Changes

Jump to navigation Jump to search
Line 92: Line 92:  
*Question Corner
 
*Question Corner
   −
===Activity No # !.Area of a trapezium===
+
===Activity No # 1.Area of a trapezium===
 
{| style="height:10px; float:right; align:center;"
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
|}
*Estimated Time
+
*Estimated Time: 20 minutes.
*Materials/ Resources needed
+
*Materials/ Resources needed : Laptop, geogebra file, projector and a pointer.
 
*Prerequisites/Instructions, if any
 
*Prerequisites/Instructions, if any
*Multimedia resources
+
# The students should know a parallelogram and formula to find its area.
 +
# They should know the trapezium and its properties.
 +
*Multimedia resources: Laptop
 
*Website interactives/ links/ / Geogebra Applets
 
*Website interactives/ links/ / Geogebra Applets
 
<ggb_applet width="1296" height="848" version="4.2" ggbBase64="UEsDBBQACAAIAP17okIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ32WfzTT+x/Hh8lyLxtNNaTRcCkkX+Tn+iRtM0MR5kekTa2hWD+MmJYIZX6zIZVfNz9K2gyJbi1UakNatlSG+nLQD/Mr3HvX+X7vOd977jnfP16P1/P9PK/3Oe/zfr/e7/PO8PHCaKjrqoNAIA0cdt9BRe5VxEXIuh+qx88aBIKAcPsAv3jJTDnBE35sc4qLXOQG/YHSGhzUxXbmqhv0qjWF4NZgjerefFR3IPWNQJe604NAvcoLcmvgpb3+Lj7UoAMxV65WzQT7wv0DCxkhyZdUqy5jAx7y6Wib0iNE/ydr7NAKU/q9ezbvzzsR3x37VH4yORAF2mmVtaQOgoGRSqr0nWa7RkpJ/d7+htjUEoROW1gxKbawYW9O7/qBgyJLRkyn8aGwRdwgW5NiEbXpj2h+wbH50tT6tc7g2xNnn71AB/dxWxBzdh7nDt1b5U0UreavnbrWMiS++XNF39v64rz5i7TX4glde69zvddXuhsoie/LGVzOcvQnibJUvEStnax16HIR+fN1ABhqKhEmzPBqk4eyXk3Pap2kZ72aiK+WZSUvn1yqY995KvEdiaqxte5J1J2ICbtIFKrXV9RjYjgo11JXeEntHc4Hx8abx0sZTi73amaSqMGJA1L047Wsc69bjCBMwT6YxggtZPnuc9SNZzfu+EecCMQ5S2ZzH7HS+07PQENNbpwJYozykibTlGyiGysH201F5Hl0IkGaLXtNHFzo5JV7SZ/cW3Btz04K1gIDu9eNbgYDMDAAUkAbm5NehCI6I+thYBAAgglwerTaxewrZ1iq77yXTPqcs9RsoH0rKxsWyR2Mtx18Po//06x9yYfOT2Pvvrg0g4FH+RyOeTA/pjAzM1PV3dd38Gh0X2HZdlnCe+O253EvVr67zcfN5tPids1X0cOaavYEZQURygho6sf70Psq0Xj7omdchoQ76NqQzGXlCT2qvtV7TNZNqQ8vZkC9SzpPbyn356JPXrJv0oehUJbF+LS0tKUWECDLeODZXGk8NFbkutCME/9kyYcn0u3C0JJu9Kz9DBPf5iNVgWif4U7378I8R1jkc1fNVltFBX6fbF7i39U5fy2Tl7SMDI3UgOtWbnl9C/hUuiypaWty8NGcTJCwInj9ZH965Hxlxa2k4RWxnaT49snCKDKbHKnHC4u+I13Y3WOdgtTCMH5T+s+m/Rd/G/wv/uEYCR+mXBZuqhAaILTYJUgcTPAbfBO6AGUQ0rljYNAtD4lV9gmMP9Ddc3SuoeHWLbOnQisTJ2QsmO4y0dExN4Ojfw7BvxprtILiJLVd+VtyNjPhb/UL3R0CIgyK133OM4TIotJMascnwvRkRr15c40kCHN3KctDOmaUrqOT5FymC+h7xKxgQyZE8St9GmzO6Faa0eXHrbax6JjqQ6f0KQgTX5iAeP7UjSGtuOMdy1LbBSOITF++SWoWFxj7pZ0VBeQsDdLEVlb6t8+VIa223Dev/J2yax0gy9JsdCRobnftEpwxhWhjmvXUtmxP755Ln3pBR+zJKRn8l6OZlUGsUxDsqvBE+1NdML0F0/joCQ0tRrCVgIhu+9ng9YbpOuY2SKxnK72HXekfwlTOho2PPPqYmu+2rfp6Rn46RDt0IUzPE+vQClYFbmYfG7+GsCOQgMOxts/G5T8TU5G57vgNFge0iZqWAJDz693aI0iz8Q/acHDG7tnR9TRLQyK4/82qtxVbUWnWKF9XRcp77Ej/9fFQCtLb/fVEZ1X+40x51wPSBuYO/aS9WKNrsPEfkx0d4d/33zalTDTt3bpTCfJN8O8k+FNLteLryF4mvp6kx5MRgyDaWtnl5kkmHvUOi1emLbOGaamGF1Tp87yxjwnVl9Jc4/zwRfEC8vtURHsodof3ipvl4Q7sWUPscYlkKcKCw5FTvp6HQiK2mWKqSp18Ndhso8NeuUgIiAlS4K/8F7CeX5fPD0ifJ42mIA3NzM3zxnpYc2IweL1pLzxAVZmZupH0JFOn+ZjQYE49BQkwp6V8oadVWGdZlzmy93wPEqKM23Y529k9Qj55gLm0lhzbFqI1/NFnW6SKisrBoCAPO0MsiciPKW8I4plPVeQXFs4LjOogrLz+lwszUnJ8CSNdcQdkCt0cO7YfRyBcnVLRjIyMJL3g2NIWftEd3X1myi8QYGL6TlCpxk5OpVcUr3IT44/k2PsjJsNxcoMRpKOjY9X16+Fe8RVffj/E6tnmdHYa0tGVvNaOmBl4ENDa/EsZkkKhNJ/7fJjYfvqWlkjbemOiW/x+MLEj/i4uniAoKCionaqvqtpnGdIKu1xXV9dknGtCU6ykqrZWmHuQjzm69n3+AqV8a13XRTWoB5FIDEeogBWHJA8IYQzxIsWBDxJ4XC6370Rlovp2YKZ/i4wCS+gIZ+Xm5j5slskiHBLkxz88MGj4/LbN16vC1QWTY2p2t0BFTRNLJpPD2bNEEHCNQyi1Y+duzfr2LW64mYz3c6VGRUUVQRI6UTY2vi3R0pZwoMgiOBIV3BZHDu80wJBJpJwDEJknN4rz+WA+jyp+6YBlwIeGho4UqzGKZqunEzfsgfWIRKLw/QL5phDoQzcL1it6jo+nl9ezNA29XhNwrAmdTr8waYwvSo0a3Pikx2VhcVEPBwL0WQZbFW0BOU3yFCYqBMyxThB6SdEcb3jUYocFEd6DabVdKRyqnIIEQf6Ofzr/z4Yog4BV6B6/QOU06k0LxZcAhHP32nd7bzjzT1BLBwiUtt2e/gcAADkIAABQSwMEFAAIAAgA/XuiQgAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK4FAFBLBwjWN725GQAAABcAAABQSwMEFAAIAAgA/XuiQgAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzlXGuO20YS/u2coqEFjGRjcfrdZDyThd+exI4Nj7MIggAGJVESPRIpk9Q8nOQAe4r9s/m/Z9ij7Em2upukSL1G0mhsziaO3SLZz/qqqquqizz828V4hM6CJA3j6KhFHNxCQdSNe2E0OGpNs37bbf3t2y8OB0E8CDqJj/pxMvazoxZ3aGvWDq4cJnXjsHfU6vpel2KM27gT0DYnfa/tdwO/LUiX+4LifjeQLYQu0vCbKP7BHwfpBJ6fdIfB2H8Rd/3M9DnMssk3Bwfn5+dOMboTJ4ODwaDjXKS9FoKZR+lRK//xDXRXa3TOTHWYCDn46eUL2307jNLMj7pBC+lVTcNvv7hzeB5GvfgcnYe9bAg0oB7MbhiEgyGsk8A6WuhAV5vAaidBNwvPghQaVy7NqrPxpGWq+ZF+fsf+QqNyQS3UC8/CXpActbBDBGcUe66S+Y8WipMwiLK8MskHPSi6OzwLg3Pbr/5lhuTYU4BCmIadUXDU6vujFBYWRv0EiAozSqZwmWaXo6DjJ8X1bELkHvyBCuHHQPcF67SUOGoJRe8xT95TGN8TMp9LdeAWyuJ4ZHrFSHjot98QxRSje7ogtqBQSGkfYXsPM1tQW3BbCFuH2+bcVuW2Drd1OFuzzvx6ttD8Rm2lxTpZdZ2A7j39V8JfXgBdWadbWSfRi/gNET17UzCk503M/HXB80tpL5UpCLYFyR+6+h9DL3nNFbGdVkQqo1p+WD3oAr8UIxIqvc2HpNdaaLlMumyZVKxY5jWpW65UVKUChEH/b/4uDMm2Wudq2m4+ouTXEf4dBlT4Uwx4eFCousNc+FA61HVzfs2CcarVDvOM5kEECZBMqUBRCEQ8