Line 191:
Line 191:
===Notes for teachers===
===Notes for teachers===
−
===Activity No # ===
+
===Activity No # Construct an isosceles trapezium and study its properties ===
{| style="height:10px; float:right; align:center;"
{| style="height:10px; float:right; align:center;"
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
|}
|}
−
*Estimated Time
+
*Estimated Time: 40 minutes.
−
*Materials/ Resources needed
+
*Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
*Prerequisites/Instructions, if any
*Prerequisites/Instructions, if any
−
*Multimedia resources
+
# The students should know the concepts of parallel lines, perpendicular lines and rectangle.
+
# They should know basic constructions like parallel lines and perpendicular lines.
+
*Multimedia resources: Laptop.
*Website interactives/ links/ / Geogebra Applets
*Website interactives/ links/ / Geogebra Applets
−
*Process/ Developmental Questions
+
*Process:
+
# Construct AB.
+
# Construct the midpoint C of AB.
+
# Construct a line through point C perpendicular to AB.
+
# Construct AD.
+
# Mark the perpendicular line as a mirror, then reflect AD and point D.
+
# Construct DD'.
+
# Hide the perpendicular line and midpoint C.
+
# Drag points A, B, and D to make trapezoids of different sizes and shapes. Make sure you note when your trapezoid turns into a rectangle.
+
# Based on your construction, describe the symmetry of an isosceles trapezoid.
+
# Measure the four angles in your trapezoid. 10. Drag the vertices of the trapezoid and observe your angle measures.
+
# Make a conjecture about the base angles of an isosceles trapezoid. (Both of the parallel sides are considered bases, so a trapezoid has two pairs of base angles.)
+
*Developmental Questions
*Evaluation
*Evaluation
*Question Corner
*Question Corner