Changes

Jump to navigation Jump to search
m
Line 1: Line 1: −
<!-- This portal was created using subst:box portal skeleton  -->
+
Investigating the diameter is the longest chord of a circle.
<!--        BANNER ACROSS TOP OF PAGE        -->
  −
{| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;"
  −
|-
  −
|style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
  −
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics]
  −
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics]
  −
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
  −
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics]
  −
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
  −
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus]
  −
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
  −
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics]
  −
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
  −
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks]
  −
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
  −
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank]
  −
|}
  −
While creating a resource page, please click here for a resource creation [http://karnatakaeducation.org.in/KOER/en/index.php/Resource_Creation_Checklist '''checklist'''].
     −
= Concept Map =
+
===Objectives===
__FORCETOC__
+
To understand longest chord passes through the centre and it is the diameter
<mm>[[circles_and_lines.mm|flash]]</mm>
+
===Estimated Time===
 +
30 minutes
   −
= Textbook =
+
===Prerequisites/Instructions, prior preparations, if any===
To add textbook links, please follow these instructions to:
+
Prior knowledge of point, lines, angles, polygons
([{{fullurl:{{FULLPAGENAME}}/textbook|action=edit}} Click to create the subpage])
     −
=Additional Information=
+
===Materials/ Resources needed===
==Useful websites==
+
* Digital : Computer, geogebra application, projector.
#[http://www.regentsprep.org/Regents/math/geometry/GP14/PracCircleSegments.htm www.regentsprep.com] conatins good objective problems on chords and secants <br>
+
* Non digital : Worksheet and pencil, compass, strings
#[http://www.mathwarehouse.com/geometry/circle/tangents-secants-arcs-angles.php www.mathwarehouse.com] contains good content on circles for different classes<br>
+
* Geogebra files :  [https://ggbm.at/c4eg7q2u Diameter is longest chord.ggb]
#[http://staff.argyll.epsb.ca/jreed/math20p/circles/tangent.htm staff.argyll]  contains good simulations
+
{{Geogebra|c4eg7q2u}}
   −
==Reference Books==
+
===Process (How to do the activity)===
 +
Use the geogebra file to show how diameter is the longest chord.
   −
= Teaching Outlines
+
Move the points on the circle to show the changes in the triangle.
Chord and its related theorems
  −
==Concept #1 CHORD==
  −
===Learning objectives===
  −
The students should be able to:
  −
# Recall the meaning of circle and chord.
  −
# They should know the method to measure the perpendicular distance of the chord from the centre of the circle.
  −
# State Properties of chord.
  −
# By studying the theorems related to chords, the students should know that a chord in a circle is an important concept .
  −
# They should be able to relate chord properties to find unknown measures in a circle.
  −
# They should be able to apply chord properties for proof of further theorems in circles.
  −
# The students should  understand the meaning of congruent chords.
     −
===Notes for teachers===
+
What is the condition with respect to sides for formation of a triangle. Sum of two sides is larger than the third side.
# A chord is a straight line joining 2 points on the circumference of a circle.
  −
# Chords within a circle can be related in many ways.  
  −
# The theorems that involve chords of a circle are :
  −
* Perpendicular bisector of a chord passes through the center of a circle.
  −
* Congruent chords are equidistant from the center of a circle.
  −
* If two chords in a circle are congruent, then their intercepted arcs are congruent.
  −
* If two chords in a circle are congruent, then they determine two central angles that are congruent.
     −
===Activity No 1[Theorem 1: Perpendicular bisector of a chord passes through the center of a circle.] ===
+
Compare the chord length with sum of two radii. When is the triangle reduced to a line segment.
{| style="height:10px; float:right; align:center;"
  −
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
  −
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
  −
|}
  −
*Estimated Time <br>
  −
20 minutes
  −
*Materials/ Resources needed:
  −
Laptop, Geogebra file, projector and a pointer.
  −
*Prerequisites/Instructions, if any
  −
# The students should know the basic concepts of a circle and its related terms.
  −
# They should have prior knowledge of chord and construction of perpendicular bisector to the chord.
  −
*Multimedia resources: Laptop
     −
*Website interactives/ links/ / Geogebra Applets
+
What can you conclude about the chord? When is it the largest?
<ggb_applet width="1280" height="572" version="4.0" ggbBase64="UEsDBBQACAAIABa+VEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ5WU/z/TCRzHP6dNs8gOrVBnsnu4tiK1HZHLatgSM4Tk25TRECH5bk0aFXG+z8MpnC8zX/Kli9D5ds2XwjL2mOFqxS75/nW+rPN4XPfL3eNxj8c9Hu/X8/V6vP+AZ5KtjaUSVAMKAIASkYC322nuTrwh8juECDlVAAAOJOJxDuHCmfxq0mWy2svpVSfPrL4AI/gJ86f+Yd0qAxAQBQLqhkFAcrc9FeRumyF2pjYkCwr6sq24d+kgQp1oIWZMgckbqefMtPxcQFrk8VbH1qBTS7PVIVoJANCotr4PQEAAxhdwX5z8bmhtaW5CWzQ+mf1m9LJHbuZcuajgTK/35hU1aEN/w8Cv1VXDjfyN2QFzRsZ5bVe3zPjfXz7cnOryki6sTC8WPRWLNz0HfVa2uu7DYrdRcbP8iuCIVfVRksTU1Ena3tPQPx3uWJVSFFzpbzouEmW/Xatb4prcjdFq8emfNjX8vL3daqYkR0cAkL/wd/8bOzemzf3wwVsgEin29vZSqNTJwae1tSphYWHtKyvYOG/JXpwNidTB49nlsFjQkJAQSmCgflSlhq6uLuXWLcO+16+pBSOxEQVgiS9OT0+v1oUSGyvrxlVtw+Hw9uXlUCMTE7G+cr4+odyhp9j2GILI4mPsZ3Tevu7vTwIkF3BqzWKx+JJ9+cUGXmcnXjAxETffNDsKpNYjmExm7sEm4S+srq6u40ZGOXxHoHtPcFBQ6oqqkEjq35xfnfEp/IoHx+f7YKOE1h4ecQKhsIemSkeCyaqlbq/Y54co+/38/CgxMfll9GXQINeOEwFVxfsOfXK+5QoimMOwlUjC0egCy5Nz6enpePlinURq05WSO+saeP/AQB9Ns1BcSkpKLSY1xwF62EsRDjAcZqI6JTlT2CeK3xqjsvfAkJFLqO/5NFgy+0gXGIbUyMrPK0Q0uDOXyag0Xoa/vd8j56PUvCyi76k7AVl5TgH3UYnDwfWoEbY6Q7K/PCNy/QwGEMdflAbCOcLoGpTYWN8ZbYhNXhq3P9Xqis2dCTduPVPgsgufoLbr5D4yVqu2qWnjk9zwbubieHQNrXaIgQo0cClqq0DXKzu6hW8ZbEsxaL/NS5gndl/j4+ppDEkP76NU3fvY5SACQctIU1NTWc4qprBUnjOhtu5YcmL3lgGW7TvVIVfng+KOVJNU8UXXZLSSSf78fBDciLV/oY2tvkYFVSy+iG78wTnz2R/9zAdXQBHH772PP9f2Lt7SWmsPCpzbEyldtA9fm7XqwBljMGoWlpZ1j9baUEcuwG4ubkk7v2Hd7QSRjRPBTDZFi8MuifHkj6ZpHDjAjSG9UvAoYWnKcmgpAqlARSiTLZjc0FB2RaenHQ1HElqcLim9dKlh60zFXzxkGnczmd+5sVTajLWCTZ6l20Qq4ZDP9SB0BNl2QjtBU7es0dEatIIjGOJSfcv009tPn3O3fixTNfzpXGpZfdR2hA5jAMdEgpJMW6up7h8iQ5XQfu8VYUhUTxqRcsPOO+BxwTV3nAoaau/87iOYXOrWfR0gQrwiLMshKlEKxxFcHS/9G1gchlORZEsvBpFTYvuoyWN9LoWxn208zbwYkF5qchtTWatDIDhATEytQgzLHi58NomMHBcpLCYn0uvB5Knwq1eLA3703WsRYlCcYWYJ8cJVbC6jrJ5l+kaUpnRUWjwuAi0cmnK0PkyzNTsUvHFw4AkDcmx+BO9VNxtbWJLHctCAeSqgQ5sRw/qDwYLPjbuaV9/IhHbPQ+QRBPuB0wlj9yy6E85nV/MfkrV+uw4t2V4vzZ/ngMszzP2ItMprIw+M7MycoP+0wH/K4X+8x7geNSIJGuQy17JjYIBoboOvOuvJ+BNQSwcI5+oQr24FAACoBQAAUEsDBBQACAAIABa+VEMAAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s3VhLU9swED63v0KjexQ/4hAYTKcwvGZK6RQOvSqycNTakmsphPDru5JssAmUvmiT+mDLq/Xu+vtWu7J339yUBbrmtRZKpjgkAUZcMpUJmad4bq4GE/xm7/VuzlXOpzVFV6ouqUnxyGqiGy12pHpPS64ryvgFm/GSvlOMGmduZky1MxwuFgvSGiCqzod5bsiNzjAC51KnuBnsgLneQ4vYqUdBEA4/nb3z5gdCakMl4xhBYCVltUKszGwQKWZcmloJMG2UKh6TnfCish4FU/JIFNyO9UwtTuUlzO7TOsWmnoNxpqrlAa3sm+hG1vo7ldXcIBqk+C1GNEzxPlyiFB/gYatyPjetzrGTgjsNRpi1h4ww3jOdm5mq7SijxkpAkxe8hJCRWVYgqZSQBqOCTnlh/e29frVr40Vq+pkz00bbzLubodWB6QNVqBqBdaAqd+epO9OimlEYAYVOtaBLXqNrWtjZRgLWzlTGe1IqRemYRdpwADEE5CrOMzfy0cKgAnMue65ooZtgmFJ1ptFNimOSjDFapjgh4xFGtz7nnJJ70wtx2ziNu1KzLLqx7A4bkJ6Ba3/T4RoEZMvBFZMwenG4DjYdrqhBKyKTP5NcTJUllRmSrpJ8UMUyV9KhJL5XAwCg+/VfwVOh12Feh8IlTvHUe2t8PMKN99ai7+04AIXkPmozE+yL5BoqVNSiFPjBicgybmu6D6jHqgevNdyB8o/z+nTqaZ7bu7so2Gry/b0w+0mUhNvdwxeswYhEY59UCQmSJGqs/QIX/Kv0j2h7TrEoq0IwYe5Sp7A5fioN9GXuOob2sXYg+MJ5dQmmz+VlTaW2fdnrtIv0x5Gn64J8QKJJ0D2ipCl+o5448It7EAZkFP4/PEzXhYcB1E8HfEAmSW8pbDvgExKGW92JZIM46Jf0M5H5Htiv6dOVKn74XLHuNtLD55h80U7a3W2FsSMSatdLNMQn0KMr6B39DHpHa4Ke+xpyu4ntyQuA95EuH+B25HcJb1fgy74PXw2WWmyyNSoi437xaPdmiW+j0FC3x5NOwQ83toqsUnnYbgofUsl/nEq+LlSG7uPD7oFiMon9UoCtdhyPN5axO8MPeMs8b3yFt+OfqWDH//JDqsOb/dreSsLwwQqckDgYx/ebXMfoFomjoLtgf6vUDbv/O+y9+ytiB+2foL1vUEsHCHPmVY51AwAAfBIAAFBLAwQUAAgACAAWvlRDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgACAAWvlRDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVY3XPbNhJ/Tv+KHT70KZIAgl9K5XRs33QuM26bGeduOn25gUhIQk2BLAHKkqd/fBcASVFW7DrppdfzxAEBLPbrt7tYePHtflvCTjRaVuoioFMSgFB5VUi1vghas5pkwbdvv1qsRbUWy4bDqmq23FwEkaWUxUWQZbxIY0InCV1lkyhPV5NlHhcTViQrtsx5tEqTAGCv5RtV/cC3Qtc8F7f5Rmz5TZVz4wRvjKnfzGb39/fTXtS0ataz9Xo53esiAFRT6Yug+3iD7E4O3TNHHhJCZz99f+PZT6TShqtcBGBNaOXbr14t7qUqqnu4l4XZoMFhhnZshFxv0Kg0jAKYWaoaPVKL3Mid0Hh2NHVGm20dODKu7P4r/wXlYE8AhdzJQjQXAZnSOCWMhnEAVSOFMh0N7WTNei6LnRT3np39cpJQIVNV5ZJbTvDbbxCSkMBrO1A/hDgkid8ifo0wP4R+iPwQe5rIH488aeRpIk8TsQB2UstlKS6CFS81uk6qVYOwDXNtDqVw+nQLR6vpa7RJywckZgT96n2N64S8tr8J/kZ2Y3ZqJB1JNU37rFC/P5LZS6QkSV8uMvwTIlkvMiT0XGIYP2Fk8oxvvYjnXDuYGY8ci6LcP/d7JpGFnyDxab++XGAS/SUmLmZ9oiy63AC9sbQdkEZstc0WNod4boOeAhYoSFKM8RjoHIc0BMwFoDFEMU5pBokdU2ApbkTAIANLRxm41Igz/C9KHbMEYmRmV1PMSKAoKIKYAXUZFQHmEbisxAwNGVLEMcR4yIqnoWXBEogSnLEMItTRJmRKkZDhQZyj+BAYBWYP0xTCBBLLj0Y20ZPMqo4sQ0gIJNQyxJzGfPa5jPQZMGtN4rTDn77SSFW35sRX+bboP01VD6AgNZalY9HzZeqkJr5alHwpSrwnbi2kADte2tRwglaVMtCjGfq1dcPrjcz1rTAGT2n4he/4DTdi/x1S6162o80rpd83lbmuynarNEBelWTQuSrp6DsctMYJG21E4414tJGMvtOPyq1wB1otUH7V6J6cF8U7S3EsEejJH1V5uGoEv6sreWrGYuaunIVo81IWkqt/Y9RaKdYvMNxArmz1N1AcsV6TqiluDxpjGfY/i6bCakNje+ke/Iz5mc65TbaYuK3xzLERu8HdfC+Omq8bm6+jyTt9VZXHJWfMNa9N27hOAEteYzW8VOtSOMBdvuI1m98tq/2tR5p5Xh8ONc46DZZr50TAjA9jvALX3bj0o6Oxqg1UxNEQR0H60JHFsE/noaNw49KPjgpj0avWmUp7MynpxUjt6hQJuiToa5CNZHtpt0qam35iZH53NNUe+KHdLsUxHizBP6RvMXzvdCqGfkExi9mjsFrciUaJsotihLytWu2TchTghcjlFqd+o3Mct6D+C3Xyq4VYN6Kj56Xrxbxb3S4Zx+fZsmP1XVNt36ndB4yYRwosZr2WC503sraRCUu8Au7EMfYKqTneIMX4nE079EZubwp0iLHewoRszaZqXLeFdQRHm22l2GKPBcYFoWq3opH54Hv1H+oaN1Sr7TQfcLOuh2r5C5a4x5CNPIgET4Qq8LLecNfwdQHJD6I5cY9j931V9KI7waXtFGEr/SW45XvbPyG/pcb6Z7BZRjzUsVn2YTHUD5f6eCRKElcEsCd33flK7sVQ3dFP8gHjwop1K49SxmBpvsM2VLvWyHQZ7D7+KYtCqEFbrjCCHA5YnGoftLUQPt6HgzUa7yrHCPsOmjOQXLEZfH0ZnIHR9SZ+/6j9U1C4+jKAQV4IBnmxefRj5nUpoS0SdGofEgf7gZo8jGLMmWqr5cl16VcfJdNL/XX1/++vcJp6f7Epif4rDsur7ZarApRrPa9lk5ciOLZAnNg4A06t+7xvWtNv5J5Zx+LM+1iKRgUl/wPvf2Ll+ETnf07+Yqch1A41xc4G3+Wke/UfiJcPD/3KHr0z8X0F7ZYe6AgahL2Re7js6S97qsvQHcxYREY/GGOXrJNxib3ZxGfJZew+u05A/Kq8PdrfiLbhlCuZP4/ve5cQp/DmZ7heP4/raVZdf1ZWuUf+uhv/HpmVRWmW0fk8nBPG4ix1eYa6pPhCj1JGw3kWJnP2JdLuVqzt+iNgrnzeXZ/ho57HR3fchqv8f5p5YxfPk2Q+j8MkSwlFj3YepuTE8bH38CSbRnEah1k4x/s6m+Py52fyo2SR27qUuTSDZ0sbGe+UwWZSuNbpvCG8E6K2/fqP6kPDlbZ/3vM0fYA/De8NqnwltaskjzBWZ+Dy58G15g/I8b8JspOPgnj4KOQW2mjKaJLie4TRLA4jRr8Qtiedwb5ukJ+tEn1lEnuDCuHGRfD1r21lvnkvmlqoQuZtyRtYdpBBtUJ9BL7h0F6oudZC40JTteuN3xA2cgYyd4dOPUenxSmCVmxwqsNnodg/Ev80ju5vEBq7/9Xxve6eqSTondr334Y3xt0h4GCn08TBHE+jcFwWx36fjV8k7q3f/dn67e9QSwcIeAeIsEsHAABTFwAAUEsBAhQAFAAIAAgAFr5UQ+fqEK9uBQAAqAUAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACAAWvlRDc+ZVjnUDAAB8EgAAEgAAAAAAAAAAAAAAAACyBQAAZ2VvZ2VicmFfbWFjcm8ueG1sUEsBAhQAFAAIAAgAFr5UQ9Y3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAZwkAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAWvlRDeAeIsEsHAABTFwAADAAAAAAAAAAAAAAAAADECQAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQAAgEAAEkRAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
  −
*Process:
  −
# Show the children the geogebra file.
  −
# Let them identify the chord. Ask them to define a chord.
  −
# Let them recall what a perpendicular bisector is.
  −
# Show them the second chord.
  −
# Let students observe if everytime the perpendicular bisector of the chord passes through the centre of the circle.
  −
*Developmental Questions:
  −
# What is a chord ?
  −
# At how many points on the circumference does the chord touch a circle .
  −
# What is a bisector ?
  −
# What is a perpendicular bisector ?
  −
# In each case the perpendicular bisector passes through which point ?
  −
# Can anyone explain why does the perpendicular bisector always passes through the centre of the circle ?
     −
*Evaluation
+
[[Category:Circles]]
# What is the angle formed at the point of intersection of chord and radius ?
  −
# Are the students able to understand what a perpendicular bisector is ?
  −
# Are the students realising that perpendicular bisector drawn for any length of chords for any circle always passes through the center of the circle .
  −
*Question Corner:
  −
# What do you infer ?
  −
# How can you reason that the perpendicular bisector for any length of chord always passes through the centre of the circle.
  −
 