KJSWUIqIQFzAJXGR1KVCTAslRwy5SNcjDBn9Ilz4hxuBlUhAX/qmspKLGEeCIWK0Ekegi5DRbKDlKIMaQiABjfToRA/LJOISLpiLOExQ6zSl9QaDdnANg1PECGK6LVGISiQpUlovEq7VpXT13KFTiiRGUjcFxQhK0SpEaOEiplcDHD6J07Ak7jAYTUpUDB3DaDLNarTrjnvFzyyeq92Lu6cP52gd+GlW/IZKsBvNNj27O9X2xDuHI78TjMB2ONFsgNCZP9ISbPrvx1GGChbg9t4g8SfDsJueBFkGrVL03j/zX/hZcPEUaqfFBM3QZrM+DKbdUdgL/ejvwCO6C90hmu3dWjEVe7fL8qG7cZz0Ti5T4Bx08XOQxFCTUMer/ddCl/YRU1hbMmnX12wu4KL6H+ijy/wR9+pduHa04Kxcjn8RlItAg0TLUOXiOH0Yj2a3JnEYZY/8STZNjPUFIyV6IQ+iwSgwBDU4gx3TPe3EFyeWksz29fZyAlfYzqAzeBSP4gSBFFIhoEJedmxp6uiplbWwqYNNDVxAE/bK58SjpoYpO7Y0tQBrO7V8qaRYJsHFMGFqdIemqOGsQtlqTtFG0TQKsxfFRRZ2T2dL1Q1+mI47wGQ5F9b7JPvq8/Bgjq8OT4MkCkaWeSIAcxpPU8vOJUveOZymwWs/Gz6Iem+CAcjha1+rwgy6tlVnU+4F3XAMDe39nHi+BvZHmKq92wsGSVAscWQMXkta8xRXWXnhtunqaRKPj6Ozt8A1c1M9PCjWc5h2k3CiuRN1QDefBjP+64WpD5q9V20Hi09hFV2tZYCQmSZiC/nTbBgnxqIFWYVSC+YoGIP5ijLDiIaXS0AeGMNYUx7FnfegLsrdwT6f0QnG6xmVZnB6lVcO0X//8U/UJrYOdLGUcQ2L+6PJ0NcGdk6YkX8ZJDVSmTFf9ftpkKGLo1abQutLaE0rj1/GvXn6Anx2XlkwsYw0CQLLg3bJ8GMCoxnRrfCIASzVI2FHUTNUmzgKLMuP1t+yvoWml5bomsq0d+fABl61pL6C6A8bTHSS05zcNM1dR5Ykl3sheTcej/2ohyJj9JwEA32/Ndtufaz5HflEI2BJN82KB77tLe9jAcA0762AyL8mhG3seOjuKLuPQlvADbEeT7wxmgt4zagOw2Ba2zUxcQ0OynFzzucOOHzu/C6SgTVwCg5vatyGLN/UzI/nYa8XGFOnoOpIA38caX0bGA21qKFPg2Cit8ZX0dvEj1Idvair5k2l6VGDpamdE7fNb1qcmAOWmx5qbxqsLk4vgBHmZOmRlSV/QZY662VJ81SJTmcRvbrJUFnt55aMNmGOJ5ms1NhdSoIPkW2SWgMoHE9GYTfM1sPw2rB+HYfOAgCP1wNQl5/HNyY/hFoL15Q7y1C+M7ObliDpSNeVruREEuJhT5Ti5GEsXeIycI+pjiXsXbhex6PLQRyt2quQTzVMyGda6ObBnkBjkoviO2Ird8wPqN6Dgh+1ulcxhB2/gNx2uStnX4+V/oXwKmknglk+wrzkI7KxxLP1m8rCDv+OXEs1LZvsn33jnqdxp2E0Zo7gNWEvLFSPEEaYcJnrYs+EvIHeVDlEKMGlop6r4Im8RaTvNYnwOpBTozvhuXOgEZlTyh+1qqYuYIE5IcSl0OoWEb7bJMIDeXNCU4fbna0tHVc1TItcaYqudOuCLUzR4BaZotfW9Tdpfj7Zxvx8chXVZ0bDvmzLGzEf2wAJx4RQl2KwI6VwC/uRCa48pjCGR0LxG7AfXyXZMAYDzh8tkY0nVjYWYepvIRv9K5yETyYaVgIuVwqJcdPAT+NcEtiRPZdL99PLSan75rAILBb9BSyebiMyT3cTGekaNHTRscUe8HA95kglsKs8zDzqFkE9fYhDMKdKEuZJj1loJHWwx909xyUehprUcbKc8Z8uEHuwBeMPmrQpgJFEPNcVCiwk4H19onZpNnHBXMY9Bcarx3IPFaoTBVsEUx7nQkIL0RQpGOQa6R1ZgObZNnLwrDly4ElHOwKEUsW4K6SNxWFHG7RKCIKldhTAVrXanzoSfAbKmaugBfzZo0RcQfXuAs2fb0Pz582hOeUOA9pKTVwgusy9NeFgQQThSuocJS7pkzYRN0/25TGcPEb62IZlntmgzPOlMRya41PEcHpFDGdgfvCj1nD7KA7dTxRnI5VnfBMAWZAFrUe2wXgLX2rn+MGauV5XQy9xY5d7se3b7Mb2GkV6sLIVF5hx7OmQDKG5+vVAPQipPOJxzAUro/hCuUoxJrnHvNsVMhs0iu7ayKjSnXBOCi2sCGc6gdbFwhPcs7TXRrvydGUPlLbneUwu5Ks0mPrDBtHe5CrU/J/ixIKS2m3rcYJLBI7oXo6