Changes

Jump to navigation Jump to search
Line 15: Line 15:  
==Methos Of Solutions==
 
==Methos Of Solutions==
 
=== '''Generalisation By Verification'''===
 
=== '''Generalisation By Verification'''===
  When A=60°
+
When A=60°
 
LHS=<math>\frac{1-\tan^2 60°}{1+\tan^2 60°}</math> <br>=<math>\frac{1-{(\sqrt{3})}^2 }{1+{(\sqrt{3})}^2 }</math><br>=<math>\frac{1-3}{1+3}</math><br>=<math>\frac{-2}{4}</math><br>=<math>\frac{-1}{2}</math>-----(1)<br>RHS=<math>1-2\sin^2 A</math><br>=<math>1-2\sin^260° </math><br><math>1-2{(\frac{\sqrt{3}}{2})}^2</math><br>=<math>1-2(\frac{3}{4})</math><br>=<math>\frac{4-2(3)}{4}</math><br>=<math>\frac{-1}{2}</math>------(2)<br>from eqn1 & eqn2<br><math>\frac{1-\tan^2 60°}{1+\tan^2 60°}</math>=<math>1-2\sin^260° </math><br>'''By Generalisation'''<br> '''<math>\frac{1-\tan^2 A}{1+\tan^2 A}=1-2\sin^2 A</math>'''
 
LHS=<math>\frac{1-\tan^2 60°}{1+\tan^2 60°}</math> <br>=<math>\frac{1-{(\sqrt{3})}^2 }{1+{(\sqrt{3})}^2 }</math><br>=<math>\frac{1-3}{1+3}</math><br>=<math>\frac{-2}{4}</math><br>=<math>\frac{-1}{2}</math>-----(1)<br>RHS=<math>1-2\sin^2 A</math><br>=<math>1-2\sin^260° </math><br><math>1-2{(\frac{\sqrt{3}}{2})}^2</math><br>=<math>1-2(\frac{3}{4})</math><br>=<math>\frac{4-2(3)}{4}</math><br>=<math>\frac{-1}{2}</math>------(2)<br>from eqn1 & eqn2<br><math>\frac{1-\tan^2 60°}{1+\tan^2 60°}</math>=<math>1-2\sin^260° </math><br>'''By Generalisation'''<br> '''<math>\frac{1-\tan^2 A}{1+\tan^2 A}=1-2\sin^2 A</math>'''
  
86

edits

Navigation menu