  −
===Activity No # 2.[Theorem 2.Congruent chords are equidistant from the center of a circle.] ===
  −
{| style="height:10px; float:right; align:center;"
  −
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
  −
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
  −
|}
  −
*Estimated Time :40 minutes.
  −
*Materials/ Resources needed:
  −
Laptop, geogebra,projector and a pointer.
  −
*Prerequisites/Instructions, if any
  −
# The students should have prior knowledge of a circle, its centre, radius, circumference and a    chord.
  −
# They should know that the length of the chord means its perpendicular distance from the centre.
  −
# They should know to draw perpendicular bisector to a given chord.
  −
# They should know the meaning of the term congruent and equidistant.
  −
*Multimedia resources: Laptop, geogebra file, projector and a pointer.
  −
*Website interactives/ links/ / Geogebra Applets
  −
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAMSKc0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1VXBzQb3Ns3UhIzomaNlKoaFbOKmiGECmqLlZq1S6O2NkapTY1ataUoUrP2rlEpqmbNVoVS1VKbf97v/73fOd+95977nOeO83t+597neW6sIUqbkY6bjoKCghGpo3mPPA6SmweQhtzDPp85U1AwNSM11U0C5rZtgj3YTLlh4tHTNC+0Tx1AFyzsusmRE1HsNoY6mWrFEA+PHjjuqrjOU42Cq8n9Fkgby2/7tOr3JdWeRN644q5xl7obgYyKarz8UIs0N/dsckLj6UTGb89wmfxFv3IXvoPFd347X07OUofaiO7E3KWQJQVyLQFHdEtq6ToSyu/d/aqdrX3jSImx1VXGqFN2Z4QjoQWy7pUuONkSiw3duwqkgzbq0FvvChodhb/5GjVxW+MmugooDc3DN9w8/pZ4CaNxM0fqbjP26y0juI5Yv/TqpkDR1Zea7hdczRnHCJ+nBKd2Vp7zJBnqg4EPxhyoRc0QnmKIH91xqjrTq1a5ww43WLmgw6xqzLFBnYRq/rQ47OgoYb9EgGDNXic96GS0MHJiqJp/GK1ow2LOhur4XrJIUedT8bhG9NmpiulKf1nFDuFPLOLD9exOYkc7Pt+8WvWow3K2apOYAY2QiSHaTfFrQMOb+MqqdJcuTjQK1ARO+SeouUYY4cTiOr0lu062mIvhpX0HD4H4CmtqF9JRjDvwoveCan3gkSPDZmxwq0RyWW7naVuz+acZeTK0C78I/GZGfhmPQfQ/AGOUfxsvwFsG34v/F56zufd9b4byIP+tkeD6yJdiuJGr0+WzSpfX5KbkV+/bYcWaOz7MxW0Grh2n7eSkj1b89AC9dSs/B9u3hITfSzweEexxqQaCvxV/DQWldpicRaXWxDkIQxx/bi77KfA6RNi8VS6gzUnn/+i+L8f2saZC2CFswKVBLGJzMTp8I8EMBd+Pr/D5LdcaVJcG/V0Xd2q6JtlBK2OKNPUWxQ5X/UuPKVpGT2wV1cKW/+gHuuqRI800+oM2gZPhOlDw9RUdXTrWyG7J1c/mdtvw5LKy69ttzc1ZZm+stAxeqTjhJDmpXr48dnU2M2PHYrEEACYg7vFSQpJvfUODEQZTKAKyQqMt++8H0MJk02VciGOJvEo8np/KDcpTBLUnchX8jr/AFb/QYgJwwgYxXgsCQTvKRRP3ilofv0NlQSUwGxOlHTWnr8KvKz7EkT4ZxKqcJpN+1LSnXI8HCA3mKwdDKvwOzw5a9g7/ootgnZNJOTntIxff9a8/8Qb9rv8hoty2l2wVh3694cP6eQdfDnK4PpadOeX6fiZM6feVBaXgJD7bUNLIsLcrVDFQGqpOzBMM2hvMaWttjfX121fuFQZseP0oaxXemYBd6nQFUCiopSbOMW2ff3nnt5Hj3bHBuGS0oM4soVLQWr7jtsLC/LBl/mx36iqDmBh26Ol7N7ffEjtvpYteG8d2nCQiwQeApwD8goleQiv3zVLKyUr9nFuWZZ/N5hCMWozclnxLIVtxmb8OH+4d8zm7mWAKUckHSy6QvpvqY0/GkwtF1Ut9cWTaPh39Wd8uNUq6/M5vmemzZ2UxMZpYEkwgjWS9Nkq2hnVWsQKC36HlP0smGeUaNLxccsXaYQ06/Hf4jNZ3akij8r0GMhggbgBtZ2HQ+fNIThzrena8n9ir8iCwCHn529qLyFgKWWghYjSn/MDz20Dim4InpMNdPtB561jYGfashUTr5ELbY9vBk0vTcz+Le3BovGZ6EjB5KyVaSp+FaSO23uUDyShTiWq9IkCA2WPVQsKgBwyw+5P92E3guKLXYk3z+aBr5zhK7od7fRhKmsLOUUZOVDACX51I+vNx/wTpfBJnhyuAJ3REX8kjGZbEiOuroZKFxjHliKdQWAee38HOnCObW7BSKwVvtVuk258LveliJSv3/makoBYF3pJzV8NFZdxUvBBB6SxqEBa23GJo6YgFPRkGYHW/wC0K2aMq3YYw8dMsU3dHIU4vdrTSNPPBgAQWXucmlsTLLBRIiGUqUG6YISGhGwJYj+cEA24xxJtoUSdDV1D5EdeetqTjQ1OTVBuZ/TZfoMBbXFJQIDc/N0ZWO0kgRcDqlWOovkaiF/bR7QBV5aXohdbZbD4ZnFpCbCOjAESESm3Ut867zx53m0p8VZIi6KlOCZBCCSnNzcoldS0ms2KkP45jY4bgwPLaqrZZhjMf/O386GSutjqzi+eNTlmPw4tRmF8Tp4owsOTZdHPQviivgu+1U8qovz/xCY1SWdD2rlqJKe8+KlERKnm539ENU18HEmS24w6dKu70lgOeVghMeR/qP+8qiN2/xoCYBELc5UoLCp7Mzc+HosMQVKyAaHXxoOdCXottSFomHpLyKzl3M51dTCtGskgDHG+NifWoSsnPR12R92IQk8jYOcYmKAkSQb7ry7yjy+yb5vP6BWkd2B9m2dJOuha7UkL8iVDI6lr0coDibJ5JsAa4ML+LQJjGV1dPfXHqOVkq1cvs+RnXxRJpLkPxZWC8WLvBqAXEel3zLtjUCh7NUBh68ldBV69EmL+yx35kcLDAJT+wbPrAWwMCEB3d2q1rUHmSOUHlPtnkOY+gZeabDBkeDmU5HH8eSQrrJY0XNyRFEFh6ZmVrg/bd3qTU2LQ2Hth6eVW/ZamcqMDjx3QcpsZGgS4I8NN0MXO3dcJhbRACHNKdWQIrtGn1NyIXTUGk/+BQO7ym/Yzb6bsjTbumIFTfysoqNRs6XWNXfn524r4eQcs8df0x7lqzubExnJqWabJa4aqOk5NQAqeUgGOsIyJZPYJm/PToz8asy6tSv3XiuN9H5UweUTNPzzdlq7mR5rIclEipVYPwwkuVHIZILVDCvGLic7Hn6XZ1Q2nCxnB4BGLK8SrQQ8216+v7JGa3rPtJMFkdKqRA9UskmaSY1sc7tmjQfVkit6kE4ZlVg8+KhlVbAAFhspWGg1IdSmPKthvcp62RqjsLd7KlBXM2rTbrPYk/FdQBD/We/zKE9bLiYsKojmlXKpSkbQ/n6du/HW4em9ev7bHP317RYbkO7JXBAZcPbAxTmPhVeKwohVjOTrPW5XytD3epbp44cilv+nwfZC9G6zOdBQ34SnAJdoNwgRY2+lPGxPHdiLkoOZ5CqJxY+hSPHfyo/PeD8KGwzc1bH4XrbgQ0g1PpIR9Akb1bkYHdHvSx/Liu3b1id2LHJgmgUXT76C09hyrjG0b1Pp1ApdLHwT/SmnDEBNWsyOxL2BEmKG18VFhUTmMy/BnT+K+V3gcTJcgyXl+x1953bn1iSO1houp6zjd87LXr9P6LSGU/yl/PrU5luCi+iEE7cJZSjP5sq69bHz2INyomDaeLDSM8saM6txojOLkt8M0Pv0YjcKmpEOMNzNHn8G93hXwFtE479qb00cDoQFN4faGuYGOETpfHok+ofrco0wlo68bbPR93L44S4KSijP2Q5x+Csx1rH/l48gV5MFOLyaZz/Dw2ywShGhvqj5/xoaS/g8hjF7dQE0blAkfa8WwFxJf6zyjfbdNwcX5BJnH6GPKKTExM1JcSvC78OQHiYCb3YkMvGtY+9lrBmaN2bIsZzxkEb+mFwpkgU06EDlids/95gzgjqHznAOcKJA26xtXqpZtiEXAfc01EnaLqtU+wEx+iYPndNYjwQ6qsc4ESoJlGTyZHxAqXuuzOhtGxaC8dcwO97V2BFF0oWnZkyB5nQWW35vqGCKd+3ybBMB+tBILAi4QChazCX7+OXbfTYtTuvMZ9JD0eqdXZ1PJaEy4d+1fBmukhSaZoJVwo+wVrDOyWKivgiZNydiKPGtOesFqGoU1SdWjoTX29vAHGmX0zJ9fm4nWwTQtfSOeqdp7sQEBFtOomW5GY6syzP4LqFI9mij3turJZ8TalpaWJPb03LGwNUTny3t9peD3xwHuzny6uSM1bhkSmgVJWF5Lola/G/BXkPcVMUTflk7rgRRb6Ishv/Ot9CXvJV3ZTYHsIlTDM8uIyQ1G7cC4y+aw8Jrpd8wXhjhSIqnn3xKW8y1Cyatdnzt6kFaoAOZp2Z3gF0cy4Znt2h7W32bCVmK9cmefArWQdNzDhzREBug/Cy2VJ/ShdKCRnPxPnuQj0d88VeWKMNw5of8ihGds4fCmd7p5Dfxvb5Nxw/jyXytUYkvjXVzycdP6t1Pyj9aG794vrQ/zHi7Qma+w6m8XMNSB9h+k1sKqkgCC6813KoW/9/P5fE8D+1eoLrrnUNAxAPcizOpIo3yC7+SOEMB99hr08peXYzHbYALVdS1Ys/b0njlnm6VUQuD+jKLeBm5vbq/2VmbExP1/fY/Ehm0YPy53N3ra2O9uLfbGsJ30cOW6gHXJ4adBCW9y8kWmwqBk2cKdq2D7e/a5xupkGS58O+13V95OBOtR1jKFcjw7TzqYfIKYLcJePjo7mHlpavmyEwWDlL2Vc3BjBOQ+REhndix2haCVEb01FhXQ6wKLa3bonrr5W+05KGXBpdnZWWNWUz9lJciD9k6alyQMhcXXOQlZNMlJ5x5V0wIV+97uZyoweCcu3JU1JBEwvjadIlVvou88Q23RFoXWRJeM1jBmNg7VDdkV9FpQB8XZP/Z9kNKIbgOmjXq7Wbt6S+gvaOpbhXMPp8R1lc+qyH4zPuuAkQ0CnY0BeG4/bZix9w+mkKHqO+h9vmSnEUXAX6z6bjhAF1sgVg60v7+qadr/evgzCpWeQ/cjnnriVKXIYcbW9En68IbzNI4FcacoE9fwSkqzPyct7Eyj2Is9AKQW6ml2bRlE7Rp+uxyBSg25KJK+AKSoq4gmEFDEcqMde8v8warI5/2VujJBUT+UjC5Xjov8j05j9q/xfgbPvL/N/N0hmQeMdqU9/OOsU26HOtrL7496+siX7YCWTaZZ9vU9Nm4pYanOF2ltx690wMJmQndo/aWrFAwRjkD1bEqhHh3OZ2Wj2Sgy7N/M5+kUegPB8nRbnsUTcyV8B8+ZpJowu9sexqYuKxWbnHIXKQK5gWACq3sfL1EXKwb9k9Ks1aVhLmDsOqVTxK3SO/1phT07s74JpIv6fYWScDDTkz8A/k/+qegYuKFHn/bJsIum15K8sBVILpVmtYY/7D1BLBwjkG4C46A4AAPEOAABQSwMEFAAIAAgAxIpzQwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAAIAMSKc0MAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vv5btvIHf579ykGKrD/dEXPfWTtXThOnBjIHqjTomhRFBQ1khlTpEJSthzsA/R5ij5HH6JP0t/MkDqsw5a8TuxdrMNrOMf3/Y5vhqPDH6ajDF3ZskqL/KhDItxBNk+KfpoPjzqTetDVnR++//pwaIuh7ZUxGhTlKK6POtyVTPtHnWTAEiWo7Io+1l3OYtvVwpqu1ETiWJmB1bSD0LRKX+TFT/HIVuM4sefJhR3F74okrn3DF3U9fnFwcH19HbVNRUU5PBgOe9G06ncQdDOvjjrNyQuobumla+aLU4zJwV9/fBeq76Z5Vcd5YjvIDWGSfv/1V4fXad4vrtF12q8vYMBUwzgubDq8gEHBODrowJUaAyJjm9Tpla3g3YVLP+h6NO74YnHunn8VzlA2G08H9dOrtG/Low6OoBGDJRUdVJSpzeumDGnaOmhrObxK7XWozp35lngH1UWR9WJXE/r1V0QxxehbdyDhQOEgZXiEwz3MwoGGAw8HEcrw8DoPRXkow0MZzjroKq3SXmaPOoM4qwC6NB+UQNvsuqpvMuv709yYj5p8C2Oq0k9QmGHANWAN9zH+1v1J+OPuwcHyIMlCq3U52bHRtklCMLt/m/QhbbJZm1KsNknFhmHKLeiGPtxrnGIBWmjK/+//VlpkdIcWw/XDGpT8swzx8KB1lcPGO1B14co2TNZ2VDl/YQYJ48yeIAG+IRVYuUDEwEFRBN6AiEBcwCXRSLqjQkzBA44Y0siVIwx55xAa/uHKVyaRgMrcXQU+iQg0xJFgiHif4gg8CXm/BB+lDEoIgQS85Jon1FXBJOISrphGHProXFIRKMjgRbiG5iliBDH3MlGISiRdfYQ7V5fadR2qpEhiJImrELwaPDp4M5TXiLnRyAauNB9P6iWIklG/Pa2L8YwLKA3xaB7tQnxaCoZfHWZxz2aQIM4dkwhdxZnzCN/QoMhr1JJIw71hGY8v0qQ6t3UNb1XoQ3wVv4trOz2F0lXbti+bFHn1S1nUJ0U2GeUVQkmR4Vmfi4wsnNNZr+GCLTzgiw/EwgO5cK7WtlvAEzSpLLRflFVbPO73z1yJeWgAJH/Os5uXpY0vx0W6PIzDA59rDu0kydJ+Gud/AWN1rThc0Cz1+HDVph5hdNuTouyf31Rgwmj6N1sWgK1REaeUSY6JUVpJoPUmPKKMREpgeMIVNwz+g84lsfM+SiIttILco4jWCruXNjziKrRtr2YcxVM7H+6wdL69cHFWvSyy+S2PwEk8riel1w3QidIN6zgfZtZbifdtSMrJZa+YngfzYKGu9zdjuMKhB72hRx5BdKACQuuwOfbC0ZdxXZuVwr4M9iVwa29pf/acGOpL+GMvHH0pMODQtWaopB0mwW0zaeVjGu40ntPGK2f+LsVP8rR+117UaXI5H6p74afJqGfnRuQKvEqDIAlKa7kZ8ojNHB7cssXDS1vmNmtMHyifFJMqePKCV/Rtko7gMjxogIsdqX+GPoW7fTssbVM+zrxyC7D6p3jRqFdu+6pOy2J0ll+9B4u51YHDg7aXh1VSpmNnmagH6eLSzm2vn1YxZJv+4nvOVwGNxGUVAKR2aIEXT+qLovTaDIIPHJ2LZnYEigzV3gjzyciWaTLDPvYiDzo1afotIx567oBHRe8DRMVZ4gzv+AtfBh5vMFMUZ+OL2EvDxhjjG1suQeNr+7HoNw035arMaUo0SkOyHMXTo46B6noVxMsaVDVQkc9VdehYG28wdpod3pDKq/cbODPuZJBO7SwbAETpJzCJeGksc2+pIZRfgl6tvISqG+f1J2/Tft/ms87GORiPpwCC2TiMFkEiscHYZ6+OYfQ+bCwQ3/CywpCPNDOsjzsP5cIHlxkb+J5s4PUDXDM8sm54jT9UjouujIxiWEpiGNFEUeOJgb4wzjgWTFLJBDZEQ0c/LcQNj4SLpEv5N9y95WiLcCbFaBTnfZR7RXaSlklmO3OJEGOHKoqJM/6A3KRuHyShsqaKFW7A6xZ8J7mDmwU0FsmBOcgiPe5qX3rW2izfbrOQjW1+Bb2F7A+TVtxMiW9waB99au9MAaGuv3VDmlufyAI9YBhlOkXHbfnjttQxyBYVSck1IxxLQ7nSGLg9Zk0Tx9zFmRWjOBahwVWzCB3/mIexViE5OMGWDtJkO/+/eHdapj/YxN+PQW2Kf6zYwMvtNrDsny/38k9CQ+L3x9/aR9cGoTu9FOK+4MRIRhUIMGGCk8pIUayME3JcQ3iVWz3UrPdQsZ2hczt099e76MsVenrb6ama2loCeqsELauP3bLZfbmha6Kg1JILLKSiBJSs8gATBrpXUUkFJURiRrVHuMtVhLUkkijjvEOa/ZPUbb9JR+MsTdJ6hmzmzOIsr0FiWS8oVmXSpbVjp2J/zt+XcV65JbJQpkVvM73vQQKt0vsy0Jus0NsPD+x2lh0OMwb7d1G8IRA/lGN8m2McUa00RCwGjBGDBZWe5C6wLCQDR6IwfeFSNn6kTUSNFIRoDK8wLB6H5M1aYwlG+2U8ZQVFgiMJbsKlYUZwzgwJIOqIY3AVrYjUFNJDUAtdQiMqlYJrzoiUmn0GFJctfOY6t2w8CabsLJrOmlgw9ZNdEs3JXolGBqnhDr1weDg/XRURrLWmxiVpjbFqUgWH6GUMlZISQzB5BDF3B9J2E9KvdkH61dNBmkSGa8EoA7i5VM7knSewyFCjhNAMIgljmj8C1Lvrpte7gPz696KbuoRDXNKGE6UE1hiyeRPzaQTOoAUFOSsFhYC2lSWxniX+AO30eoWiwW7aafBUEivkTwj9BOBUxhAhJA0YK4g5QjtPINpoaYJ4MoAx+A3DFBIrBCj1O9NOrzdpp2F4cLGDdho+FYqBS6VBI2E3C1GYuAjq9DGBZGOIBClgsFHSBC9iNCJcMSUgC3GQzuyLKqeLJwOiE5pUYEjNkJkVgRl0QDHCAsSo+4hNAFulWaOdNMCrIGZhxWHa98SE03BTOj/dJdOcPp10zkDuG6WUJsJoqlggpysiiqUQEKxA2UIg+/zC6WIT0m92QfrN00Ea/ICBOFWccpiPYcrbNUcQU0RJmFqARqX4UbD2n4TWh+zjgPPqosZ///1Psh1q/yFhBqUv7+pYWLmnEdgQd/qbCEYop83ntv0WjwnedSn/58GgsrWDX4egI7etjPRtUpRBfoUByv2jT1wmc9JoK++yrLj+kx1kduoZuW/OXS+pTgKBr1aYS3eTVOmD1/PvnyjmhLSalKptlCxNwd3yK9gTplSDD4WJh4jcEhXMzQkIWmdh3ns4jriCCaGUwsBEXG4j8q616S8rt9ZT/yZQf7pC/YfdqP/wRajvshD6uvx+1ItIMffdnBtuMEiv8DYYBEz2tZEwxzdUCRIWsBSJwDxcwIFJP+aCPFvqNyXIXiA/XSH/7S6Z8e3TyYwgsiNmOAOdYUCE4LBCCUkxYoxgRRRnjIFKDIlRsUhyKYghBIheyoePpEgGAfAPK4Cf7QL42dMBnHAuIoMlTFwJx1ySRvVxLCLNOcxTGZZYC7oWcaJ+Q8y3rha8XUH8crf4dvkZ49u2Dy0Qk4gC5GCaowmHdBUWC2gEYDOhBZcw22G8CWFdHQmwegXXQkgjFN8Sw572asFWes9W6M12ozd7GvTSiCkiqMYGc7c4SpqlIOIFP8yrGChgrkS7mUBGwnmYgjvwDjGP9HXgUei103EJHXMauQXZTmvSQfDgqPPNx0lRf/e+8FukYBhxjV5/nMQZSi48WMUAxSjxS7YoLi2yHydp32+bqtGgLEbwikUJtFTaUJVvftkIXHud5ca3W8GmPQ/NTrdgCKAT9o6sfvtlZct0MN+q2OxT7rTEtFuJ6ris/To2CoEBcpxQhkFIkBhz3ny4MBFhGjqIBVUGdKxanBPeTQddouPEYY9OXqEjFG6gP6IU/sJFgzO6B9B0P6B/oyWl/VF2X+84xoy7VVm3k7PxTycgwXElNm4PPjVaLm8muBtotgboN6eLQH/YB2j2fIHWUsN8i4EA58Kv6YVA6Pa7wnRMaKIMF1zvBjNfgvl///pPsOY3p/cPEvz5BgmiIwNzGYgEzG29oO0nNx5BtlGcCskNBePeMUiIJVDbzav7h2HxfI2WEaOM01oau+3cAV4Zaf8F32DI63hXk5VL6B6fLcaEbJ+YIJ8rvCSShlIOMgjmGgqLdueEJBSA1W5mD0ZtdoNXLcP7dhHey33gVc8XXpg2Y8IFhVxmZIsvWDXoCio1BAbmdv6I3QDWq/Z7/Pb+wUA/33BLcQTRgAimhMtUmM0/njPJHM7GMPd1fceIYJYQ/amo7Qv0Y3FlfbA9D1vM6wKUsvvA6m+WcT+deNHs47GXzdE3fyD4u9l7UK8tcxDY4ecwtyrwC/QIRPg8nkf359Dsx6FjbRgOD90OsZFEfLdXwHRMEEIExzD3Iu1iMcyxCefGbf7VTNJNDB4s/pbB/7So+Xns9/8HUEsHCM2Hg2sODQAAuzsAAFBLAQIUABQACAAIAMSKc0PkG4C46A4AAPEOAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAxIpzQ0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAALA8AAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADEinNDzYeDaw4NAAC7OwAADAAAAAAAAAAAAAAAAACKDwAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAANIcAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
  −
*Process:
  −
# The teacher can reiterate the prior knowledge on circles.
  −
# Revise the procedure of drawing chords of given length accurately in a circle.
  −
# Revise what congruent chords mean.
  −
# Show geogebra file and explain to help them understand the theorem.
  −
*Developmental Questions:
  −
# What is a chord ?
  −
# Name the centre of the circle.
  −
# How do you draw congruent chords in a circle ?
  −
# How many chords do you see in the figure ? Name them.
  −
# If  both the chords are congruent, what can you say about the length of both the chords ?
  −
# How can we measure the length of the chord ?
  −
# What is the procedure to draw perpendicular bisector ?
  −
# What does theorem 1 say ? Do you all remember ?
  −
# What is the length of both chords here ?
  −
# What can you conclude ?
  −
# Repeat this for circles of different radii and for different lengths of congruent chords.
  −
*Evaluation:
  −
# Were the students able to comprehend the drawing of congruent chords in a circle ?
  −
# Were the students able to comprehend why congruent chords are always equal for a given circle. Let any student explain the analogy.
  −
# Are the students able to understand that this theorem can be very useful in solving problems related to circles and triangles ?
  −
*Question Corner:
  −
# What is a chord ?
  −
# What are congruent chords ?
  −
# Why do you think congruent chords are always equal for a circle of given radius ?
  −
 