ubpzs0XQcJGG3pGpoyA6Npzkx2qX/vDeXdNMtqtgeRzpfHI3DSM+mhcb+hQkS+J00Hk2z4KSbBEE0y5m3UyuS4bDJY7uwDpFFDZsM/354Ucn7GcZJ+DGOsnrG0i6QzUc4tOCWQQ5RabsY5Fht8ryJMz9bcSr8ZRvc76/+82/0VxQWxs+81fPorj+J0/vbmJ9Fk52M0F3P89dtPNQhta3dLZNaBAbtRlwiXfDM3Js4NlxK/8eb0//x9vR/fB367zVmV8skqoeBZnlFtdvkU0HwbHMInm0PwbPrQPB/7vsuheP55nA83x6O502DAxQO2F4K/GEORhalUuR4MCkZoEEJA9XEPgUcK3zinGLWMy4v6Iy1rZc8w2LRV6520a120at2MSgvtPe8GbZLfOgKwvvNh6gdJKxKiPjjphIitnW2N2P0HY4vt4oOrDs3ph7ly8+NZelyM+OW50f2pMlW8ILL3TwA2guONysOZ5a53rfb824g+ef9b6y4DX0sd7/nvW+OyW3KWRk2DwGbbWvNTYrn3lrSCocyR3HgdyYUFgw3Lci3Sc58bj8tWkvv1++l8/C93/wMeWXSvDIZglfkCe751G15hGszCds0vkXE50F8uYVWIm5MqofWmHqw1BJjtuqwOLUYvKO2esf84DqRkm5vc7E/u7U1bFhq5CeSg4bsNJqLG0T9eSuLkKXnG2TFAcctInynWYRfmYjXrrwUcuvSrv1mEdk4ETXTSRYHGXWLSs0OMljV0GoS5bd4CfHRigDH6XZm1ele3t+54vW3XYwptgC0Fqeqvw6FRZo4nFbddYs01TEr0F+lt/7ZkYbV+BNDQXPbR1+jzjU4YDFfebQd9qPb8Rrqck64HW+zzEO+C9xLI57z0I+3g358/TOwzaGsvB8u8gDbhkjfbIiOfA4W2Eniy0Swedij7WCPmizx1Ref89dK1OYK4ZbnTm3HJWvylleyymQ9q9TylieNyVteAuDlSsC14lcOF0IwIV0ulHTVNUKU+81bnlhgogVgjq8KcFQPDI+bc1QoCey2SrgcKwzuu0vz7604XFGFXc9lWEgqy+xZ4TEqJAfXnoLLv880/itIvviNge+2Ifl3zSE5YcqRSmKXEzCFJbjo+QciPCC6oq4QRCnBclmgSn9wwKVabJgLFfZI8uX71LEl+HcLBP+w3T71ocn71JqNaP5lCpZHWpa9e2G8f9BWIDkSg6kCtan6/NGWuY1ouJvkvbeM8GGBEb7fRvK+b47keZ7jesT1sPCU9KQsslQEx4JLSoQHek0wVrqeWHnlsc0+syKWC973qwQv2U7wkj2EA/64MavQipO3mSzquJD0iOKu4gCRFLIURq6z63TMgAiJMeO5Veg6imPOMPPA2pCy+Mpgg4TxgC7E6i4mCUxIVykgCi4ysJ/hwVHr7odpnN1/++bB6yc/H//4Ej0+Pjl58ujtqzf2gemszhC6dave1XqOWJWzDLb7FfmSS79mmNfHs/rllw0rDLL2+2Lmg5RpkIT92fdZQeheQlfm+4/FlyoLs654jXdp7i0y7wph63WKxa+ALCU/rZH/x1RzDliRNuk3i2FyAdIE1Xf9JPBR3Ec+uvsXgu9niT8JPobTsfki93TkozBFYx+W2E/isf6WX85NzuYQLonXbgahW4HQXK2R2R0hITNIcIkIuRoRYt9etPHbqxFhNUQeHP3ST/zur8Pff6W//zIK+tmXyP+6g9Av5sOcX6HNactu+tXm9XTVCd/zKiNMX/hvg5/mb6/GgM8w0AkgdbFIMz/JzJv7yGpVzmph9SKi49RfG6ily1bxOah+elJfFx+B//Z/UEsHCEW4Yi/IDgAAtF4AAFBLAQIUABQACAAIAP17okKUtt2e/gcAADkIAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgA/XuiQtY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAQggAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAD9e6JCRbhiL8gOAAC0XgAADAAAAAAAAAAAAAAAAACfCAAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAAKEXAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
