Changes

Jump to navigation Jump to search
Line 191: Line 191:     
===Notes for teachers===
 
===Notes for teachers===
===Activity No # ===
+
===Activity No # Construct an isosceles trapezium and study its properties ===
 
{| style="height:10px; float:right; align:center;"
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
|}
*Estimated Time
+
*Estimated Time: 40 minutes.
*Materials/ Resources needed
+
*Materials/ Resources needed: Laptop, geogebra file, projector and a pointer.
 
*Prerequisites/Instructions, if any
 
*Prerequisites/Instructions, if any
*Multimedia resources
+
# The students should know the concepts of parallel lines, perpendicular lines and rectangle.
 +
# They should know basic constructions like parallel lines and perpendicular lines.
 +
*Multimedia resources: Laptop.
 
*Website interactives/ links/ / Geogebra Applets
 
*Website interactives/ links/ / Geogebra Applets
*Process/ Developmental Questions
+
*Process:
 +
# Construct AB.
 +
# Construct the midpoint C of AB.
 +
# Construct a line through point C perpendicular to AB.
 +
# Construct AD.
 +
# Mark the perpendicular line as a mirror, then reflect AD and point D.
 +
# Construct DD'.
 +
# Hide the perpen­dicular line and midpoint C.
 +
# Drag points A, B, and D to make trapezoids of different sizes and shapes. Make sure you note when your trapezoid turns into a rectangle.
 +
# Based on your construction, describe the symmetry of an isosceles trapezoid.
 +
# Measure the four angles in your trapezoid. 10. Drag the vertices of the trapezoid and observe your angle measures.
 +
# Make a conjecture about the base angles of an isosceles trapezoid. (Both of the parallel sides are considered bases, so a trapezoid has two pairs of base angles.)
 +
*Developmental Questions
 
*Evaluation
 
*Evaluation
 
*Question Corner
 
*Question Corner
1,040

edits

Navigation menu