  −
===Activity No # ===
  −
{| style="height:10px; float:right; align:center;"
  −
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
  −
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
  −
|}
  −
*Estimated Time
  −
*Materials/ Resources needed
  −
*Prerequisites/Instructions, if any
  −
*Multimedia resources
  −
*Website interactives/ links/ / Geogebra Applets
  −
 
  −
*Process/ Developmental Questions
  −
*Evaluation
  −
*Question Corner
  −
 
  −
===Activity No # ===
  −
{| style="height:10px; float:right; align:center;"
  −
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
  −
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
  −
|}
  −
*Estimated Time
  −
*Materials/ Resources needed
  −
*Prerequisites/Instructions, if any
  −
*Multimedia resources
  −
*Website interactives/ links/ / Geogebra Applets
  −
 
  −
*Process/ Developmental Questions
  −
*Evaluation
  −
*Question Corner
  −
 
  −
==Concept #2.Secant and Tangent==
  −
===Learning objectives===
  −
# The secant is a line passing through a circle touching it at any two points on the circumference.
  −
# A tangent is a line toucing the circle at only one point on the circumference.
  −
===Notes for teachers===
  −
===Activity No # ===
  −
{| style="height:10px; float:right; align:center;"
  −
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
  −
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
  −
|}
  −
*Estimated Time: 15 minutes
  −
*Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
  −
*Prerequisites/Instructions, if any:
  −
# The students should have a prior knowledge about a circle and its basic parts and terms.
  −
# They should know the clear distinction between radius, diameter, chord, secant and tangent.
  −
*Multimedia resources : Laptop and projector
  −
*Website interactives/ links/ / Geogebra Applets
  −
<ggb_applet width="1282" height="601" version="4.0" ggbBase64="UEsDBBQACAAIADJ/g0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ22VfzjTCRzHhy+G0uwoqdlXvsoIYX5FmLBREoYo/ZZuheSmHy6riSLaEB13E4ZG+VGxPIzS+bWKC0OYSRhWy9qapHDVPXfPPc/d+3k+r9c/7+f97ydl9y78SnU9dRgMttKL4O7/1R1fbx9c5StNqxaewWAqql7uOOLZITHDhQAFr2+3MzgFrcdAl7G2Dh3ozbNIpEUS9Au2eRKkb7SMUDzDJRmkJE3s/KC5yrbdzX3zPwE0vkdZQ0ONutp0z549HAlKOiHmVw66PLCWHXNB6/IYg4PkuQuC2Y9LncIVMB7UbgRzRcAAhf/iL9ON6z5/ccyK/+nh0rWg9ntzuos1ewPQu7On5MthW6oWv8SMtNt9HroIKizf8K3S6L7daiCbi14srfrQwZHO75e8jKc4weceyd+s0UkSIAWUKa+mw5TG9qGBSnnox3wK+uS7I1tvVc8OjEw5H/tjJbyHaHZhuQqdOOoS/z5A8lD9ZkKC/afOHcqzWa+3y0TjNOroHTHl48dL5VSi41x6xmehfEyQ+m2rEnz36e6Ksal62mCsEvXspqnfWzHmABUGwmHf8bf/jaPB9JQUNWsXl2g2m/2cy1ULBsD1uOs0Wmdbmyf4lMcjtrKrqy86oR43N+OqcYmYnOyIqKgu46GXPtLNZma5YnFkbFxcWzZnbMjM3DxvZmYmNfX2ns0qtOioqNIi6Vo9PavExMQByq38fKkCe0jFwckJ++bNm0tOYx29ZdLpPJaElp4ehh9lMg1jyeTAGP7kZLikDsjNzVWrzE0QffKio3W3JD2xGKCcIZNzZbLY3t7eI9JPHO7k6dKGhnW4osMUyujdigpldP06MjHL3MLiVwYDFWB+0zrWINAv7fp1FX/sXsz0ufNL8/N1ISEhhQtd98Ha3T6ip+OeKPRk9/IGS4hww/j+NCf1yQsclX+553pj47YH9fUk75KeHQ4NpL6RkbDYmJiM+fjsaWToTLj9hVRkSXmqcY0MUXzo3EmR8ClzfCgdCBTrB8c3N+UX6YCEAGXCaQKS+9pTnwuVQcHPpPx6nQ/26WlpLfuZw1d1yCaqKJBgKK0L68vERxr0PZcXe6XqlnPHr/rblewjdShRa1BkgLXdFaU0FqNOBuuknLMLPG31JDbbTi/jMoEKlmXgu4Vd4mGhTCB4dcbmeaBrlt4DBDLPVo1arFiCFcXVshYL3wX3TYwp9NRN+EEB9fjZ1VQotfQaq8LfIkjfa1KTTurdZ+ezrduBSTpQpqGLgCyJMCbpxh3VnQG+kK+9FGtKY/QowZGO3lk3rFp1yt6mkexEPGtmaFm/DfoLV/UKuORBY03EtGYQMiPi4vq/SF4NEz9UGxCuFAyFhjU6uzuQ1TnLQkfhnSWLXL908H1BXkhv94Xzj8byH0hOA2foROnRSE8bastV9QxfY2/euvf3bZl6uMOeYk0d7dHdCtHZ1U62r1nbcthr++CZCBKiQSmxqUBxpGuywdkM70q3LfptpD25oniX90lTmiOG6LdJ+q2YTjRS45UVrMMVp7/MMQQJccBa/Shfs0rF6R8y2xl+Ys3M5AiiIUEVLn07mIa5WcXJcTQnmeHp7jHcRNByzf2mpqrOiaNquFCo8tvcPbd+DBVrQhNXsqU8R4w2zorY8baezPJhWpdrQdupxbVrnuHPnWzB0U3mt2oWrQq2AV8Qok1FKL9DspV9P/tVBAFAWQptXM3N7rkKkKKMjpAtGNtQz3rXynU4B4BLy5Jwj8KSw2FbQcK+H3NWXUvGSloZq7WgDOPMOY5A4KqJgLQgQt6jx8QjtnyqNg65HRMUOruf5ekQsAMBxdR4W0QecCiICisJ4mto4PwvCe1LwvWuqFjJjZwZp8cB4D0gJxkxZoc9z+UNe8B7ClmnvDOLN6QsLtipAFqQfCaIH4msTeSFuIYmgQIsP/DgMEPEaix0pEgaL8Nfo0SK/fYpbBaeb5TcZg8ZBLzUajmh7fGWYRsaiT4eWNBlaHn8BEgQut97ZqMTWDMtWg7aSHrUYxPva7ztlr4JwHXyzqix6k6Qu1b4fO4zFQ6bOWgBMAQAw/0vvhtUXFJu3kWCft57u/zrZ4B5eexyr3Q7SP0TUEsHCLHxfzQmBgAAQAYAAFBLAwQUAAgACAAyf4NDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgACAAyf4NDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVY3W7jNha+nj4FoYu9Gtv81c/UniIJUOwA6Q+Q6WLRO0qibTaypEq04wz6An2Kfbd9kh6Skiw5M9nMpGmxwWQokofn8HznfIdklt8cdwU6qKbVVbkKyBwHSJVZletyswr2Zj2Lg2/efrXcqGqj0kaiddXspFkF3ErqfBXkPMyJyqMZT2M245TlM8k5m8UqXyvO12makwChY6vflNX3cqfaWmbqJtuqnbyuMmmc4a0x9ZvF4u7ubt6bmlfNZrHZpPNjmwcItlm2q6D7eAPqJovumBOnGJPFv7+79upnumyNLDMVIOvCXr/96tXyTpd5dYfudG624DCNaYC2Sm+24FQkWIAWVqoGRGqVGX1QLawddZ3TZlcHTkyWdv6V/0LF4E+Acn3QuWpWAZ4TkRAaslBgwUNMSRygqtGqNJ0w6YwuenXLg1Z3Xq/9ciZ5gExVFam0KtFvvyGKKUavbUN8Q6EJQz+F/RhmvqG+4b4RXob75dyLci/DvQwHIA661WmhVsFaFi1gqMt1A/Eb+q25L5TbTzdwcp+8Bp9a/QGEGYZE8aDDOMav7W8Iv9xOLKZOkpFV0+w/02hvEoL6GTbpszxlvVHA7KFNKj7hZ/iIUe/4kxwVIz/BlPvnfh9YZI+5eW7R959nMOR/iYvLRc+VZUcP1G6tbJc+Ru1aSxiWIJHYvCdIADnCCNJcIJJAE1EEdEBEIC6gS2IU2jZCLIIJjhiKkZUjDDl2iBj+45FTFiIByuxoBKREBAxxJBgijlQcAZWQIyaQlDKQEAIJWGTNE2pVsBDxEHosRhz2aDkZERBksBD6YJ4iRhCzi0mEaIhCq49wy/UwtlsHlRSFGIXEKgRaA6U9nUE+Rsx6E3Zw6bLemwlE2S7vP01VD7EAaShIp7rnC9SkLL5aFjJVBRwVNzaSCB1kYRnhDK2r0qCBkH5s08h6q7P2RhkDq1r0izzIa2nU8VuQbnvbTjaryvbHpjJXVbHflS1CWVXgYc9VQUbfdNg1dNhogo8nxGgiHH1HH7VbwQzatwrsV03bi8s8f2clTqUBkPyhLO4vGyVv60pP3Vgu3KmzVPus0LmW5b8gWa0ViwsaHUL4dAiJOOl3UjX5zX0LKYyOP6umgiJDhD13732PET5Pxj9AuTaTlnACO7mux5OpXGdAHYZAyKM6+bRpLIFHnXftZVWchpybV7I2+8ZdE6AGNnbvF+WmUC4VHIHhDM5u0+p443OAeV3v72voYb+DdOPgRVACqBAg0LWpb52M3doghZ0MdhK4TyqdD/MkoU7CtalvnRRkqd9a5yrp3SS4N6NbV7hw0NGjL0o2x+2Jvi+1ue47Rme3J1ftgu/3u1QNmTLVSf4sncvFWSotb1VTqqLLXAjmvtq3noijpM5VpnfQ9RMdJNKG6yfYgB/N1aZR/cYLdwXzgLlZPM7JB8NO1bdNtXtXHt5DLpxtYLnod7lss0bXNudQCtX+Vp2yKtethMMiH6+zVAPXM3soADzGQgMk3Jtt1bhLFtQOaC3DCrWDGxUyLr1chg4wX7i7msUTVekvUL6GE87PnwIG0x9NNZeUsqi30t7nOqcLea+aCQxO33dVfg4OYO88ACrXPra1Uj4t/H7howZ1jk2TWgRot+gIN9M5FPD7VTDD8whY/sFf1f1V1fpqOTYpv370LFCQPR4mB+1uJ8scle5AvtJNVqjgdEJIbHFDkgwaq73pJzKvrFPxAH2Ims4GdLP/gf7I30/Bj78c/BPvDZw8t3C/bt2Vz3RlyH38U+e5crcOXxf1RpUH2CkUfni54O5ddI+9ffShHzkSFxE7R7qhD2QUGgh7o4/oope/6KUuqCvKDEcQ1gvW6b2A42rmIn0h7BBE2u/n19K70PriYI9gvdbZ4yH90XFgGtHsQSgvHw/llEiXX0SkvrJ/bix/WK9bZWz2zwj22Z+8NM/EnEYE84RyeMnSJGHCGSbwhiOYxiwhnPGIxy9AwafF6+pz4nX1J8QL3P57Sx/BcxbBC1pweEfHFBNfCWE0icIIU0G5ICEPXyAk11A8ziJy6Wvi1YPAyMcDY+vQgLt8ekmEWpprj6C9aXbS6YvVyxPuUH8EYyImLE5iBmlAHO5iDvyIw5BEJOIJplQ44GfJPOZhzFjEIxpDpNgz6u9ZvdO7utCZNufBUse6AX0WnD6h1dHANmFiFfzj131lvr5RmYQg2Ji+h1uKDUi1RhJl7sDzMk7vNFxWUTDV+oxTzHEI4iLIlwdmrY8q9yMn2rpHVqsavT49SPxtOwx69Lr1rZGNcTUG2eiyeULx+Ie76PI5nRBpAvcEoRRe20qWAwCpAwj2t1fnu3zOzetLjouYxr5qD0n48VSHF4zNHTfm8+RpGUYnGdal1dNTiT6X/Zfov7//B129WA04SxVC53HYHYPR9B1JP5krHwWOPQ849v8GHJtH8ZhjpEORkulr/BMgLsbPH/fHhO5P42//AFBLBwh0qpTKOAcAALcXAABQSwECFAAUAAgACAAyf4NDsfF/NCYGAABABgAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIADJ/g0PWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAGoGAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAMn+DQ3SqlMo4BwAAtxcAAAwAAAAAAAAAAAAAAAAAxwYAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAMIAAAA5DgAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
  −
*Process:
  −
# The teacher can show the geogebra file.
  −
# Move the points on circumference and explain secant.
  −
# When both endpoints of secant meet, it becomes a tangent.
  −
Developmental Questions:
  −
# Name the points on the circumference of the circle.
  −
# At how many points is the line touching the circle ?
  −
# What is the line called ?
  −
*Evaluation
  −
# What is the difference between the secant and a tangent?
  −
# What is the difference between the chord and a secant ?
  −
*Question Corner
  −
# Can you draw a secant touching 3 points on the circle ?
  −
# At how many points does a tangent touch a circle ?
  −
# How many tangents can be drawn to a circle ?
  −
# How many tangents can be drawn to a circle at any one given point ?
  −
# How many parallel tangents can a circle have at the most ?
  −
 
  −
===Activity No # ===
  −
{| style="height:10px; float:right; align:center;"
  −
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
  −
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
  −
|}
  −
*Estimated Time
  −
*Materials/ Resources needed
  −
*Prerequisites/Instructions, if any
  −
*Multimedia resources
  −
*Website interactives/ links/ / Geogebra Applets
  −
*Process/ Developmental Questions
  −
*Evaluation
  −
*Question Corner
  −
 
