 August 2014
Line 165: Line 165:  
<math>p^3+q^3</math>
 
<math>p^3+q^3</math>
 
[[solution]]
 
[[solution]]
'''Pre requisites''':
  −
#Standard form of quadratic equation
  −
#Formula to find the sum & product of quadratic equation
  −
#Knowledge of using appropriate identity
  −
'''Interpretation of the Problem''':
  −
#Compare the equation with standard form and identify the values of a,b,c
  −
#To find the sum formformof the roots of the quadratic equation using the formula
  −
#To find the product of the roots of the equation
  −
# Using the identity & rewriting <math>p^3+q^3</math> as <math>(p+q)^3-3pq(p+q)</math>
  −
#Substitute the values of m+n & mn in <math>(p+q)^3-3pq(p+q)</math>
  −
#Simplification
  −
'''Concepts''':
  −
#Formula to find the sum and product of the roots of the quadratic equation
  −
#Identity <math>(a+b)^3=a^3+b^3+3ab(a+b)</math>
  −
'''Algorithm''': <br>
  −
Consider the equation <math>2a^2-4a+1=0</math><br>
  −
Here a=2,b=-4 & c=1<br>
  −
If p & q are the roots of the quadratic equation then<br>
  −
<math>p+q={\frac{-b}{a}}={\frac{-(-4)}{2}=2}</math><br>
  −
<math>pq={\frac{c}{a}}={\frac{1}{2}}</math><br>
  −
Therefore,<br>
  −
<math>p^3+q^3=(p+q)^3-3pq(p+q)</math><br> =<math>(2)^3-3[{\frac{1}{2}}](2)</math><br>
  −
=8-3<br>=5
      
=Ex.no.9.11 /problem no.9=
 
=Ex.no.9.11 /problem no.9=
203

edits

Navigation menu