<ggb_applet width="1296" height="848" version="4.2" ggbBase64="UEsDBBQACAAIAP17okIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ32WfzTT+x/Hh8lyLxtNNaTRcCkkX+Tn+iRtM0MR5kekTa2hWD+MmJYIZX6zIZVfNz9K2gyJbi1UakNatlSG+nLQD/Mr3HvX+X7vOd977jnfP16P1/P9PK/3Oe/zfr/e7/PO8PHCaKjrqoNAIA0cdt9BRe5VxEXIuh+qx88aBIKAcPsAv3jJTDnBE35sc4qLXOQG/YHSGhzUxXbmqhv0qjWF4NZgjerefFR3IPWNQJe604NAvcoLcmvgpb3+Lj7UoAMxV65WzQT7wv0DCxkhyZdUqy5jAx7y6Wib0iNE/ydr7NAKU/q9ezbvzzsR3x37VH4yORAF2mmVtaQOgoGRSqr0nWa7RkpJ/d7+htjUEoROW1gxKbawYW9O7/qBgyJLRkyn8aGwRdwgW5NiEbXpj2h+wbH50tT6tc7g2xNnn71AB/dxWxBzdh7nDt1b5U0UreavnbrWMiS++XNF39v64rz5i7TX4glde69zvddXuhsoie/LGVzOcvQnibJUvEStnax16HIR+fN1ABhqKhEmzPBqk4eyXk3Pap2kZ72aiK+WZSUvn1yqY995KvEdiaqxte5J1J2ICbtIFKrXV9RjYjgo11JXeEntHc4Hx8abx0sZTi73amaSqMGJA1L047Wsc69bjCBMwT6YxggtZPnuc9SNZzfu+EecCMQ5S2ZzH7HS+07PQENNbpwJYozykibTlGyiGysH201F5Hl0IkGaLXtNHFzo5JV7SZ/cW3Btz04K1gIDu9eNbgYDMDAAUkAbm5NehCI6I+thYBAAgglwerTaxewrZ1iq77yXTPqcs9RsoH0rKxsWyR2Mtx18Po//06x9yYfOT2Pvvrg0g4FH+RyOeTA/pjAzM1PV3dd38Gh0X2HZdlnCe+O253EvVr67zcfN5tPids1X0cOaavYEZQURygho6sf70Psq0Xj7omdchoQ76NqQzGXlCT2qvtV7TNZNqQ8vZkC9SzpPbyn356JPXrJv0oehUJbF+LS0tKUWECDLeODZXGk8NFbkutCME/9kyYcn0u3C0JJu9Kz9DBPf5iNVgWif4U7378I8R1jkc1fNVltFBX6fbF7i39U5fy2Tl7SMDI3UgOtWbnl9C/hUuiypaWty8NGcTJCwInj9ZH965Hxlxa2k4RWxnaT49snCKDKbHKnHC4u+I13Y3WOdgtTCMH5T+s+m/Rd/G/wv/uEYCR+mXBZuqhAaILTYJUgcTPAbfBO6AGUQ0rljYNAtD4lV9gmMP9Ddc3SuoeHWLbOnQisTJ2QsmO4y0dExN4Ojfw7BvxprtILiJLVd+VtyNjPhb/UL3R0CIgyK133OM4TIotJMascnwvRkRr15c40kCHN3KctDOmaUrqOT5FymC+h7xKxgQyZE8St9GmzO6Faa0eXHrbax6JjqQ6f0KQgTX5iAeP7UjSGtuOMdy1LbBSOITF++SWoWFxj7pZ0VBeQsDdLEVlb6t8+VIa223Dev/J2yax0gy9JsdCRobnftEpwxhWhjmvXUtmxP755Ln3pBR+zJKRn8l6OZlUGsUxDsqvBE+1NdML0F0/joCQ0tRrCVgIhu+9ng9YbpOuY2SKxnK72HXekfwlTOho2PPPqYmu+2rfp6Rn46RDt0IUzPE+vQClYFbmYfG7+GsCOQgMOxts/G5T8TU5G57vgNFge0iZqWAJDz693aI0iz8Q/acHDG7tnR9TRLQyK4/82qtxVbUWnWKF9XRcp77Ej/9fFQCtLb/fVEZ1X+40x51wPSBuYO/aS9WKNrsPEfkx0d4d/33zalTDTt3bpTCfJN8O8k+FNLteLryF4mvp6kx5MRgyDaWtnl5kkmHvUOi1emLbOGaamGF1Tp87yxjwnVl9Jc4/zwRfEC8vtURHsodof3ipvl4Q7sWUPscYlkKcKCw5FTvp6HQiK2mWKqSp18Ndhso8NeuUgIiAlS4K/8F7CeX5fPD0ifJ42mIA3NzM3zxnpYc2IweL1pLzxAVZmZupH0JFOn+ZjQYE49BQkwp6V8oadVWGdZlzmy93wPEqKM23Y529k9Qj55gLm0lhzbFqI1/NFnW6SKisrBoCAPO0MsiciPKW8I4plPVeQXFs4LjOogrLz+lwszUnJ8CSNdcQdkCt0cO7YfRyBcnVLRjIyMJL3g2NIWftEd3X1myi8QYGL6TlCpxk5OpVcUr3IT44/k2PsjJsNxcoMRpKOjY9X16+Fe8RVffj/E6tnmdHYa0tGVvNaOmBl4ENDa/EsZkkKhNJ/7fJjYfvqWlkjbemOiW/x+MLEj/i4uniAoKCionaqvqtpnGdIKu1xXV9dknGtCU6ykqrZWmHuQjzm69n3+AqV8a13XRTWoB5FIDEeogBWHJA8IYQzxIsWBDxJ4XC6370Rlovp2YKZ/i4wCS+gIZ+Xm5j5slskiHBLkxz88MGj4/LbN16vC1QWTY2p2t0BFTRNLJpPD2bNEEHCNQyi1Y+duzfr2LW64mYz3c6VGRUUVQRI6UTY2vi3R0pZwoMgiOBIV3BZHDu80wJBJpJwDEJknN4rz+WA+jyp+6YBlwIeGho4UqzGKZqunEzfsgfWIRKLw/QL5phDoQzcL1it6jo+nl9ezNA29XhNwrAmdTr8waYwvSo0a3Pikx2VhcVEPBwL0WQZbFW0BOU3yFCYqBMyxThB6SdEcb3jUYocFEd6DabVdKRyqnIIEQf6Ofzr/z4Yog4BV6B6/QOU06k0LxZcAhHP32nd7bzjzT1BLBwiUtt2e/gcAADkIAABQSwMEFAAIAAgA/XuiQgAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK4FAFBLBwjWN725GQAAABcAAABQSwMEFAAIAAgA/XuiQgAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzlXGuO20YS/u2coqEFjGRjcfrdZDyThd+exI4Nj7MIggAGJVESPRIpk9Q8nOQAe4r9s/m/Z9ij7Em2upukSL1G0mhsziaO3SLZz/qqqquqizz828V4hM6CJA3j6KhFHNxCQdSNe2E0OGpNs37bbf3t2y8OB0E8CDqJj/pxMvazoxZ3aGvWDq4cJnXjsHfU6vpel2KM27gT0DYnfa/tdwO/LUiX+4LifjeQLYQu0vCbKP7BHwfpBJ6fdIfB2H8Rd/3M9DnMssk3Bwfn5+dOMboTJ4ODwaDjXKS9FoKZR+lRK//xDXRXa3TOTHWYCDn46eUL2307jNLMj7pBC+lVTcNvv7hzeB5GvfgcnYe9bAg0oB7MbhiEgyGsk8A6WuhAV5vAaidBNwvPghQaVy7NqrPxpGWq+ZF+fsf+QqNyQS3UC8/CXpActbBDBGcUe66S+Y8WipMwiLK8MskHPSi6OzwLg3Pbr/5lhuTYU4BCmIadUXDU6vujFBYWRv0EiAozSqZwmWaXo6DjJ8X1bELkHvyBCuHHQPcF67SUOGoJRe8xT95TGN8TMp9LdeAWyuJ4ZHrFSHjot98QxRSje7ogtqBQSGkfYXsPM1tQW3BbCFuH2+bcVuW2Drd1OFuzzvx6ttD8Rm2lxTpZdZ2A7j39V8JfXgBdWadbWSfRi/gNET17UzCk503M/HXB80tpL5UpCLYFyR+6+h9DL3nNFbGdVkQqo1p+WD3oAr8UIxIqvc2HpNdaaLlMumyZVKxY5jWpW65UVKUChEH/b/4uDMm2Wudq2m4+ouTXEf4dBlT4Uwx4eFCousNc+FA61HVzfs2CcarVDvOM5kEECZBMqUBRCEQ8KJSWUIqIQFzAJXGR1KVCTAslRwy5SNcjDBn9Ilz4hxuBlUhAX/qmspKLGEeCIWK0Ekegi5DRbKDlKIMaQiABjfToRA/LJOISLpiLOExQ6zSl9QaDdnANg1PECGK6LVGISiQpUlovEq7VpXT13KFTiiRGUjcFxQhK0SpEaOEiplcDHD6J07Ak7jAYTUpUDB3DaDLNarTrjnvFzyyeq92Lu6cP52gd+GlW/IZKsBvNNj27O9X2xDuHI78TjMB2ONFsgNCZP9ISbPrvx1GGChbg9t4g8SfDsJueBFkGrVL03j/zX/hZcPEUaqfFBM3QZrM+DKbdUdgL/ejvwCO6C90hmu3dWjEVe7fL8qG7cZz0Ti5T4Bx08XOQxFCTUMer/ddCl/YRU1hbMmnX12wu4KL6H+ijy/wR9+pduHa04Kxcjn8RlItAg0TLUOXiOH0Yj2a3JnEYZY/8STZNjPUFIyV6IQ+iwSgwBDU4gx3TPe3EFyeWksz29fZyAlfYzqAzeBSP4gSBFFIhoEJedmxp6uiplbWwqYNNDVxAE/bK58SjpoYpO7Y0tQBrO7V8qaRYJsHFMGFqdIemqOGsQtlqTtFG0TQKsxfFRRZ2T2dL1Q1+mI47wGQ5F9b7JPvq8/Bgjq8OT4MkCkaWeSIAcxpPU8vOJUveOZymwWs/Gz6Iem+CAcjha1+rwgy6tlVnU+4F3XAMDe39nHi+BvZHmKq92wsGSVAscWQMXkta8xRXWXnhtunqaRKPj6Ozt8A1c1M9PCjWc5h2k3CiuRN1QDefBjP+64WpD5q9V20Hi09hFV2tZYCQmSZiC/nTbBgnxqIFWYVSC+YoGIP5ijLDiIaXS0AeGMNYUx7FnfegLsrdwT6f0QnG6xmVZnB6lVcO0X//8U/UJrYOdLGUcQ2L+6PJ0NcGdk6YkX8ZJDVSmTFf9ftpkKGLo1abQutLaE0rj1/GvXn6Anx2XlkwsYw0CQLLg3bJ8GMCoxnRrfCIASzVI2FHUTNUmzgKLMuP1t+yvoWml5bomsq0d+fABl61pL6C6A8bTHSS05zcNM1dR5Ykl3sheTcej/2ohyJj9JwEA32/Ndtufaz5HflEI2BJN82KB77tLe9jAcA0762AyL8mhG3seOjuKLuPQlvADbEeT7wxmgt4zagOw2Ba2zUxcQ0OynFzzucOOHzu/C6SgTVwCg5vatyGLN/UzI/nYa8XGFOnoOpIA38caX0bGA21qKFPg2Cit8ZX0dvEj1Idvair5k2l6VGDpamdE7fNb1qcmAOWmx5qbxqsLk4vgBHmZOmRlSV/QZY662VJ81SJTmcRvbrJUFnt55aMNmGOJ5ms1NhdSoIPkW2SWgMoHE9GYTfM1sPw2rB+HYfOAgCP1wNQl5/HNyY/hFoL15Q7y1C+M7ObliDpSNeVruREEuJhT5Ti5GEsXeIycI+pjiXsXbhex6PLQRyt2quQTzVMyGda6ObBnkBjkoviO2Ird8wPqN6Dgh+1ulcxhB2/gNx2uStnX4+V/oXwKmknglk+wrzkI7KxxLP1m8rCDv+OXEs1LZvsn33jnqdxp2E0Zo7gNWEvLFSPEEaYcJnrYs+EvIHeVDlEKMGlop6r4Im8RaTvNYnwOpBTozvhuXOgEZlTyh+1qqYuYIE5IcSl0OoWEb7bJMIDeXNCU4fbna0tHVc1TItcaYqudOuCLUzR4BaZotfW9Tdpfj7Zxvx8chXVZ0bDvmzLGzEf2wAJx4RQl2KwI6VwC/uRCa48pjCGR0LxG7AfXyXZMAYDzh8tkY0nVjYWYepvIRv9K5yETyYaVgIuVwqJcdPAT+NcEtiRPZdL99PLSan75rAILBb9BSyebiMyT3cTGekaNHTRscUe8HA95kglsKs8zDzqFkE9fYhDMKdKEuZJj1loJHWwx909xyUehprUcbKc8Z8uEHuwBeMPmrQpgJFEPNcVCiwk4H19onZpNnHBXMY9Bcarx3IPFaoTBVsEUx7nQkIL0RQpGOQa6R1ZgObZNnLwrDly4ElHOwKEUsW4K6SNxWFHG7RKCIKldhTAVrXanzoSfAbKmaugBfzZo0RcQfXuAs2fb0Pz582hOeUOA9pKTVwgusy9NeFgQQThSuocJS7pkzYRN0/25TGcPEb62IZlntmgzPOlMRya41PEcHpFDGdgfvCj1nD7KA7dTxRnI5VnfBMAWZAFrUe2wXgLX2rn+MGauV5XQy9xY5d7se3b7Mb2GkV6sLIVF5hx7OmQDKG5+vVAPQipPOJxzAUro/hCuUoxJrnHvNsVMhs0iu7ayKjSnXBOCi2sCGc6gdbFwhPcs7TXRrvydGUPlLbneUwu5Ks0mPrDBtHe5CrU/J/ixIKS2m3rcYJLBI7oXo6ubpzs0XQcJGG3pGpoyA6Npzkx2qX/vDeXdNMtqtgeRzpfHI3DSM+mhcb+hQkS+J00Hk2z4KSbBEE0y5m3UyuS4bDJY7uwDpFFDZsM/354Ucn7GcZJ+DGOsnrG0i6QzUc4tOCWQQ5RabsY5Fht8ryJMz9bcSr8ZRvc76/+82/0VxQWxs+81fPorj+J0/vbmJ9Fk52M0F3P89dtPNQhta3dLZNaBAbtRlwiXfDM3Js4NlxK/8eb0//x9vR/fB367zVmV8skqoeBZnlFtdvkU0HwbHMInm0PwbPrQPB/7vsuheP55nA83x6O502DAxQO2F4K/GEORhalUuR4MCkZoEEJA9XEPgUcK3zinGLWMy4v6Iy1rZc8w2LRV6520a120at2MSgvtPe8GbZLfOgKwvvNh6gdJKxKiPjjphIitnW2N2P0HY4vt4oOrDs3ph7ly8+NZelyM+OW50f2pMlW8ILL3TwA2guONysOZ5a53rfb824g+ef9b6y4DX0sd7/nvW+OyW3KWRk2DwGbbWvNTYrn3lrSCocyR3HgdyYUFgw3Lci3Sc58bj8tWkvv1++l8/C93/wMeWXSvDIZglfkCe751G15hGszCds0vkXE50F8uYVWIm5MqofWmHqw1BJjtuqwOLUYvKO2esf84DqRkm5vc7E/u7U1bFhq5CeSg4bsNJqLG0T9eSuLkKXnG2TFAcctInynWYRfmYjXrrwUcuvSrv1mEdk4ETXTSRYHGXWLSs0OMljV0GoS5bd4CfHRigDH6XZm1ele3t+54vW3XYwptgC0Fqeqvw6FRZo4nFbddYs01TEr0F+lt/7ZkYbV+BNDQXPbR1+jzjU4YDFfebQd9qPb8Rrqck64HW+zzEO+C9xLI57z0I+3g358/TOwzaGsvB8u8gDbhkjfbIiOfA4W2Eniy0Swedij7WCPmizx1Ref89dK1OYK4ZbnTm3HJWvylleyymQ9q9TylieNyVteAuDlSsC14lcOF0IwIV0ulHTVNUKU+81bnlhgogVgjq8KcFQPDI+bc1QoCey2SrgcKwzuu0vz7604XFGFXc9lWEgqy+xZ4TEqJAfXnoLLv880/itIvviNge+2Ifl3zSE5YcqRSmKXEzCFJbjo+QciPCC6oq4QRCnBclmgSn9wwKVabJgLFfZI8uX71LEl+HcLBP+w3T71ocn71JqNaP5lCpZHWpa9e2G8f9BWIDkSg6kCtan6/NGWuY1ouJvkvbeM8GGBEb7fRvK+b47keZ7jesT1sPCU9KQsslQEx4JLSoQHek0wVrqeWHnlsc0+syKWC973qwQv2U7wkj2EA/64MavQipO3mSzquJD0iOKu4gCRFLIURq6z63TMgAiJMeO5Veg6imPOMPPA2pCy+Mpgg4TxgC7E6i4mCUxIVykgCi4ysJ/hwVHr7odpnN1/++bB6yc/H//4Ej0+Pjl58ujtqzf2gemszhC6dave1XqOWJWzDLb7FfmSS79mmNfHs/rllw0rDLL2+2Lmg5RpkIT92fdZQeheQlfm+4/FlyoLs654jXdp7i0y7wph63WKxa+ALCU/rZH/x1RzDliRNuk3i2FyAdIE1Xf9JPBR3Ec+uvsXgu9niT8JPobTsfki93TkozBFYx+W2E/isf6WX85NzuYQLonXbgahW4HQXK2R2R0hITNIcIkIuRoRYt9etPHbqxFhNUQeHP3ST/zur8Pff6W//zIK+tmXyP+6g9Av5sOcX6HNactu+tXm9XTVCd/zKiNMX/hvg5/mb6/GgM8w0AkgdbFIMz/JzJv7yGpVzmph9SKi49RfG6ily1bxOah+elJfFx+B//Z/UEsHCEW4Yi/IDgAAtF4AAFBLAQIUABQACAAIAP17okKUtt2e/gcAADkIAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgA/XuiQtY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAQggAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAD9e6JCRbhiL8gOAAC0XgAADAAAAAAAAAAAAAAAAACfCAAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAAKEXAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
*Process/ Developmental Questions
+
*Process:
*Evaluation
+
# The teacher can initially discuss about a trapezium.
*Question Corner
+
# She can then reiterate that formula for area of certain composite figures can be found by converting them into known simple figures.
 +
# Here the trapezium is converted into a parallelogram.
 +
# Area of parallelogram is then deduced.
 +
*Developmental Questions:
 +
# What is a trapezium ?
 +
# Name its two parallel sides.
 +
# What is meant by the height of the trapezium ?
 +
# After cutting the trapezium exactly in the centre what would be the new height ?
 +
# What is the length of the new parallelogram formed ?
 +
# What is the formula to find the area of a parallelogram ?
 +
# What is the area of this parallelogram formed from a trapezium ?
 +
*Evaluation:
 +
# Explain the sequence of steps involved in deriving the formula for the area of a trapeium.
 +
*Question Corner:
 +
# Recall the steps involved in deriving the formula for area of a parallelogram.
    
==Concept # 3.Construction of Trapezium==
 
==Concept # 3.Construction of Trapezium==
1,040

edits

Navigation menu