  −
==Concept # Construction of tangent==
  −
===Learning objectives===
  −
# The students should know that tangent is a straight line touching the circle at one and only point.
  −
# They should understand that a tangent is perpendicular to the radius of the circle.
  −
# The construction protocol of a tangent.
  −
# Constructing a tangent to a point on the circle.
  −
# Constructing tangents to a circle from external point at a given distance.
  −
# A tangent that is common to two circles is called a common tangent.
  −
# A common tangent with both centres on the same side of the tangent is called a direct common tangent.
  −
# A common tangent with both centres on either side of the tangent is called a transverse common tangent.
  −
 
  −
===Notes for teachers===
  −
===Activity No # Construction of Direct common tangent ===
  −
{| style="height:10px; float:right; align:center;"
  −
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
  −
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
  −
|}
  −
*Estimated Time: 90 minutes
  −
*Materials/ Resources needed:
  −
# Laptop, geogebra file, projector and a pointer.
  −
# Students' individual construction materials.
  −
*Prerequisites/Instructions, if any
  −
# The students should have prior knowledge of a circle , tangent and the limiting case of a secant as a tangent.
  −
# They should understand that a tangent is always perpendicular to the radius of the circle.
  −
# They should know construction of a tangent to a given point.
  −
# If the same straight line is a tangent to two or more circles, then it is called a common tangent.
  −
# If the centres of the circles lie on the same side of the common tangent, then the tangent is called a direct common tangent.
  −
# Note: In general,
  −
*The two circles are named as C1 and C2
  −
* The distance between the centre of two circles is 'd'
  −
* Radius of one circle is taken as 'R' and other as 'r'
  −
* The length of tangent is 't'
  −
*Multimedia resources:Laptop
  −
*Website interactives/ links/ / Geogebra Applets
  −
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAEhUV0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwHsExPsiVBORw0KGgoAAAANSUhEUgAAAMgAAABcCAYAAAArr/rLAAATs0lEQVR42u2deVBU157HO25REqOJSwwqyL4IyNLSbDbQzaYszS4GZFEEZVEE0SgYcMkzyIsGFRBNND5NzGTeZBnzylRMxqSm6r1KTcyrl0pNKpVJ1dT7Y1JTM6lKVZaaSWbmO+d3m4uX29ttZBN/VH3rnr47fc+nf+d3z+/8jk6n08GVMDQ0ajmjVPfUzPufWOMp1zulhYTYAEJl0n+eOsWAsB5sQGa0GBDWvQIyZ/ZsBoTFgKiVEhiIrpwcWNatQ4yXl1Re7OEhfXZWpmPXLFnCgLDuCrhb/stfHG+biU2s+9p5Z0AmBoZFi6xLHx/o/vrX0RDI5ZUr736Wj/niC+v+tJ7Kyv3tnYP2ffvtu9eSryufY6oACXrySbuAZIeHjzjwc2bNYkBYD6aTLkOgth7v7d59f4DBgLAmEpDH5s+3u37RggXcxGLNbEBk59yRE04Q5EZEwBQUdP865wwIi/tBGBDWBAEyI8NKGBDWvQKijrtSOuP3fVgJAzItRH+ffvqpVO7v78dPP/2EgYEBKP+U+3711VdS+ZNPPsG3337LTSwGZOYDcufOHan8888/Iy0tDT/++KPDfa9evSqVu7q6cPjw4akFJNHfHznCAdfSY6520Kvi4yUHnwFhuQJELpPl+OWXX1BXV2djQebMmSOVf/jhB+nz119/jS/kzsOpAmT1E0/gkYcfZgvCmjTp9XrU19fzWywGhMWveRkQFgPCgLAYEAaExWJAGBAWA8KAsBgQBuT+U5PQWaG6cdpvygE5fF2Hf/g/1/vdhvZ9tOzb+74OH/xq3ffUh66PU25zes9uAELnlDWWL1t5nPocynPPmq1D8Hrn3729exjrfU2lHhYqE5o9/DmAosmHleBkv2kLyPv/pYOnn7V8/p+sogfz9n9Y1/V9PPphKyGQy6dvWx+0ch9751JfQ9atX2zPee6POrz177bndnbPt/5bh99/P2vkXNLnf3P8v6kr4dWvRm9/9V9s70e53d73IV9HXnftax1e/1frUnkf6v/D0fcpX1d+DvcDJMeVI1WF0oa1wcl+0xaQrr+5+yumrrzyg6MH3P8nsd//3l3/99+NfqBUVu5j71zqa8jnV1oQef2Zf7SW1ed2dc/qCit/dnQ/cvmVf7YF8b2fhH4efT/K7cp7kstqQJr7dDAWWZdqQJT/hxoQ+bPyuvQcuBnHPsi08UGoUh64zJWKAWFAWAwIA8Iag+zluHKU98pZ/gKtubLkc7i6Lu2n3kedn8v+tRkQrthu6ssvR1ektLS7ualkUY4q2ibnxKJ8VfRZmevq++/vbifJObFoXzqnfLyjvFfyOSiLjrNcXPJ+6ntTbleX6ZoMCAPC4iYWA8JiQBgQFgPCgLAYEAaExYAwICwGhAFhMSAMCOse5eHhgaioqCkTXZ8BYUDuC82aNQtFRUXw8/Nzup+3t/eYr+Hl5aX5OgwIAzKuooqbn58/5uMvX76M6Oho5AwnI7SnXbt2ITQ0VCq/9dZbSEpKwvnz5/Gwxnxu4eHhKC4udnkdBoQBGf+xHcePY8OGDdbBTwEBSElJkZSQkOD0uJqaGpjNZhw7dgxDQ0PYtGmTtP7QoUMj2RY/++wzad3HH388ctybb74pVfK9e/eOrLN3TG1tLfbs2SPBRJ8//PDDUddhQBiQSVFHR4fUrpcGPwUFSXl3STI0jtTZ2SlZnubmZpfXeOedd6QmkslkwoULF6RK/9xzz2GRHO9lb8huUxOWL18ulSmlKZ2DnXQGZEaKmlfp6eljPj4rK0uL78GAMCAsBoQBYc1kQFYLlQq1CPXQWO/h9C/9w4P4G4TyhZaqjps7dy4DwpqZgBiFfiN0QeiE0BahVKEQoUCFwofXVwq9IDQgVG7ZgPiwZcIRm8WAsGYWIIVC14TahPQqGLTI6L8aWaYkvJzhhz/3xuHkgUisWvXIyPkXL1yIyMBAbM7IQM6GDXh2xw74dMfg+eZmxIWHo76wEKuWL8ejzntWWQzI5CpL6Dp1AI0BCqX2d2xDxKMeUjlS6PTiefigeR2uDWbg5tW9yIiLRWFqKoLXrEGgl5ekJe3B0jJg9WpEBwfDvH49isxmPFNdjTA/P8yfN48rCQMyNZoj9KJQ6z2CIau7d89IOVJYgarYWFzYvh03hHXosISj/4wZp3tTkZoQZAOIWgTMWl9f9O3bB39RnjN7NlcWBmTytEroVaHMcYIjSx+KLZZkqVwvmk9NJpMESIao7KQhoWeEIkN88ezBRLw0lIGWRgM8D4baBWQEFCGyKmR5wrS/O2cxIGNXvNDLw82gwHFSx7FdiHhkASpFZT5ksYyAoVSXUI+i8luy1qLn/UzJqmSnr3UKSpBolrVXVmKNpydXmnuQr7DK9iJqY2JisE9Y69zc3CmN7FXex+OPPz75gAQLvTSOYMj69X9+xY7ERDQKy2EPDiUkzygqPjWxwgPW4EBrvGRVaEmfHVmT/JQUZMbHc2WfgChejcGD9xTJqyXKV3Ufk/clrBB6Zfj1rNaKHyza/saAAJRmZ2NnXR1qysulZVVZGWqFI12ycSOMieuRV16A8rJ8ZPj6OAWEdF6o1IEPkpUaIlkU8lcKc8LtghIbFoa2igqO2h1D1C7FRJ09e1aa9lm5/t1338XNmzddBg8qI3nnzZsnRf9SmX75N4q6EO/ix8vHx0eKAFauu3HjhgQERfmWlpaqgxgnzyG/RP+IRjDWLliAiqIi7NyxA1vFTW80GGAMDLRRpl6PP/75Fory8tBQW4OkU+0w5ZiQFhPhFJLfCyU4cdLJipCPQqCQz0K+i3K757JlqNLwa/cgRO26E7lLIell4sdttuKlx0MPPSQdQ80a5b6uInmpSfTRRx9J5ZUrVyIiImIk2NHesbLkY+xd+4MPPpgaH4R6wnO1WIy5c1G1eTPqtm2DSRBtDwqlWkuLcf53PSg3GlEr/smjBw+i3JIDc4JegiU9MsyuVdksdNEJIErRW68zp0wY6k9DqSV8pLlFTa2lixc/8FG77kbuElxSv1dhoTSaj6xRhbDIAwMDmiN5g4ODUVJSgm+++QYNDQ3SNd944w3JQjl9ObRqFe7cuSMt6fp0HvnaDqJ8J/7LXDocIuIKjgThCO/evVsTGKRkodcvncL+xioJEFJFaioOiC+sSjwoAsGcGo/UUtEM626wAYWaWn4aAJEV4rsGddUxEihHOpMQG+mPF1tb2Ye4jyJ5xxDlO/H/VK+QwQUcYeKXhOhPj4zUBAfpte5uDL3aOwKHUgdEW7VB/MLIMKSHBMFkSUNKdQFSt+RIsOSJ9UVuAKKU0RCI3hMpONuXgiP78uy/rWNnnl/zaunvOO4CjoiFC6UmlVYwSBbhezy7rRp9F4/aBYS0T/gvWxITbZpX5iyj5Kek1Jci66gB6WMARBZ1Ina2ZqLneQPa2iKwYgWHqTAgbmiPUKwLQAgOR064I/UKC3H6hQ60bCtzCAipo6XFqbO+7lo1WosyESosi7twBHl7IdniheaTBnSdy0Dhbz3QfysMW6pzsNJnKVcuBsS1elzAsSk21vqq1g04SH3CV+m/csIpHKTmp59GtWizOgKEfJCrVOFFE2xtew1ChHUJFtbFFRwphV6oPOWFnEYvRBs9kZkZiUVeOvjFLYE+LRyGPToYD+sw14MrGQPipHl1wJX12L7dbTg2CT/l+aadePF8t0tAXFkRAuQlsTTIViHATwIkdHeFBAuBo4ajpNML+Xu9EBN3Vx1NFVjiMxslrTkINa6WYPE26pB2giFhQByoSijZaXi6PwozMtwG5OTOnejvP4KG0nxNgBwUzn9eSIhDQNrEcpc9S0FWpbUKoY1PIyhBbw1PabGFg5SUHIgkYyBazuyS4JC1IkqHhDauaAyIHXXRazkngGyxWJAiKq67gLTk52PwWo8mOEg7i4pQ5yA+a91hPQ5lZuKFuDhEinsJ8va2BcXXB0GRYYjqaUDxNRNissJsAIlL9MXGTdE2gJAMu3VY6MmVTVOXwNKlUh/FRMrDvfE+E/fPnqbgNCeAUNiIu3CQ/jDYh9+e6dQMCKlNNOUcWZAcsaQ/V35HQbtwyuuiELM5HjEX20eBEhr9JPr6DiJta7wNIJ56HSIquPJr0WOPPSZBohal7KmuroZer7e73ZWUx2tNMDfhgPS68D9qhAM9FkBeufoCanM3ugdIba1DQGh5VcNbq22DqqZVjbAm9ZmIOd2ACL0njlzcj2UB82wAISW2c+WfrGDGcT5+6gDZVlHhNhxRQUFoaW7GOe/n3NJ7mz9Ez6L2UdocbEGJqVQq3xQ66EJnze3oXmWrQ+GdyCzYitq2Rly4cs4uIPRGi4MZJz6YUR20KJ9vp/BbNWZSnD6AlOXmum9BBCDlWwtRk5nulgXZL75wtfXIFudabfaWylc0WJCyoyoLUmywWpHzrTCYQrC5Oh9P+M62C0j8A+aoT1Uwozpo0d75phUg/k4AKRU0j6WJde7wfpzoaXcLkH1OmlgbxXJQAyDFnV6ITfdDTF6U1QchQIx+EixhMU+h+0QTjKUxNnAsDdEhtpGDGScjmHH9+vUjQYvy8fL5ph0gx4YHSDkCpNBslsLV3QVkqL0d56/3aoaD3mA1lpY6BGSrWB51BUhIEOL6apE1ZEFMgd7mLVZw1HLxQBLQ0LvNBpDwLTo8FcV+BL/mValeKMkJIHGrV6O8oMBtQNqKi3GqrxM78rM1AdJeX49Sg8EhIHvFstleKEmAH0K2WqROw+DUeOlzRa+wIsm2/SAVJSnIy4lFW3+TDSDJ3VzRGBA78h8eB+Jw7MecOdKoQHcB2ZGZiZePdmp+1fvsvn1Oe9JpXIhRAUawIcoKRY4JwUbDKGgio72w9QVbQEymUHgGeaD8YCH8DMtH4FhXqcMqA1c0BsRJX4gzR71QtEndDVQkdVVVaYrFokFUbTU1rmOxhKjHPMSS5jJwMd5shUS2JNGG1RjobpWACErwRFm7RSqHFOoQXcuVjAFxomc0ZEncISqwu4BcEU7gyd4DaNxS6BSQLuGvZPn6OgQkot+CDoJCwGEv7sqR1kV5obzHC5Y9XtiUuw7hek88GTAbW+t9ULY1FyHpCxG2hSuYVtGbJ3oFO9kazlwydYBQM6vTBSDZcXEodjMmKyM8HIOH9jsNWKwR52wuL7eBgobh0pgQGg9i7tuEbF+fMY8HiU/zwsCVIly5FYfLt/SoObUMvusXw+MJTuigdf8FCxYgOzv7wc2LNaDBilBcVrHwLdyB5Pi2bRj83fP24RDnOrRnz+iBUulJ0ojC5NYqZAiHm17vbh7jiEI5VdDVS7kY6C3E/Pm279mXLVvGCR009IFYxLOXs/HLGUZoaK1RPEd6PWyvA1DeT2uHo/p4mvKN1ml4RhP/ha3R0GlIDrs0cCo2VjMgBWLfWzeu2AyaonHph5qbUSq2U3YTshYbeluRHjY6ovccOeRuAkIJ5iiBA4nKGcL6OUp2/d1333FCBwd9IAbhd7a0tIyyHsoOwdu3b0uAyOPPlR2A6o5Dex2G6g5CdQcizVlIgLWLJvi0yKx4VChNQ+KGytJSlLjRgbjTkotrb5wZgaPSbMaBpkYUJCdJWU3MRoM1s4mqmVUodE1jVhN1ulI5sRzBkT08KSTLfV26dEnqzJOth7JD8OTJk9K2ixcvSp19yg5ArR2Hyg5HddaTctH0bmtrk+KzpgUg83XWDO5aksZt8PNDjfgCcsU/pSWzyd/+4SUkCZPcuqMWZX83IGUxoWwmzobavka+iAtAKMUPWQpKJJduHL0fgVFsMnFFvwdlCB+xsrKSc/OOtEWFLutsJ8Kxmzhu/nxkCzNK/SRb8vIcZjsxh4WhuCQfheUlyK/ZbNOMsqdeoZ0OMivqw+5ai+b69VKqHzU46aJ5kLhuHWd859e8468EnXUKNc2pR4VvkrhmDYrErw31ulNSuV319VJTjMLlKVwlYY03Oo7sxJAwnyVhYU7hoNGDp1W5eWlZURop5buiVD6U0seRVUkSoBYJy8FwMCATJppTsE+jJdGib778Es+eaIJ+0WPYLZy6A8L5sgfHXlXUriHSH4feMUvpRSkhnD1roVSEvz86t29nOBiQidd6odeHLcp4QGJJiRHWJFYqkxW53NICS1DQCBwnhc7KA5+2RktNqOePGRFyNMKlkx67di0qNm5EFieCY0AmU08IvaazTtI5HpCQFZHLKStWoFb4MIOiOXbNxwddotlEQFAzippTrmaYIm2IipImz3muoYGnYmNApkYP6axTsBEoFt29T6Kzdv48qUzNt2fmzMLtwgD86e0qvHyuAEebqhEZNDqcRA0IvZ0iS3G4tlZKTr1iyRKuJNNAZuFruhtG4jc+M4JNjy/gUargQlfvwaKkRwYiJswPh70X4vOuGFw7pkdc3PKRa9AkndRcOr5rFyzJydhuscB0MQ8lwm+hdYkREdhRUMDWYpppikNRpteXsXB4HAlN0UYzUTXrrPOmOwWDelOHj6mvKkaZyReLF2us5DxP+rSP1VKGosiT5lBPfWpq6qj9KHyEpkTIy8sbCVGZcYCM+uXQWaeI7hYaFOoXuiB0cRiGczrrtAoHh/P/yiEGbl2HAZnSWC1HcVr2QlFI8qQ5169fx5UrV6SwE3kbhY98/vnnGBwcHM8pEh7wB8aATGmslrOx6upQFOWkOQRPY2Oj1BMvJ4Kj8BGK4aJJOF1NpPNAA+KWeWVAOBSFLQgDwmJAGBDWuOv/ATStANXfGCYwAAAAAElFTkSuQmCCUEsHCPTtjTDxEwAA7BMAAFBLAwQUAAgACABIVFdDAAAAAAAAAAAAAAAAEgAAAGdlb2dlYnJhX21hY3JvLnhtbNVXTVPbMBA9l1+h0d12/JUPJoYhYQLMQJkpHHpVbCVRsSXXUgjh13cl2ZA0EJqWMCUHW16v3q7ek9ab/vFDkaN7WkkmeIJ9t4UR5anIGJ8meK4mThcfHx30p1RM6bgiaCKqgqgER9oTPUh2yMVXUlBZkpTepDNakEuREmXgZkqVh563WCzcBsAV1dSbTpX7IDOMIDiXCa4HhwC3NmkRGveg1fK971eXFt5hXCrCU4oRJFaQtBIoLTKdRIJTylUlGEArIfKXbOc0L3VElgo+YjnVYzkTiwt+C28HpEqwquYAnopyOSSlXomsbU28C17OFSKtBJ9gRPwED+AWJHiIvcbleq4anzNjhXASQFKNhxRTNjKZq5mo9CgjSlvAk+a0gJSRWpZgKQXjCqOcjGmu4x0dfOnrfJEY/6CparKt35sHT/vA66HIRYUAHaSamus4wUEcQ9i8nBGwgIjGOSdLWqF7kmuv2gJ4VyKja1bCWWG0RVJRoNEH7kpKMzOy+cKgBDizfyYkl3U6qRBVJtGD3jmdCKMlZOKC76PddMbHLPWGPdYxw1WrWuarqfS9mqU3+Bp8KF/Xk4mkSi/SCQKzRr+9bzodc2YhlBO7wd75HH7+/ef7brchrN19F8ZSURSEZ4ibenPFMkuansueSsXAlophTc9zfTi1cDXIGwKcbgpgV7ldgXZkJNC3sb3tvKVje2h72/R5Zjl2o4bkKOyt/uKPo/zkNcpHu1A++mDKt7DadYOOpdV3O901Wvexk7+R5cuMnm4wmm1ntAKkhq7sLT5Xju1rVaT1Hmx23Hh9axpqW2673Vr92a+UE3ZcP4ibes44tTyqGUvvOJXQIwRNDWrZwTnLMqq7KjuH/uR2itTXBLOizFnK1BOXua5aF1xBN0ZNnyBt4it83FFa3gL0Nb+tCJe6G7M+zR7cRcy6Io02xKR/Lib9X8R0QjfyjYA9c0hAsghajV70aQV7Av5NtszKRjdkO9ulqp391Zd8H0Ut7IRux++GsW2ZnAC+0H7UjdrN4QyNmh3oF6N29E/lzVvtwvWz6dX1oPl/cvQLUEsHCKaxR5IdAwAAEg0AAFBLAwQUAAgACABIVFdDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgASFRXQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzlnHlv20YWwP9uP8VAKBYJNqLnHrK1Wzguig2QNI6dXRTbbQuKomTGEqmQlI9s97vvm4MSqSuiLcdKY8ShyBnO8X7vmhHpwx9uxiN0FedFkqVHHeLhDorTKOsn6fCoMy0HXb/zw/dfHw7jbBj38hANsnwclkcdrmsm/aOOH8YDxjHvyp4YdLmKBt0QR7Ib9Eg/GPAIDyjtIHRTJN+m2c/hOC4mYRSfRxfxOHyZRWFpOr4oy8m3BwfX19de1ZWX5cOD4bDn3RT9DoJhpsVRx334Fppr3HTNTHWKMTn45dVL23w3SYsyTKO4g/QUpsn3X391eJ2k/ewaXSf98gImTH2Yx0WcDC9gUkrAUA90rQlIZBJHZXIVF3Bv7dRMuhxPOqZamOryr+wnNJrNp4P6yVXSj/OjDvag0SxP4rR0hcR1clDdfniVxNe2Hf3JdME7qMyyUS/UTaA//0QUU4ye6QOxBwoHKW0RttcwswdqD9wehK3D7e3cVuW2Drd1OOugq6RIeqP4qDMIRwXILEkHOfCanRfl7Sg243EX5tMlz2BORfIBKjMMArVChusYP9O/En65LjhoTpLUei3zactOqy4JVf72fdJ7zZRVnVIhl/ukYs085YZO7cS3mqioyRa6Mv/M71KPbNM0F3u05/frUPJPMsXDg8pWDp15oOJC13XqU8bjQhsMC5AItN4TJMA4pAI1F4gEcFAUgTkgIhAXcEp8JPVRIaaggCOGfKTrEYaMdQgf/uPKNCaRgMb0VQVGiQh0xJFgiBij4ghMCRnDBCOlDGoIgQTcpLsnVDfBJOISzpiPOIxR26QiUJHBjXAO3VPECGL6ZqIQlUjq9gjXti59PXRokiKJkSS6QTBrMGlrzlDfR0zPRprRwU/lbJJ0Mi0bsorG/epjmU1mUKA2eKa5w7OequEPvzochb14BDHiXCNF6CocadMwHQ2ytEQzy7TXhnk4uUii4jwuS7irQO/Cq/BlWMY3P0Htourb1I2ytDjNs/IkG03HaYFQlI3wbMzZiNQ+09mo4YTVCni9QNQKZO2zWtlvBiVoWsTQf5YXVfWw33+ha8x9BEjydTq6fZ7H4eUkS5rTODww4eYwnkajpJ+E6b9Aa3UvWi5oHn2046qij/D9aiRZ3j+/LUCX0c2/4zyDmkp4gnAsGYWPPAB/cmtLmCQeF0LhQDEfA3IoKqJQWyGjHg04FxJTwTlRcM/qEtdvfDXjE97E86kOc23gtZMXxfNsNL9kZn8STsppbtIG8JG5ntJxOhzFRkOMgUNMji572c25VQ1m23p7O4EzbEfQGxqpIx3zoNj835uV6kFtKtfNzcpJQE0Nc+zZo6kFamsH5SZJqgmSWTdJYVwa7jh7qdyVVnod26dpUr6sTsokupxPUt/w83Tci2eq02yT7KrNw4MF3Tq8jPM0HjlVBozTbFpYy6xpeT+OkjGc2gInklCD+icMwF7tx8M8rgY+MsmYFZgpxXUlXbpsmvopz8Yv0qu3oAULAzg8qEZ5WER5MtHahnoQBy7juT71kyKEMNKv36dtD6Ye6XAB4im1aMAqp+VFlpt0C5wJHLXJjeIx5FqoNIqVTsdxnkQzQfdN3gaDmrpxK0/YkWspo6z3DrzcLCLae+YYoXimYFQIq2CCWQXTx3A0uQh1zkecsoW3cd4QkGnzVdZ33bt6xUgni2icQCwEOx2HN0YfUdgrwA2WkC8DkXSeL9vxVW4EY52Nwy1c6A+3MLhAfxgkN/HMx4Ogkg+gGGFjRnNrKMFBX0I+CjoGLsRKjwj76R9Jvx+ns9GGKeiQIQE+amKniyA+xFbBS2fSaALTNx6hxt/h+Siosz/IIiru0T1DxRwq0ZoUeGBLSuLPnVS+yInsnUnpEVlSrD0p4kgF8nMjZQLzTOavO/dhYo49d5wxwRuZvB4MirjUQuzqTYDbeYxdQIZbyICskoGLR4UBpmHf6j41rw92V8Ou6rU8dPrh/En96kIkqws1ysbjMO2j1KxlTo1Q5yl1CMnpSZJHo/jX189Q/zcnwmlZFR7b9lwrH4F0/IiQHCLaBtFdAJHKoh6I0Hk81NcXGL0GiRBHo8En3MyncK1VBMKPEKpNuYEI81rGas62BLTEYC5J7ASpkxgjRzFra5UPEjU/ssIFxe9Te0thU89kPBklUVLOJDbSUF+kJSSiscnElvPLyzie6JT+dfo2D9NCbxfaOrW8dQ02a0SrqelsYJFbtJkbZIy1IBXdkZozrGqdUYtGoh20lUDUR4Akwzi9gsHCQhShG+w2aG+xI/+hunIDIupaZSDu0gdSMysw2Ty5QcdV/eOq1jGsoLvEYwGu/0CsOmauj2NYSneNSz2GdTStWlzUFb07kAyS6A6Ijy3ifAlw3AZwfDfABNtlojHIvyxiQqmnxCJV64cfCuvcclEXLcMdtIE7uJ/PXR0Wd4uXPiZf3wtEUP95KAN+CTJ4nhRmPgu8wyXEvc2ItTxnBHt3I4wbxivILoJqV7kEErvsRHCPKbFBCejd4+p6Uc/i7IKce9aulsX9qk2e+eqT55kbJM6x8nxCXdpOCHXpjJAeFTtMDFf6qVfr8sJhGw81vF9+UWlwMy/crYcij+mhuGHadEpK092FV1pnKgOLdggHOptvjfDzNhbz/DGXz4TbtdmW9uRxRerhoPJngviBIpT4QjH9fcDOl17bkaBLJE7akDh51I0Mt8HK74Wiyx+exepl8PN17u6i3TL44m4OT4foOoTdrIPpkjT1zqonqF9f1tigArbkSUGlr59aYZj70t9mybzOez7umnk145N1jJN2jJN9YtxtA5ljT0k+Z6zk58v4LLxdvbR6vsT33Wa+ObRUsXu3zLb5leTGjHt5P2THXLEXLPlN7SE1V8yCgEqBscQBe5i0/DGxnixhvdwe6+W+YG1DtSs9X9Ea1QdabH0CqusSoMiyfbcuFT1tkwCd7tPiTXiYuG8OvID4QFEqxpjEnH7CBNPJ93KdfM/ayPfsMRNMaylUbS/9hkXZ9FJ8AhQbv2Y5XSIwapd7jHa05bej5IMtC9RovGhKX1o5S08xqO37QkolCd/kz/b7S5mNkM+WII/bQR7vFeTtGPvKLSOwJwM8h/z5Mn6dlxfZMEvDkd7eXf3tzMUS6nQz6sbubrovWUl31XrhdlW2AogVpCVcBJxypgiXbG+2gGPLJF23m/KmTbB7s0/JBAFrs1tdXTAvoKOI4IKC/KkvP1kMczr/Zkmwk3bubbJX7s18zwvaDDrNlaS+0o/g2m1B1vjyiFRBjCsQPMMYUnMifP6XdnDJEuz3LRzc+313cCtW2cBYQqKitJUJ0AfBpNozD/d+XTp/3sbDnT/qfrGNL34L/1enRyw9tmC6ny6fd+ZxvoSgaOcLi73yhYuukJLKFTakj4PZljEjNV8YfLaucDXk03UBr2wHubznt6AOsnkoZ/dbULi2ZWy5UuERDim/9InAVHKyaTvxcwR7ts56Q/tAXYvHHt3z+PsCd7uvA6yfFMSjete4wrz0JtAeU45vJjkMTD9xWxlZfFOCu4KCo87f3k+z8rvTN+gInZ3bE9NAk6W+o9O8fSco75X0mwfpm/N2Lw8WcZ4M5i/a2dfFZKcSefV8fxnmpXkYGxlj1y/ICQKrdtAI/V6z0QffowGs5v0AVup6Ud+Imx8XM22I+Rtkj+jv6MnL8G38y68/JvYF819Pn6E3v/32FEpclaP1dc+eofNG3W8cOLQFObrr51h3QS0pzBQ3wXRvAG/JUnpEMikYDyjwk26hojyqKFZCYEXA7jXiNjBZA2YJiP5TvM/L//Z/p90nZ9386e/0f9ubENtXE9o5DOYp3yfS12+ZUqmso2VewH3MiYRFeiAoaWlYfMGw5jQWzaZfsxQNarH87A9Sq9FdLM5rhRpwK2PjXwxj6iksuOQ+FYz6PpNu6xPiqlJM+IFPuVDSb0dZ3JXyCsj6IeJGpXYoxReDEpYqmHIGoVAyJhzJLmRA8ANwMeTBjBNB2qGU26P8/Ql9uskknziaTxcqtgMqvyCgmEuTu1JfMkWrHQEsAwEWyyAcKkFlO55qgefHgAKw3XBTXww3SEgVpoEMAsJ8370A2RUehcAJUdMPGPATqh03f4UdLgIra3BakPEfObXcOQDIF/U3N+AI4UfxwH2xoDysIK9U2KdEcZ+3CGontb9C0ACB6iUoG6AfkxwkCJfHY7jwNkyHRvIZenudIfscerFdstno8y4bmSRoPo+36+x/mzUbXklIv5ZCYXWmRMCABCzehFvFE8FhTS8DqlcBfstYpR/jq7F5GafD8qIGJbJQSgulxaoZ3+sllQfzXKtfaDcSDtw6mKktRdfcWAD1nYT6j7qg8iJGs7/BAUOohBdOsuK7Ao2sjKeFrqs3NKajsIVg77gf8dCCXc6SGWcYC8wxk5L51qWDRxc+eBifgq4KGrRclhK6IPLK3EGSIeqvUlntR0rwI1EbP+L6uoeg7+3hF+SpPJ+TQICPBqkq32U20lOCUCwYEZJwSda654P634TR59VfDvz+/1BLBwiWuiZtRg0AANZQAABQSwECFAAUAAgACABIVFdD9O2NMPETAADsEwAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIAEhUV0OmsUeSHQMAABINAAASAAAAAAAAAAAAAAAAADUUAABnZW9nZWJyYV9tYWNyby54bWxQSwECFAAUAAgACABIVFdDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAACSFwAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAEhUV0OWuiZtRg0AANZQAAAMAAAAAAAAAAAAAAAAAPAXAABnZW9nZWJyYS54bWxQSwUGAAAAAAQABAACAQAAcCUAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
  −
 
  −
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAGBkhEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZyVXCTgUzhtWKUcKS+4zdyvsunKzrDtn5b53FyHlbIvl54gctbmyWHJ2uSVlZRVy7VpU5CYsclvXOv+r/zzPzDzzzcz7vTPPPPN971MrC6NLzHzMdHR0l0yMDWxofSetBjJeoLVv9Z7TBmwaJgZ6tx6OrGD9ym+3X+lYFKtXTou+Xa0Xx/yVp+/ilqcMCMJ+K6mzNXrTRqyP7oW0oavpr8R2I2VT8VQm0z6fSP5UlEiqNQfgyF33Ol+uu2eRCkrhrW+KsnH31jG5Vi6YTFieRwas7ktp7I4F7+Rr+e0cDpXXIwaXzxgWWhmAdHN1C61ipDnbGWu9SUKUX3ZuvmbSnKIxAuohnZqH662IpcEK8sTjNeU1/EnzxyQIO7im+WjHibJcR8oh5qo6fVsexw1FnBztjpgySxgzHuys1BUzxyGXazoI3G4RhdfLrGLi1oe9CzBYjXDHWt2c3YnHlk6WhfRMZ2yX27ndlMInkK+V212jjkIPsBCaeWo8fFI5fDKyQdBFKHLLWrmd0xTNI8Ig/p8s+sKmNG1AlxjtgfJ48sA9660MDdwg2kveGiSAEoiKhzABQO2Mgj30EqJzYkbPFjispfUgZTzpaej4/vgu039QjPar396c9bC/0BrEE18UxQFrCXzEyuoWdVTvoScBm95tmHgE9E86X1lBDSA7eqEe6W0epXVLi5mVjxmOy1s6pDa9BpS005+Z4eav2676bm4fdNgAovhpuJLOeOQ/+itDwfcH+0U5VX/NXnzfKji49qFwrZEr4aniPeu1+WHVHaEWraEj2bluZd/toB5O2YN0kM7fSrzUPOuJ/mH+8fTLKzYsA81JzCkizzWHDhTCtYcOjtpKt1l3f587Xvt8cTkwLGSRekCKElAil0zyUmZMFos5TmxXp4Xv4meOgweHCoDFJJLk7v+97Kb77Qm8ezk2ed12nZJPYY10jbK049rNt+HCH90v2dFskHVDNEReuSLSiT/xIrzy/RL1FVN3t77kAE+hJrwFEvvzGSLXx4Z3cKoTD2c+yXCJdaYo12Pv9OZ+0NSOITgOPe7cDao8GRbW47r3riqW5kZRKWZvN2RUf1UGfn6krIwGv6sJVc7bqo3mYTOQlAa1r8Nz7k0CM0RuxxVwhq1P6UVunr6YyQhKqqA1LMSjpL9EIR4g7pnEroKwloD1H0ZAvTnaQrVHp7jFyfOqf1C+8L3LD/s3a7PY1eVJY1ZAcniGSIdumxTnj/B51rQ/VBPKhTg1I9L7yOjj8AllI1Le7fQCt2CdcFdDsvjYPi40jPSgh0ftdcNlAXy+rXzDY6z880kLUNFneAmRlRqaIZ3nhlrgvb83mbD6ml7mvwLzd1HrbZRxamzJQ9RIk96IuId/pV5fMB5/iMRRh3jxDQUBNtmP852iGnpX1e5h7cbghA86fIqhmSBgg6DOEJaEXvIMpYy2vPVz4TWhKIgO9O9UmheGhZG28azjlkw2Z724nygXa0ShOUmWuarGYsY0eJFdDZXAlqBINRJ5/iSoEYTPtnHzbpBt6I0a9SO44B6xavd8Xo144jw/SMQ2rI+2VPmVC6b3BuvgSOK+9EyRwo0FgJITvU3KIgtDI/kuqll9MUncB9UMMHjBnlNQRW8NiyPPA/U41V5RqaZs0Mu25hRKpkhSSln2qdnxie+PstuNxw6blBfWl6E6Ep1SBRGe3By1wtWP+5D2WP6LryudPw8cl3o90OoX3310PL9vsXUmAqN6b8yHTMz1LrMsuMcla++eH3WMrIs82HmjdgeKyRRRazlH9pgI6rnez5BkAjGC4DzT1l9KrERnfmZLXKrZkCGtmR+Sdg97kXmTvVe+OMCPp2JZCSP1fsSpr7HEvkJ9YuTuuPdcZRHBFJ035eFhwzbelfv+qzHY/7dC8Ijva8x0a0KuPP4QPLQdAlZnSWCrsIVLAlT8BmUp5NzAnIvyTX2AOdpv9bGYbCQc+XMDDNRjpqtwIOuBcswx4Pa02SRgZTVf2jOjCaMXl5Nbx96CveRAfCKUS6pj7q4oKrwOQeSj7M08d+JgGXBGUefIGO/8Ls4rfqX/+JzxdMxA3ogzCsQfhQVTiKqjJ0+Pddk+yGBiwcXYea2UEFecQk0rzFClEkq+mauyza4Le6I09cNSR1l1PCT9Nt+NjYbxMKd3ar/MaTd1XoMZayd01zpIc73l3GBlWHCvDH+FNNyr2bj7+ry3A1CiqsgvgYDGPGq0UEENfgwYJdBO5x5FKbZrJlSubbZxWGb3yOEIz+TsXJGltwUq0hyYbNg0t8CzumIDwwt0h5dCDT+80SlosZDyMVXnaDMFP1hQSP35zhdcxwkNgzH9Otj6YdnQAaxqAmw5eIJxe+utrMTtIbdJ1UbNvalY5XlVR/K1/6YYlxZGLNi+oUHXs25zmBnp5n6HvIQUlSywD3nlt6kLYuvZd5BphM7/NE0CYmT37GVRTTsjfgEM+JPjgyWy8QBsZ+2iHqOoYqNu3jmGy0rm5Gt08SLAmrnS+nMjRBt1+HCvoRLDyvM7Fmcd1ZLrLJCbx9CTiObkVKXJyF2sVlK3eYLk2UyV4Gdiz5Bzrg3+w7U5ma21zhLvCdoTqIOAOp/+q2baV700wpZvTGfhjeWelzu6g95W8YyasoGSu1OEfCJ0X3fWqgmMqFlSm4PlKSzaz4S07pJGa+HJR3l2iGanL49Cr6m9+THblR47ezVNAl64LVGA6s1TK816H3G40REpdrFjf3upguIG/cQf/OrNwFmVADHGK/oHLwW10tQDGLMtoUrvlsZI+VqjOcKi+Ku+nGZpmKA6epZPqF/vbvdvIve0FxiBd8qlt5sfh4Nf9PsdH1Kz3hzCDSeFXTYJrUoadLO5FkhJ6Kghm7rBsOjoqkqQOXC+Hx3kYq15tPUDcbi3QS5KlgMrevd+oLD+XoPCe4tlFarsW7JLxRJgWbvjDA0qptHmkvsPN7ukiLQI69+rviSr6NMnws/rp/oGGBCXIi1r+KMoqzs6rEb9PSUbprPZwgOmGDomAeiJyU+/M4qXjR8fHRCzQV4EtKg+QNk2jZCRCXUQUSTbpMnwUtohYNv8lCRn27rp8JL8wo9sebQQjqBuzoXFZIGdMAXyelmGgfKjXDF9b+BX7f7cnzH3XnEu9KNEo2V3ATfbrK6zK2rjKb0agwyJausgzOKyaJ30nUDzUqVOlsdCGH1+1AHWCbYzChkxMtSDzQUrUihwO3NYacSq3d3YTYurjKl3BpuKPB5OQQ95TKy6KQqVzft/c9SLa2BDD/t/o1t/1TrAyo4d3EBGHaV5Sn39kTrAKoKPezhGq+1VvrnSfoBoM9ZMV4enP/EwYkSdlGjnEFMS71WX1f+rvur+5TinBL/Kz5IbzkJJge97wOxCgyZSgidCdVdL3nqB50G7lbhV9dENHM6u5AInxCBoCf16PM6ZljO851W9l7etAWlmFevtkoqaUC1qiyjVpFIzYhfpa/acEJDPk2ywgZLJnd+HYgFi3FA7u5ef5/Mfg8PNhflV761uaCHsN/famFLvgjB1H9vjmLizv8ZGwTXswsNrVLRPDikrcZ68VheK4wmCU3TPhXW6WPhV/mZbhh2OlZcV5xac9OmzDqtkJrovhuO2jGKa9v9qK96f4g3tskVeRhSBEmrzkj9u43Eb369rCYaZIqjdANjuKj7X1oI3x6HZCvsCE58KHwmY7XyhfMJRzwfyNLUcf8KZddP1J7OevU+jR+sFDcdQCAoFvymLQPbc2Ef+jV7Jq2dxuDbgE0MnuVT7BEhBK7HKfdkaaB72fkD2MnOE/QETO76GMFM9sOgCN1/hOAarW7jZt+cEv4Vfa2dgogJ9viDY4ratHTIg5fegoy5F1j7bTBySWykI3FLv17ygm6IREkOHIRoaRi968yV0TuJEjcWK7JXs8ztT6FK5+a94tggEz6s9vHFsyFR0hdIp61vjoFtplmVx+WnE1bkXvK+dJ27K+2UsENJmVhvO68p80hZNT/gzdrDUyncG1CNedF401yOpPl6kkCGb20eEETIzT2xr7SLwIzJC3Qiv0pOnw/wxcAvHh7zpaiRNRnBHFqbkBcgE8UEjNF3tfCLn1YrcGQsnq0AQVaQvhVeRYCb/BZZ5QfHYfOojpMfsyKWuyvpta2aBiVE6HMMvzee4rVfbv9BfvEKgSrx09tRgMhrZzxfH1MmNGJAlzLLEewEdg6VUcI8hN1KpWqdDjJnZM4VPuZtF4Eafed6NmgprKd4u+B1B3p64J6MfuZKfBPx0LM9OHzKOcRfq/Gv/Qfy9I2WkD4R5+3iwPcv/KD1EDnujRIuqPes8D/KdbS6fhUOrxB2nc0P+VkqvzhY1fVC2xPP3WWRxbwhHpMc+S94hNqZgv3ffdfXQ7+FSz5YeqIY2dJmkqfn94QHPlHfAgtNz2z4j5CtClwbnXF1nPBcHSsPaDEAErMaQXF+5I8rYR+3miM/QYAS6ZLa4nM3zleAP9excnTQYaeC+p9fBJWkqPRGN6c2LF7d9bVHxnrvN48+P8Mr0LHyJ74TG6qdWQBEON1rpXHn3sjHLsZmTfpmfE5PN1vTnVxzGW+LXl5MpvE4TKzlWNcHSOHMftWRCyH2hO2mWtX5Dldocz1+k9uLuT397FYwVr2OtZXTwhg6ncDmbaXV3O59fd46wZRkezU+fSEw9AzsXV1IduKAN4ri2ok3MwljI4Qy+RwDDbgmAPONcXIWcJHLDhNXpkLJ77HscaQkTLJj3iCT2D+4Ga4kuNxWeHyrfRJ6H9BRa63u4qaMN0APmb3gY6eMk6XJlFENj1wslhOfzgp85ND18oGQ11b0cgzXvfOyd4T7rEXCnPMWwxxkaQvj+wGcd3DOF7EQbDADP+xh1RlPRCEh791wjIiQDDNYX2pmBko9Wmb969X6e7XrFlk3lYuDnuEYk+ZbRMo00Cw7WpoVZgODZle7NUHVGPjRLU7lkBmuRNv2ZHN5vsmKK2L316VYV+cP6IdcligcjDvAEqqZgWq0L8qu1AcLuxGTQ8bHiMAluGdIGLtX9Hc8EnXwGktgv2PQPO07ncWXyamCq5VD0yapdTN7fnlXLHWyQu1rv1dNcXwjlc1jBkKUbNewSmUSfHjioSKHz6HsD7aS6gIriN7Z/2q58lfzVBCi8S0ut+Ogwl2522zIG7M+N/AzJK1nSWKmoE8U4lBtvcpWlL1uG/rptd37J5TQvTPpm4AsX+ghhGuj3Cf/XPzjOklVdi9P0jweUiJlL0fwjvj2HMNnwwrpa70jr7Wcu3lJhdSqkVytsYQmp26y+Yoo2jWFSNdnwv/1/nDIOjvTaPWupsQyRI6HC6/40wYe61LWIyPDZ2jmiiY05EZlyQOifuhyL0wmk8Mfy6OubE8zxgNk4yELkb2YoXsI4a9cDyHmUJHJ8UN3jn0NTmLeE4JMJFVZ59+l9Zw+qryRxxIgQHwl/hFibxHz4e7oJzliE/M0skchAPGUp4HPKBaCAVTql+uDVvylvdd9T6x9dCo00G2sODS/mYVk62YMmhy7/W7hxujBen+0UA/APEHouL4SmaYuspDNEaBQN/sl0U7b/m/Q4k5KmTxjdXfxZx77Y0tGKCdTCoBLiHvM/UEsHCAoc/x5nEAAAdBAAAFBLAwQUAAgACABgZIRDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgAYGSEQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWztXVlz27YWfm5/BUZ3pk8RjZ1ga7fjbG0ax0nrNL1zX+5QIiQxpkiFpLxk+uN7AJCyZEpy6NgKnYmdBCJxiOX7zgZQZPZ/uZgm6EznRZylBz3i4R7S6TCL4nR80JuXo77q/fLz9/tjnY31IA/RKMunYXnQ40Yyjg56ckSigRqF/VBw1eehT/oh8Xl/SHRARjjwA+33ELoo4h/T7Dic6mIWDvXJcKKn4VE2DEvb8aQsZz/u7Z2fn3t1V16Wj/fG44F3UUQ9BMNMi4Ne9eFHaG7lonNmxSnGZO+/r45c8/04LcowHeoeMlOYxz9//93+eZxG2Tk6j6NyAhOmCuYx0fF4ApPyBe2hPSM1A0RmeljGZ7qAa5cO7aTL6axnxcLU1H/nPqFkMZ8eiuKzONL5QQ97REgqeijLY52WlQCpOtqrm9g/i/W5a8t8st3wHiqzLBmEphn0zz+IYorRI1MQV1AopHRV2J3DzBXUFdwVwslwdzl3otzJcCfDWQ+dxUU8SPRBbxQmBeAWp6McOFscF+Vlou14qhNXUyaPYE5F/BGEob8eckDDwB/hRxzbv27OSxMkSz2W+bxlh3V3BEv1af3Rz+mPbZwe3TQ9uQVR1/8nzU8s9SfwI/vH/m30yGiLHt3x53Uo+U6muL9Xm8d+ZRGomBjZisVSTwtjIyxAIjCqTpAAe5A+aLZAJIDCpwgsABGBuIBDopA0pY+YDxUcMaSQkSMMWYMQCv7hvm1MIgGNmbM+2CEi0BFHgiFi7YgjsB5kbRHskjKQEAIJuMh0T6hpgknEJRwxhTiM0ZihT0CQwYVwDN1TxAhi5mLiIyqRNO0RbsxbKjN0aJIiiZEkpkGwZLBiZ8EgrxAzs5EVXHE6m5crEA2nUf2xzGYLLkAafNCVe3M+acX7fbefhAOdQEQ4MUwidBYmxhpsR6MsLVFNInXnxnk4m8TD4kSXJVxVoPfhWXgUlvriOUgXdd9WdpilxZs8K59kyXyaFggNswQvxpwlZOkzXYwaDthSBV+uEEsVcumzv7bfDGrQvNDQf5YXtXgYRS+MxJVbACRfp8nl41yHp7MsXp3G/p4NLvt6PkziKA7Td6CspheDC1rEGuum6lgjAlWPJMujk8sCVBhd/E/nmbEG31M+l0JI7jNFA4gel66KceoJFQhGpALHjaHFYhga46OBJwlnVEA3yseCgGVerq/jQcWUPltwFF7oq+mOc2PbSwcvisdZcnXKIvAknJXz3CYK4BpzM63DdJxoqyXWtiEKD08H2cWJUw/m2np7OYMj7EYwGFvkEXgHKmCa46ocuNLKmKEtpLCVwVYC1/oWR4t6AnMzErYcuNJKgQK7oVVTJfU0Ca67iQvr03CvspzaXxn1NzF9nsblUX1QxsPTaqrUXXA8nw70lRIZgaexy0BcarXaDbnHbvb3runi/qnOU51Uqg+Uz7N54Sx5ySoiPYyncOgqKuBCQ+pfMCZ3NtLjXFfyYWJTNQerrcXLSt04bZt6nmfTF+nZW9CYawPY36tHuV8M83hmNBMNIFyc6ivdi+IihGgTLV9nbBXQGJqoAoCUBi2w4nk5yXKbjIHzgdKYaKKnkIWh0iqh1eMF8oc2pzMQo2zwHvzfIkS6entg5wHVaxXSqm6YzCahyfuqSSfhpc5XYLDtvcqi6+AA9nYG4AtmNnEEwmdaO11xI4YPM2jQWt2KOwO8C3QBpmgS80sYiik/LumdnauxxBX/7c5eIwq0x8FkoZ1OwzRCqY3oT+J8mOjeVYgJscENhWTRYjYv64qha6xqooE+sBYPF+gOb0B/abab4Me3B//KO5QQuk4hJy+swZWVs7IffoujSNu0xXnPeKzTMxgpRA5Y4eBq/XSJXf/oY33mAtDp21OXpDr1kSxRA7Tn8QU6rOUPa6lDWq20DlnV5iHEur7l+BACXZ/WTegPqRt+4XyFid/xKB5ep3Ob/j/ulv7fRvuD3Wv/Y6f9pKH9URvtj75p/1rtV2vUP7i9+q/yeaLH5vx6d/a4QWi4ndCiaq2mLPyilF7ZBK5sQlY20ScL2G7F+zWo4+ksiYdxuYArMfb5Ii0hR9E2IjfzjFOtZyYNfJ2+zcO0MJtKTqZ2MZs5WzR8jbWhYy2Egq6zxifbyVv1hE9u5QnNWnjsioErPp88uXuH9qRCEu0h2oBRt3Fq+ptTW+vUGGk6NXlXTu0GA9ENSp+6imfOcuBfGFcbY3naGWPhnrDGAmWgsC8pIUwwZrbh7sB0tmHwrHMYgHKugiCCe3Agm5RN3+CNn7dRsOedAfd+F1c3Wu4GMH9tA+avnQHzfq21Rab3tIHooF2mN+hIpgehowHlpYFSWEi55wecUiUZxyIIuHqwSeBWOp816By1o3PUETq3s9kn+Kvhc5Pni27wfC/aeL4XnfF8ylNs+YdXxGLCAiV9TBWRPpzfmSN85nB+0QD4fTvLed8Ry+kTTxKKJQ0IJz7GPGBVqGHXgf9oNo0UFwGXMoALJBUPyY62KfzvD38/j/Ddr39/37Sdfdpm7Xv6be27du1LgjWLX0fz3e9ov3z4FkDJ7i3g5aYt7VkbC5h9s4D1N3T4mj1tR/Nd7P9s82nN/bwPbRj98I3RDT5N3q1P+5ScraL0ZYPSpF3OlnQkZ6tvU/iL2xT8K7xNcepYSzataI7arGiOOrOiIf4X2RmbOTRPGzC+chW33dJ+1Rlgj8Nji6stP7rynqP/0ab8N28TK/JvsWJtrKDr7mg787nPuz8fHKn5Jr9z3MY8jjtjHhAj5OqPtRbmKSUkUVgxIjmhXOzQKa1C3Uy5XreB+nXXocYeIZwpWNZJxYTyhfR3tm1VpUDHDYin7VKgaUdSoD5Zo7cW42vIEwsxFR6WgpFAMRxIzsmDzZa20vu6QW/ajt60I/Q22GXb2O1T3/MNuZIHvmQE++zB8nsEQ16/xzBtkFtsJ9fMfsFc0WR29cvUHbVcpjwqufkljBBG72nH+dYJddFg5Y2r+KNN7HpzEzu7C170OhGLWy7CJwEOhOLED+gdxa5toPzRmYBOibfmLhT1Ak4VDjAnQlHs7/B2/MslHVtRvrKdvy874u9hjdDE0jqF1btQAa3S08ADX2B+sXn0R1H5YB3+Jv+SOIrLBsV/tnEsf3bGhgh4chFQ+CWECsnNA8TGrzCPBAGjEmgnPMCYWoIlyAZSMpDGPheY3KFJbQ6xaQPs8P+kRZA10h0Jsy0zKA4GyCDCMuwHvh8EvGNh1iC7YZF40sYeTjpjD9djClsXZrnku44pJw2ABzfZQONLXuvM4AvtlK+EFcHWhhWqZLWOwB6XwvyyQKnAV40HIh9MWFnj5DbuAQxbOblhd5xcN3cBbkNKc+UetSIl6g4pHV273/oG1HBz6HnbJvS87UzoIaK6BcU9RRWnPpDkc2mfA9/dV7UtrGSh6CvA/tUG2L86AywTkMwq87YYCOGSSerCDcBNwRi4Uoozv1o5U08QiEo+5yCtwCPJHYB+egX5BpV+1wb5d51BfqHSsJJc0WmAfGcZ1PGm7xnothmU7kwGtSHCyrVfD+0LupPdui+2z/52077LqC3Do84yvJbfoOJXeRCoIXvyIaNWvv+13Ud5vcmCx235HXeG32aSzLaYMJXXNgLuaSfgi1H8btMyd9KW4klnKWbcX0cxdVbMmCeMCUvmYyW44A9383TNgmqji45bLajizpDbQf/cipCNBve+FSHvO0NIN62tFSfVm1gGzTjXgpFxV3YcbniYk2KPKSqVCDAlfqDuK6TdcrnwtkHCadtIdNod27i24yrBBa27kVc5LALMmXs/QUAEV5T6/oMNRVsTyncNjpO2HCed4fg6xXwbw33CICQJc4uPK0WEkOLBUtzGkU5aONLJN0f6mVu11dPPkwYNv7mKv9vsav3WmV0tVb33gXgE7MnnIgBmhEk97v3LN393BoSgAoGCH5GYCo6ZD6rH7gaDT3Hij5eUaHVJ0c6Fxx1x4GaPdAVKP6hcuKi+fLH6toSvbZfn6SY+p22D8rQzQZl4PqNYYPDewry5WNV3HlwUZtgDpiUOZIDBhYuH9AVZfTHLYWDm4eDa+eiLEvJKqDjo/fBhnpU/PYOr52GpUTxCcYniAs2ywr5rHZUZWrz0FoU//Ifgn6I4h5Ehw7J5C26Yjg3F53E5geEjwMLikUdoaJ/6cV3YYa2qgxlHb3VQt9KG+n3OTh8Eub1CjOILHa1CWb15vNB5PLp6S7d7z7Ts1SxW1xdlmJdvjNNELtWTfrD0I2n14GGwcpqsPDSyzN3e8vuGzXH9f1b8/C9QSwcIy54KlpAMAABQYwAAUEsBAhQAFAAIAAgAYGSEQwoc/x5nEAAAdBAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACABgZIRDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAACrEAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAGBkhEPLngqWkAwAAFBjAAAMAAAAAAAAAAAAAAAAAAkRAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAA0x0AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
  −
*Process:
  −
The teacher can explain the step by step construction of Direct common tangent  and with an example.
  −
[Note for  teachers : Evaluate if it is possible to construct a direct common tangent without the third circle.]
  −
Developmental Questions:
  −
#What is a tangent
  −
# What is a common tangent ?
  −
# What is a direct common tangent ?
  −
# What is R and r  ?
  −
# What does the length OA represent here ?
  −
# Why was a third circle constructed ?
  −
# Let us try to construct direct common tangent without the third circle and see.
  −
# What should be the radius of the third circle ?
  −
# Why was OA bisected and semi circle constructed ?
  −
# What were OB and OC extended ?
  −
# What can you say about lines AB and AC ?
  −
# Name the direct common tangents .
  −
# At what points is the tangent touching the circles ?
  −
# Identify the two right angled triangles formed from the figure ? What do you understand ?
  −
*Evaluation:
  −
# Is the student able to comprehend the sequence of steps in constructing the tangent.
  −
# Is the student able to identify error areas while constructing ?
  −
# Is the student observing that the angle between the tangent and radius at the point of intersection is 90º ?
  −
# Is the student able to appreciate that the direct common tangents from the same external point are equal and subtend equal angles at the center.
  −
*Question Corner:
  −
# What do you think are the applications of tangent constructions ?
  −
# What is the formula to find the length of direct common tangent ?
  −
# Can a direct common tangent be drawn to two circles one inside the other ? 
  −
# Observe the point of intersection of extended tangents in relation with the centres of two circles. Infer.
  −
# What are properties of direct common tangents ?
  −
 
  −
===Activity No # Construction of Transverse common tangent===
  −
{| style="height:10px; float:right; align:center;"
  −
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
  −
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
  −
|}
  −
*Estimated Time: 45 minutes
  −
*Materials/ Resources needed:
  −
# Laptop, geogebra file, projector and a pointer.
  −
# Students' individual construction materials.
  −
*Prerequisites/Instructions, if any
  −
# The students should have prior knowledge of a circle , tangent and direct and transverse common tangents .
  −
# They should understand that a tangent is always perpendicular to the radius of the circle.
  −
# They should know construction of a tangent to a given point.
  −
# If the same straight line is a tangent to two or more circles, then it is called a common tangent.
  −
# If the centres of the circles lie on opposite side of the common tangent, then the tangent is called a transverse common tangent.
  −
# Note: In general,
  −
*The two circles are named as C1 and C2
  −
* The distance between the centre of two circles is 'd'
  −
* Radius of one circle is taken as 'R' and other as 'r'
  −
* The length of tangent is 't'
  −
*Multimedia resources: Laptop
  −
*Website interactives/ links/ / Geogebra Applets
  −
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAOmLc0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ22XV1AT6haFkyAt9BZAEUInoctRkBJCT0CEIC1SlQBSlX4o0lGKSEgogiKINKUG6UgHaQE0iIA0adIUlA4BuZw7c+/ch/vw7zWzZ38z/94va1aC6U0DFvBFMAAAYEGjdM3Ote/8eTHQndelBLkuAICNHq2rZf731585HiUWvTy9P2MQrQUW0herHCn6ZZChPZ9auGW5hRPMPSEbwa2p++kekVvmasd3IBweHZX47DA+2szoKod7eQ0pOpzdXTF24iIGVRJt+kr4sOMaZ9GfR2WD041UReradddKTYHhxoMfLSM/WlaUPcqxSu+o/BY264WZ9pQk05jjNXFT5NdWzoON4sgSbnaHnZWRLZq+cpv6H3M09KzmSG729ErYraISWsxVevxib8qUX3KIcY7q2BOB6xTySw21wEvBPgK0ukC3NO/Z924QGWtH77nWcsV4Q2Cj/GVACOM5D8qPLMmm7Zsd7B2ysj+rWDtYb6jiGmqwW93P3zr7Dds50pjRoA6UjgJgiy/evpcD9xUff+3Yymo7pQrt77D92X3ysL/n7Hg+eH/n2WvNTYv51/arrhGntUfk0kWqJ2+QbepZS+ji6cj2wS9RJqfBo9WWAxbewKwKJ03S2dmn3Ag3lz93LCqd+uoAC+HyviM98nOZ++G9YTv1TCHpg2cOX68X5wzWR7Q1rIS2nVQbjyUb5BoKpqKYf7J6eyD/hG/k7u/w7t+olj9bOPtO2SKzmZx2hhdRTraIKT+DhCJ868cDzQmlQqelI4E+vTxHc721hO3nTimnNWzx3teDV6g5B7OfeLfSN95VGq8GME9CkNNbepuNuumaYNuDCLcVmXHJTVtEUKX69qR824nDU0ztbOhWi33kLzl5zsTLLH0emXOrPiRBtSM/6vb9C1tcs9bumiOqpK+zMkfeq696RWTjm+2mffT+HKAjD9v4LYbPTg5Ed8bGi6eCalbl29YXt/v/WVvIWSt/IJcO9fX64F6CWmYUvWu2/NZzAWz4kUyvKa/RWAP0MkNGrltytV1z4JDnTJMFEIPMLm/wpP6a7/Iq0pAdfJnmZYW8bYtLmgunevmtf4b5fWuPevn8+sNjf2qrz6I+9ax+NmTwPXWzuaO11lAWZZN4h6sGd+maZ1XlTHPQVNtIrub92YizUwRkaXOmef9sZThHySBF8Kpa0OaPSd57m9ONr3ktgG73P61vzTSPW7rLdMYx8YKbrSNp/hIgerFdVjVfeyZOq2vRhDj5pfPOeRBCbQrZcy9UZNjkpb7fHpBOroEHS1rAoLA/mhVDCVySnkxCPBPzZ1xC7JKm8zq6tD08dyPCXw9DL7OT4GmXpEe5FfJ9hcEo/QQb7aSb4vmct458gisc2gQb2f5osnNIes61zmz2UpcHM0Xr52o9MrFt4Q9dkjAQqEhk+P6kq+wJnFYM4zr8gpSeMcDCrmfHLsOIaDs823q/8zTuKZif0+EzMD4e+dJvy9yjM0De1/s0m1V/rFyqKvmy2hdmPgXoQVkdHKhl3VvrMf498OC2sbc9rg8vXNTcrKbCu9B2kZFhs6cpYMOwvAotu7vQkzREcuol5+slkWvcRsmT71xtwOy6bLzJtOP6Y6ZM2uIlSkjxqpX6kr+9PYbcBZh45WogZRYADg7NsU8PpKCyEtFrqjMMoDBAXrVeFPJJte+yIZOJoOlbAXftSW4CHVD7m3HcdvmHEsxrciwjF/xIA87vW/5YPqSNAe/TVh1ttmctI5PQZMMCiO1+Zv5FVfegwnxWZWOevq/Usrw6I/mnjtNrVTppkFfxhU0w6slzHfvXcp9ajAo5jdJxGicTDCic5pqdEaiQFSnF6+3GxZmYTBMbFWrwVABWSPh2RdyZ8uaj/4pZFu79rfi9X7KMmxmlYqbrFzcFLeRoC4bi7qd4pFs18FgLwekSJJ5mpqGLpYNm3wdD2KevOzLWCoY3Htk5REZv9JAKr1b6IRhWxj8/Ce0Fijglb0dr9dAkyrQqV6SfSET9/NYRM3T4ezEUruSnrE17wbpMCv2HrnSvk0n+c4id3TgG6Oa03Jhac8isRP/kI/BxRViefoqgVxS/sveL84ObfF+800gYAEoRJU0qAtqF2/q3YFAvmdsO02kynXoiyKd+r7TLWO3yRZT387Yr7Fu+kp8pit5S71SMkkNbq5Kkug0CmO/QHxexpG/xIRt8sDH9DSeoL4aLdfsYEr2GG7Ny8PFacYwW2m9nmi+2wnk457BwAPyEelus7hZy83WJKbYMoCU5ihWVN/z2AliWcslccs+WJKtAMkaZfUz2oAB8pB+M5f1qNs7OmuCIBOhnGy2AlckBSYnILBeNMCMRZJwY7eQ171mUmbxlep6CEmm4uxRkRthjKGegEDLHsh9Zs1kRlDnEl1VVilXYtZuCgXohy9v+CBzJHoxikjb6gbF04StdPl7EbgtiNLx88ro7PFfgF25eCmiuTIrWztwjZymFSsT8Xl/ysfFiY1CW+LzElda7zFed+FI0IbjaZYjYdOO0ALp1Yd7blptH9PdHwz/hS6kGP0LNRfG83JxxOo9Za/2w8TM3cxFeZ5IiEnc+g5blnHajQWb5fQ6xF5LN+coMeCylTb68OCVOa691OrNS67ymDAP8AHEbGXX3LiiOJvJIk6cb/bxml5f6iRrjV4arSSlqS/rAxhFwsuS9yQFfmoYjCgw/FoKrDfNUdqMUINAdVxYA2MA+er1v0/X3c8t/gKqn2MXsgp5Sl4gmgRfEvFgYtO6VhPawyBvJvIc6EbetU8rSBYRy3Zq8zarISCxS+I7hXS6+U44P8bOajbO7eHFZvwHFwZoJMIqVwyQWN9w42cDtzKgSKVa598BmHs9KE25QlitGyy+AteSt2Bj2mn0/2WkweSL3nUNUf+Lw0Ub/PbemMGJs89imItqGRttopcLqkqS3C3bwZwMwhGNDuOM+g+NfoPAVEPYov/Fpg95SFTOArzY8Ezf65sQ7z/7xsiUS7oupEnRmXScWbidZs12YFqYBvK4j+o0QuW9MGUAGM3igD00bXvLK2zPDQ7NIuSAzDqizZJ2KPWYDsytw0qZDiH6lcNQbqNVRvnA4onkWhp9KVLP8UEJLW5AMCF5IkATbpFQDsHWe2Mozg2VVnKVjSXqCNBf17tUHz1UEvQVDjpZDKttAlM5I9R1yyE47jV2j1fqOwzb0hcxUKpHvmqf1wr753brQw/nHVFxrUkZC/+2uRw8HmS/uJlMpSBhUlqEv++r30S+HRcGrrwyMdkp3XnQlX1ImdydwOdUHlPelS1tFn3/RWUSlt8WWtAAbHbuKOTeq40RITSIwRe8uXuXAkDuTm1mW2GxbSm5hhKlNufC7lUf6o/Av/+LWMO+m8+dfmRzWkHxz4t9WlEwCA+NweUsq08G/KFyoj8nijGs9Iq7mKxQjcLxoULsjYdX9hpG7MwdXOeLwW0zn4LzusnL+ksumHbLaOk7MNOzjkfeQRi6FXqcsrWyX0yxwKGbaAK2vZizWmp8x2i/d7+lHFpFmM/uk/UH6SJSupP2dyxB8NxY+Tuvrd5mgjhM/LvlgUMTXPHmq8kkqzhpFWyDiE9NHGP/pgt5A68F8p02ZxKBNKd7Szc6t/muELI3Quoe/r7vL8HTZ4rKvbKEfmFlGyGSCfIXSCgnLdo1iAxqpS1ZfrtbYWol/fotmjQniv30L8it8+2Ot1P3WI5fKYYagfCszybgbsquxAQ/V7iJQKGme6rSbEDQtMEOdRlinPb96c4LU9V38ROWVFNStXwcNlnNonZbQx0YJ1htCOpJoYn0hWH00EIZlfsbE/5dki7xwzCUd3ZRU5gM6vIzSLsVWKbI37hVoa65Ns5pXSh5K4SHXMvS/vQXRP/rnhC7DL65fq8CnklunJhNSsrxDkQSXer3aRGfZ7htGMOA9yw1uVw0V3tteQQ8cp/GHZZHcOZnnq5s9zytgekZWdyJN/1Bt91/wRV4m3dPJGOhkkfMQSGcq8m9+1HCt1UjCkf1vqoaOD/LxS78spmu6OUHFpaKAflXFx5dsH5UuDz9mY2wCAs9sbfFiCuwzEz4KxUCRYFbbN1cyT3xki0EU/XxCXCDMUN4IkwmImB6SKJbtRhZCFHzQEwhYJv6vAgQrXqS/y/RAwe1tOYiSn+88SGBeksgEJjDpmfEzNPXnxMppZF8THqQvcFfY7r4NRiX1O6BUuQkimxlstO0NGU+8MdMCA5DjvJv7JkYXwNB29Agm3RGX/I4bD7F4CbkZ0pGIeGcLf9osJdArodSC6yfc6HU9q7kjkDZpIlhHiLNE3jZvuBKsn0JpTq+vPnK8gnEbLTJ2OXea7+fmlpWS/tlILGvzza1iiKDxi/F0c6Rq+9jArU9vAA06WKFCaIc09eP2wdbcnFwq0QKdQx+2wgov8+PkTOiQQNi9dQLCvhqJ29Vd2RJ1K1Fv06O9O1VRIed3+OsOtU2dEV2fOajRmqv+BEwpJah/bXqzPtGLNALYf/DpI3UPjUjwdsbfdfQXyrpBTt39kSLFO5LjkJoh+oYGX93UxYOH8MhGzGAdDjg+v5KVVyT+INLp50TqlleURPpDxQLqo++y8OlmXdtg3VjSDIDjtOLfAoGUj1p5YNTjBpsA/8eJD1qeOabh9KouNri+6u9qArwSML54k/I3sjugw7nEAwgMZ0PZh/3uQfA4DFQHbHwhO5qzMHypTDh6+oFGRMTEbF+JSoELdHXp4b4IRZz4qHG8uedb7Zl33QVr8s0M+dWa8OR1YZnT8K7fiIYr8RGZvOhm7GzeeQUojOgizHO+5cYLftK5tee3h0IEBgU914qhw6oMZCfehkCRWmFfahQtwSg6jsw+HafVRpi7xb1U59XE5+mZFnSDD34ngkQsuTPfzVgJYpDuzEvA2G/ZA7Jss2iPvbXLxF4iZm1C802ppcsRT/ChsT0Sp5ehuqhAW6CjJ+5qKWT3El2aQ1SCVvRlmxPFg5ayIi1AIGYAY3tOlUAKiAJNJXevmwZHKeI+2DNArRFZ0tE9JUpsBZEl8A2VPDMapgr2DEaj7/XHCGg71OMQRJMB8/95Nx1EyeiUFakTHr2pkLOLv+SIr018rt5gCsTwgCkW4HhQvtl53jsPcxgYFHye4DBI8/80/x3i/iu0uoWRUlD4f+X/A//D/TP5v9x/ALfEP2wPEZ1VI+MXd86TMQCtd1O3Qtsx+l9QSwcIHmj99zQPAABADwAAUEsDBBQACAAIAOmLc0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACADpi3NDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1bW3PbNhZ+Tn8FRg/7shGFO4iu3I7j3DyTNp0mu7OzO/tAUZDMmCJVkrLlTH/8HgCkRJmSazpxqmSaiQWSOMTlfOc75wAkxz+uFym6MkWZ5NnJgAR4gEwW59Mkm58MVtVsGA5+/OG78dzkczMpIjTLi0VUnQy4lUymJ4MJZ7OpCs2Q64kachVOhiEzYkixjDWf4lCFaoDQuky+z/Kfo4Upl1Fs3sUXZhG9yeOoch1fVNXy+9Ho+vo6aLoK8mI+ms8nwbqcDhAMMytPBvXB99Dczk3XzIlTjMno3z+98c0Pk6ysoiw2A2SnsEp++O7J+DrJpvk1uk6m1QVMmIYwjwuTzC9gUkrQARpZqSVoZGniKrkyJdzbOnWTrhbLgROLMlv/xB+hdDOfAZomV8nUFCcDHBCmsaRigPIiMVlVi5C6q1HTyPgqMde+NXvkOuIDVOV5OolsQ+j33xHFFKOntiC+oFBI6auwv4aZL6gvuC+El+H+du5FuZfhXoazAbpKymSSmpPBLEpL0FySzQpAbXNeVjepceOpL2wnTZ7CnMrkIwgzDGr1qobrGD+1fxL+uK0Y7U6StHqtilXPTpsuCdY9+qSf0ifb9KnCbpdUHJimvEO7fgz3mqdoTRO6cv/dX6dHRnv06M8/rUPJv8gUx6OGKuOaHai8sLI1kpVZlJYvTCOhrdkTJIAbUoGVC0Q0FIoiYAMiAnEBpyRE0pYKMQUVHDEUIitHGHLkECH8cOUak0hAY/aqAk4iAh1xJBgijlMcAZOQ4yVwlDKQEAIJuMl2T6htgknEJZyxEHEYo6WkIiDI4EY4h+4pYgQxezNRiEokbXuEW6rL0A4dmqRIYiSJbRBYDYz2bAb5EDE7G1mrK8mWq2pHRfFi2hxW+XKDBUiDP9o6O++fdnzhk3EaTUwK8eGdRRKhqyi1jHAdzfKsQg2I1F+bF9HyIonLd6aq4K4SfYiuojdRZdYvQbps+naycZ6VvxR5dZanq0VWIhTnKd6MOU9J65huRg0nrFXB2xWiVSFbx2pvvznUoFVpoP+8KBvxaDo9txJb1wCafJulN88KE10u82R3GuORCzVjs4rTZJpE2b/AWG0vVi9oE3mcu2oij9BhM5K8mL67KcGE0fo/psgtG1iABaGCc4WJFhRgvfFVXMkgDLWQjFEisWbWM8WRZZ8QAQMvRLkUTDPOCFDz5kBd3be52mAUrc12uvPCcrt1cl4+y9PtJaeBs2hZrQqXNsAgCjut02yeGmcljtsQk+PLSb5+582D+bbe3yzhDPsRTOZO8wi8AxUQMOd1OfGlk7FD20hhJ4OdBG7sLZlu6ommTsKVE186KTBgP7R6qqSZJsFNN0npfBoe1Mxp/JU1fxvhV1lSvWlOqiS+3E7V3vDzajExGyPabZN8rjbHo1tWNr40RWbS2qgBzFW+Kj1HW/Y+NXGygFNfUasksnD9Ewbgr07NvDDNwFOXknmFuVrcNtfOZdfUyyJfnGdX78EWbg1gPGpGOS7jIllam0MTCASXZmtV06SMII5M2/dZFsLUYxsvQD2VVQ3wc1Vd5IVLusCtQGnJl5oF5FqocuaVrRamSOKNoiOXvcGgVvW4ZVBbl9UyyicfwN9tQqK/ZwsjVB8wQBSly4vI5Xy1mUU3pthRjWvtp3xad1zLlalNFtEiyfzNaBGtLfOhxUkJzrCCjBnQyLYZsx/bxplgm4/DLZpoe3QDqIb2YJaszcbVg5aSj2AV0c50tlSowE9fQjJauvyoqpnpDl4n06nJNuONMrAfhwJ4qmU9ZogSxhv35tYlKMD5hBb2NTQdkJwb2aj7dPCpcDjPsQEE3wnI29msNJVV4JASpz5C9uKF989/z+zJvtnXjCltTzwImZICsBOChUq5blkQEq65pIrC+MHrD9BHvy7z6xKrI+tAd8Kuv3qLhW1Fx/liEWVTlLlE7Ben6G1iEEGIPUuKODX/PX2Kov/Val1VTeUz317dyh8A9+xBwBHq3b0re4L3KOgQErA/B553Zm6v3wLoFNRBaih2wJncDU5Zt9aof/IH8LSUcR8/1xOZrX5x7abA8+L2P+I0OqQ8UFrBQkBJLSUO2cN9lfkt87eUPpYmi2WaxEm10WRqzeA8qyCyGhdaugHz0pilzVTeZu+LKCvtLoiXaQXiA27tduz59XbsIYE+wtjzgNAjZY2pOv7Qs0s57/32M+7XDuNicjflIEtp4Q3SnxPcnoR7EGGSucmuYKCwBkJojet9wRtcs/Zjc2UN6hl6IpP60kfScoeAU5Gs0Wkjf9pIncLijXFYhEgZUkaICCXY2ymrOziFJdywGx5PYTE37HrgvSS3K9ZkBjD04mbR5Sb+NripG39LKPsWyPnMk7PokPOM9iEnSP9Fzj3kJJwGWEvCgXpMaNxh55706HPQs4dbRn9HXfRj1ss1s7/Q34c+1YFouWbA88s4513034B+niWlm+x9k+HZ3fBblW8z3SPJhId7UuCbBk9w9jQQUitGBJMYU9zZwPo8mfBhHDaZ8S0QZh6ESdcF91kunj2IgvZBw9wXE198Og6Mk0BhRgXXIcfE75jaxzYkIGDWISBDlRacO1jAQdI2bCD9+ZaAex3fmdd3hEaIdnQ+7+P35n+q5R+v35M6AOA5YSFXIgwFue32YF0TPrbbO0Q3CFYO/zkUdKOYlgk870O750dDOxlYqtm1vga9a8rrbQFOMCOahyGlkjzCNss99dyl2os+en5x5HomASVaKIaFpPXVz67pX6Ob/fH7RUe307t1W0BLjeamXc3uPk35UvEb4rMWTDEKmlVYgINoNGsVLSFuu18e+p0togKuCZeMY82VxPSRAvqjbG3dZ6fyuQf3tJuc99upjI8kP7uNb+jgHR7CVwUSGGXpJCE/0GH4jcH74hC8ph+85kjgHR7g7yGAvyH+HgyBxGMcH0o1XvYJgS+/bAjcPsoj9ROG+9mBCGQoGGeMMFj3YuVpLgJhF16MYqiVmj1GJnKnG+2ucS/68eziSHi2342KADTbMMz+eifKdQD+E9SuhQZpyeVXS7I7vWgX3aQfusmRoHvIi+7HVwdCcspCwZmksOQSXy26dpPqFrQvPbQXHWgve2xOXR5rdns3bVnApeZEEetBCX4kXPtHtDPqQbk8FNHO+0S086NZ1BEchLq7qqOBJlqHWmschpCpPMaqbr9fq43/vKPg92fv+3k2e8ND1PwwBrRfAPKvegz5/jeAyD3Xf/ekCP9qXd8fZY/mENde9eHaq6Ph2u0EUdVUI4QLWCnY5yGwJGDqEbi2J8q88kpOOtr90CPKfDiWKNMvfWCB4goWXopwRTkn9JFI9PA48+GQ7b/uY/uvj8b2D8QZHigMMYYKYfM4GX651+Fq83/dUXDaL8qkx5o/78+z1D77x/qrjSH7wX19aHGU9QM3OxJwLXm4tluChElNpA7rJ7yc7zg3JuotYhKEPFSCaybcxtPXu8W0H+DzQwAv+wG8PBKAh7cRvhvgEK5zyTVmxD5tJF8Ruma9LGBg9g2vJgiZdQUZH1ScDP722yqv/nHW/kojnyHXrP3G2CALrP10I8rm0J4Xd13s4mzbHOx28AlAg+4d1PZ57kOxdl+2laZIZtuvwPx3THLQKL95VbCKisq9Y49c6AwkkwpjgcFAYCnGfehUAdWCC6EgqaQCzKAdOtsaH7U/enFfl9UfSP/wf1BLBwgJ8aF+1AoAAL09AABQSwECFAAUAAgACADpi3NDHmj99zQPAABADwAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIAOmLc0NFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAHgPAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgA6YtzQwnxoX7UCgAAvT0AAAwAAAAAAAAAAAAAAAAA1g8AAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAMIAAADkGgAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
  −
*Process:
  −
# The teacher can explain the step by step construction of Transverse common tangent.
  −
Developmental Questions
  −
# What is a transverse common tangent ?
  −
# What is the radius of the third circle ?
  −
# What is the difference in finding the radius of the third circle in constructing Dct and that of Tct ?
  −
# Why was a third circle constructed ?
  −
# Let us try to construct transverse common tangent without the third circle and see.
  −
# Name the transverse common tangents .
  −
# At what points is the tangent touching the circles ?
  −
*Evaluation:
  −
# Is the student able to comprehend the sequence of steps in constructing the tangent.
  −
# Is the student able to identify error areas while constructing ?
  −
# Is the student observing that the angle between the tangent and radius at the point of intersection is 90º ?
  −
# Is the student able to understand the difference in the construction protocol between direct common tangent and transverse common tangent ?
  −
*Question Corner:# What do you think are the applications of tangent constructions ?
  −
# What is the formula to find the length of transverse common tangent ?
  −
# Can a direct common tangent be drawn to two circles one inside the other ? 
  −
# What are properties of transverse common tangents ?
  −
*Evaluation:
  −
# Were the students able to comprehend the steps in transverse common tangent construction ?
  −
 
  −
*Question Corner:
  −
# Can you construct a transverse common tangent without the third circle ?
  −
 
  −
==Concept # Cyclic quadrilateral==
  −
===Learning objectives===
  −
# The students should learn that a quadrilateral ABCD is called cyclic if all four vertices of it lie on a circle.
  −
# The sum of either pair of opposite angles of a cyclic quadrilateral is 180 degrees.
  −
# If the sum of a pair of opposite angles of a quadrilateral is 180, the quadrilateral is cyclic.
  −
 
  −
===Notes for teachers===
  −
*Activity No # Construction of cyclic quadrilateral                                                                                                               
  −
*Estimated Time
  −
*Materials/ Resources needed
  −
*Prerequisites/Instructions, if any
  −
*Multimedia resources
  −
*Website interactives/ links/ / Geogebra Applets
  −
<ggb_applet width="1282" height="601" version="4.0" ggbBase64="UEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ21WeTTUixf/YrzGMgyZLBONsdQgKiFZMjWYIUuDMCGlxCDFpAlDDT2ylGd9xvYajKUsyTLWNFmSaLEVUVMyg0YYGmN5Pf3zzu+c9/vj3nvu/ePeez7n3Pv53HF2tIVIqkgCAADBYTH47fh824LBv217g5EtfwCQ2IXDoF3J47yCoGCXi0q98/sNY9RP+R2WvCXruFOI0En2UiClke0VxPt2HwRlTiTpnbhIU4bv859LSQ7mkrqQiib5R7zemPbYldd1quhkVul3XyvOS1YIbmzW+8byKxrL/zJ78fHroR/5Mz/tHVvaKFERkcub61Mf/RBAJ1PpihRwEwFYQQEEGICCALAoABIBqACA/lW+SVIoeettn9GRb/t70o7en3VPBdqRxxjwXT+EAZyU1diuqP0Atetlldnj2S7h6ZYn2gmFoeS4wrVz7dizoysy3i5LztgDukOajFg+fXctG13k2RDwwfxFG94SlVrzZanFSI7jOiMG1QykHtkMqeedNPL+ab2rQfwoZj016/Hzoev6mtisQPkxiqVhJUI2Ok+3X6HwEjkYM/jgZW9NTs/vKI212GpIjE3u2VxZqlVayVJz1BOvbgKF9CBfLUgi7GOHVljnVMNGX3msLj++v+RlU2fL6cRH068ZiZsvoqEgqmZBXsTL+0OKFpX1BoCVwa7/AvAvLgCaKi0t7WLff6OO0Fpe99ZBO0Pjc63HeEXHlK0jR1xFRcW63ipthdF03fm5s+vwcX8+Tn2H/Wf+lqrRk7EJp4GBWHxIlTv4WdFE+8SJW51aGBkQTtbGpgeD63zqTZhD3iszqOY3eylWMN+hBt1dhm6BqYj127FCPv/eHR08svZ9ZJdQCLOCTqZ963SoTwSo5Ta4PtQbR6y1W/XDbynlgyJguinT3U7qyefU1Ek6hcUCwHQJZlNfwKbnCj5QZAH8aX5pIwF6Dqq5+nRtfX6AttE9Iw9Jt4I6gO6ffmB4qqamFX5qBzp9aN+McS93UqDZfJQDS+j/iswb0L5Lo9F8v3xA3hXv3/V6M1942OBS4ZG6wjx7wVSEVNbl8czFIL4wevj9e+VVj45oIfO7tdmal1UZVRokmrmxZncwgLPRb9swSDhECaXfk6XocSRAfOzT4KYJa4SJsfGLW14Egp12Bmp6n45OElbKKcfyrJublhSrDvtz3mI+angnV8J0If9glk6jmXzM2SO1Wja2P/NU/A4oTWuYW2SHo6EFj7i5OYHrqhn75m/rvRgcYHxoaK5nD0AOb83OhiEeA/gDY2NjyVb+p0qsfmxsSTQbZw/fGFRGPs8XKCbrf8IIanHogpwc24y9ToyOjg6o8hEKm3U7MzdXGZmIR4Dp4Wgm8eKHK/H+savU3TcNBwy753socJcYyq2nAMxV8fmYcdUVlclaf0lln4OJfnOMCpJw+WtJNsJOmTV0ilqSizCHXpLIBtsTx/rR3LmIPpF9qs+Kn6Fae3iNPNKnMbHl1QFK7B0sR06AubvQi++mYdV+DSW/uHGOfVVn/c3JM7T+rwCJdPQ5s7e8ImgyggzPMsnKGPte+r47+StpwQNrA0t+gFdWVpaTx35vnlxIFGQi0VBVSeRAj/f6qu5KASdtn+mUxaJ+SPXESQ0/DVqrT2uvY0+7TeS34pzpw/poeSMpMl0nO92j0hOKSaAuKsjMvK+E1bdEWoQ8uiynlTh6cMQNs6VGHBoZuWbt3bxTNVr/Lw00096dFh8Q5sqd006QYs3jarmS1PKkQ+VJhMb5md92/LZRUXJujFknBqYTV+1CtRIFx2U97444rFEA0B0pH8NBsZBZTXDN1V4bKBQDI29amUpWlemMkqnxsXsBdDXtlWVQxljkWoKoawSDIKAuXka1lUJvIq4+G5GT4NyOqFxVezMAaYzKH+ZaqqHuNu3pD1dPXKfW7t7POXMtPC6EJ3N186NAdLs1mhnZPaIHFkVgM63sSLKjKcpBXa43wKIkFJYeVZvSE62ipOTMix4diiDOBt9GQDUt7KANbDW9hT4qYvtLeN1CmK/1wQPFwPIm5kn6IUUZ+lTsPR8AqnmZvAVyWuT/EDiXthrvB/2h1g4gsB8Wkajqu++iCjJdGuz00olbJ/b4qc/EmQVc0AsbhB0rihcM/FqK/GO+OkK3qpywN/vd8vkKKkWc5oVTehtT+UBJsLF9u1MGVxcVr6865c0OFcOWCSuMjzQubyt03hFagQFBMUbksI9xF03pK86XBS6XdRU3nGdxUJ8zNVmpjWgamHXS+JhcnTo8dNxX2E3P5cWch4FGdMHp0DrGSfpLzvfikdHj4+x3J1T/lqH9ZEdX1rvPMUBsI8Sf3VLo4b0acaPVBFvxUDVG6LjM2yCIdiRJgI98V5dY+NATV1rdPvyO4hW+U/mZOJvyaPGKKjj9APn1gfEMoljOet/oFyh90Rf56v1nd/uoAo8Thw7T2rwxzEupJsMzC9wyS09UGb/Qoy0dapUWr86rVtIt7Ag/D7kjnJbxzD9fZl2y1Fk8VyDxxCR54LMKAY4xm/1D1kcaZQGAcEe8Epomomp86nwDWcnVZFcfz/FFwk61lOm3XGLAUuPr0bgzJ47Ka6LJeXvM9VWomhB9azKriHZlo3TqeoqdI09Srmzum9N0C9l4LpHp1Q2Xdo65FtP1GK22daUi4E/+0HUREI7olrwnNDtlVkXP1qH3nHqypoz9BV6dy/dPT8wy/qzyP/rVDIbccWy9c3FOFXdjReQmQm7RF36s0xAmLS2L5xeVWTeklPaNC3cPCIkH2ze3bNZXuhyJvGsuZzihpI1nAt9BGAinaq6RXXY/QGShnWgelTlF1GF8s+jnzjxEHQ4a3594CJweiWNqvnlhYFTjzZ47W78QAKDxpyc//+Xayo7p5sHGrN8UwJFBPmpICDWgmD3YfmaJJNIrJiu6rL+ihEpA0H7vxXlkXnC7yoTn2EP07t9GtOg4kAmSr/IdhofDdqVZX1A/RbSCerNkJ9lE2WSW219k+HK0pRqMw19qkTFnAdQSSBs3qTXelHnDeo9JeekkXpu4GQ6z00n1MP57901EIMT9HrlJQSZ66npQW9ye9k4tp8qo3v+S5n859F9q/X9S43+Y9lda3nMMxN1IMsYnZW8LJQBn7YipPu5L/QdQSwcIRnoUezEJAABPCQAAUEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vrvcts2Ev+cPgWGN5MvjSX8B5jK6cjOdC4zadOp05ub+0aRkIyaIhWSsuVMX6pp2sfwM90CICnJcnxW3DqXu2bigACWWGB/+9td0Bl9vZrn6NxUtS2Lw4gMcIRMkZaZLWaH0bKZHujo62dfjGamnJlJlaBpWc2T5jDiTtJmhxGTMplMM3wQC54ccJziA50ochBTIlSG6WRidITQqrZPi/K7ZG7qRZKak/TUzJOXZZo0XvFp0yyeDocXFxeDTtWgrGbD2WwyWNVZhGCbRX0YtQ9PYbmtly6YF6cYk+E/v30Zlj+wRd0kRWoi5I6wtM++eDS6sEVWXqALmzWncGCqaYROjZ2dwqGUYBEaOqkFWGRh0saemxre3ej6QzfzReTFksLNPwpPKO/PE6HMntvMVIcRHoAShQXhmmIRg0IeobKypmhaYdIqHXbLjc6tuQjruievEl5qyjKfJG5J9PPPiGKK0RPXkNBQaKQMUziMYRYaGhoeGhFkeHidB1EeZHiQ4WCIc1vbSW4Oo2mS12BDW0wrwK/v181lbvx+2oH18ckTOFNt34Iww+AowegwjvET9yPhh7uJ4fYhyYbWplruqbRTSQgWd9dJ76OT9TrlDSqp+MAx5S3WDXu40znFhmlBlf/rf3Y0MrqHxtC/n0LJH+SIo2FHlVHLDlSfOtkWycbMa8cXFiMRO7cnSAA3pAIvF4jE0CiKgA2ICMQFdIlG0rUKMQUTHDGkkZMjDHlyCA3/cOUXk0jAYm5UAScRAUUcCYaI5xRHwCTkeQkcpQwkhEACXnLqCXVLMIm4hB7TiMMeHSUVAUEGL0If1FPECGLuZaIQlUi69Qh3VJfabR2WpEhiJIlbEFgNjA5sBnmNmDuNbM1li8Wy2TJROs+6x6Zc9FiANMSjddgL8WkrKj4a5cnE5JApThySCJ0nuWOEVzQtiwZ1INIwNquSxalN6xPTNPBWjX5KzpOXSWNW34B03en2smlZ1N9XZXNc5st5USOUljnu91zmZOOZ9ruGDtuY4JsTYmNCbjyrG/WWMIOWtQH9ZVV34kmWvXAS69AAlnxV5JdHlUnOFqXdPsZo6JPOyCzT3GY2Kf4Bzuq0OLugPgf5cNXlIBHH3U7KKju5rMGF0epfpiohVBHh0u5l6LHQq9PEcUxgP7XZ88uY897cycqsdz6rHE03Oi/qozJfD/nDHCeLZln5WgAiXeV2OC5mufGAe5pCok3PJuXqJCDNwlqvLxfQa3cwmXkjIiA6FXDSWdtOQutl3NZ6KexlsJfAnevYrJ8nMfUSvp2E1kuBL4attUcl3TEJ7tTY2ocnHLUk6EKP82SXtpeFbV52ncamZ+ujuhe+W84npveH7TXJH7XmaHjNYUZnpipM3vongLksl3Wg24brZia1c+iGidYkiYPrR9hAGM3MrDLdxnNfZwWD+Vm86Xk7w36pb6py/qI4fw2+cG0Do2G3y1GdVnbhfA5NIKafmbVXZbZOICVkm+85QsHRUxf6wTyNMw1QbdmclpWvpCBCQOt4lJs5lE2o8e7lPbQ38ytfkDl7onLyEwSpPo+F+TVgMH2jq3mnTPLFaeKKtvbQeXJpqi0z+PW+LbPrxgHb+xMAYRe+6gN0F8YExwg7hocFLOj5tBVzwN41WgHJBhSK5Uv3OoOHt6EiDxWpO61j2VaYDaPXoAL/CYbyxp3PkyJDhU+8x7ZKcxOtM0GCneVQQvoVy2XTTaRhsXaJHfsDbjbt7Zv+B/tvnPdDABBXfn8sAGvuN5BjzqCQrn1t17ShyD/83WaZ8fVFiI12Zopz2CuEeLii4PYCdImDfvS2G1mBfQ5CgCXt0FuyAQ5AX9kVGnfy405qTN1DjKmK+z8aTjlmrYox5KiDAPtYeCUAfNjcmyKcpw7RwmVeO7Xp7Qh/70mxDXC6g+zx7chuM+v4o5jVhfoujH9iZuEB3L4YYYJLIpWkLuUCz+gAx3Dri6XSsYyJpOJPYN3dMDnaB5OjB8Xk1XRam8aZ8YDE3m5wg3kAyASTsSCaESwBu4AYMEQzrpTmimsiCeD5J0B2YmZu/BpoxyFSHu1gl9yOXd2u1qGT3CdW+igJ8Any8ZxaG5kOYkYZ0bCq0oJh3VuZasYkUUQQrBgWQnkzH5CBdgWr0pJSzWOt2D3i77UQZ+eL3Ka26e2bO/d4UTRQHhlfH+xWPWfGLFy5+ap4XSVF7b5PBZmNaupevHy+Dy+f/y/ESjGQAD0ESaYxjWPeRkrKMZFAPc05w0TJTxYpx/sgMv5kkTKYjTwEXhAEMYu5UJLDvzRQmAykit2Xx1jrmBAeswcLlM9DoBzvQDfZL1BO7hUoMf0DAyUbxO57KsdKMcahhujiJFFUAls0BrZwrZ1SFycpmD9WXGpKGcNYyc82TN4M8dGHIM72gzj778mFUFlwgWNKINIpAWAHInFAnmMN8VAKIBILiZANpJBQgohYMK45+XzT4K21zvMdfM1++Jr73wvvkRDX4Dqmcgo5DW5iXDEtBJYtvJpAuqNQ/kNNw1r6xoNYxUBdDNQFdrPPl77+g93N5HUY05swvvrldpD9p6AeQpB278N+lq31XeyTcK9ikH2EhrKh/Rr1cZ9nCN71A3JHP9j5Mnh33JIq3ciOXcbO8/LiBzPNzcob9j4o9BTzKOxG0qt3e6HwbhcFHiso2VyxpiBnCf4XCrso9LWKR2H3bnf1614o/HoDCpxrFsN9Ci6xSqm/QNgFYdzdrD0Ix7sgvN8LhPc3BCRAgcaSiRgY8X+JglktKlDjbhvdGc2qgcoJJg6jx2+WZfPV8WUKuQm9WSZZZfMEUlKShxm/2rbR3evR9lqfuJbzv3WsTWWn69/Qtb+ej7r024rWTVI1/r6JXHlABqStBuTWxfZ2A1791lrv6hf0JQLuo10rXXPN3667JoO6hIgYiksG5aWK2f1xvfq929Y7t633d9jW7w+wLecidMvdHufNV2P0pWuO0SEiGj/+G8F++Ah27trn7fidnZB+0oJzalcm2zbKjq/pQfjIRgax/pCvDTd/K+Z/k9z+t6hn/wZQSwcIahw98e0IAACzJQAAUEsBAhQAFAAIAAgA64WEQ0Z6FHsxCQAATwkAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADrhYRD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAB1CQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAOuFhENqHD3x7QgAALMlAAAMAAAAAAAAAAAAAAAAANIJAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAA+RIAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
  −
*Process/ Developmental Questions
  −
*Evaluation
  −
*Question Corner
  −
 
  −
*Activity No #                                                                                                             
  −
*Estimated Time
  −
*Materials/ Resources needed
  −
*Prerequisites/Instructions, if any
  −
*Multimedia resources
  −
*Website interactives/ links/ / Geogebra Applets
  −
*Process/ Developmental Questions
  −
*Evaluation
  −
*Question Corner
  −
 
  −
= Hints for difficult problems =
  −
 
  −
= Project Ideas =
  −
 
  −
= Math Fun =
  −
 
  −
'''Usage'''
  −
 
  −
Create a new page and type <nowiki>{{subst:Math-Content}}</nowiki> to use this template
 
3,670

edits

Navigation menu