Line 208: |
Line 208: |
| <ggb_applet width="1282" height="601" version="4.0" ggbBase64="UEsDBBQACAAIAHmrkUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ31VeTQUChdXUWOEwbRYxmDsjJEYUtYZIWGsYzxKWbIbI8ngTZYMyuOpDMnYxmMoKaOyPOvYl7Ll1YTsy2AeUkwNn++/9/V95/vj3nt+99xz7u/ec+79pWLsLIWBUkA+Pj5hayu040HsPjAPwNEDr/Gc28fHd3TWGm3mfPvjWn6clStWpquAW+JWkvQKWOTvfHHgXQKNSXk4ABS71+meaFbtMye0M9ov6zhLp0sCje9x2+HJBigUNjRCyWZ0DMpzcKgyUZRKRpT6abAkBFPjokhlgyPbetAp2Zgfv37Gc+qoMesbk1t1i9QITlyVQFKm/Av8KZC5GaBILgkDMlcFyIOTQEBzgIB8UsK/0z/Bn6r+A+oc2sfE+/YHTPR4a7JBwBkxszaSEHZke/F9ZeGsWLOl18XW4/xYfu9rQ+a1l9+ydQ1FIboaNtiKnc2sefXQwRLSu+h+bvjJWNJXX3iJnJMNSNDmrWakYPGsQko/eU9q5dINKkW3rXNL+swWObeqt4m7GqiUzaQ80nTq+0LsCoN0fSpYqNjdvbtFfnQfA+JM4p6uHtD6L9KdBaurwWhLy1nK5stW0ZcdxQlU0t6P6AJfcRUwM4hej0mtDRqfmbKEqO/NdAgFs17ZChaWidfX14+OdnVZ2iI862nZ1o2vX1POZ/28kstyOBzur/pIjd6roltIJLKJ1/JNmgtRT9fOJ99VSzmFidwQ1ev/vrOt/byujZ0GR9W3C/OAOojl/oCk5Qual806U9+7esobXc2+8Za6cQeTWaSx7JOVxza1txcNEhfIfWzAYm1MP4kEuDEA9NbWajK5GTg0VM1am4UqwK6JCnfsFcoxubvXJjVNfGg+1coOmXQ1ckj7UUXOZDp3JXAOYnz8F0fxzeGRIRDUZJ0V5O9vaud2evjBg2kDAj98/HnJWu8J5jN3gRsh8CAJgVwiwSBs4vD6FEfCMAOCCnc9GYzMM2SPSz2KYlDMsMcP6Zw963Klo6PjtqPj4SfnRqJiXoe1S4knIGH5ZaqqqpjpK7MmRwyX2tNdN+ItEGDm8s22V6GQJxREcwWNkBmpPafd1ZCOCWFoLV+sVHjUyGA4PzMBT0xMlD99erOUEo1bWIlnezFcF96MAMLzkEVr7+QzVh8UFysE67zaX5o+oqisLAJCZ2AEiUmXkhO3p3ZaiimA4jlt9aoauqCVrYCILL/Mb9gTSPlDf3+D3uLl6YcpqKhYzodvzlkzGIzCmhqnWpGXl92FAvQm04b2TT1k8F9U8TP8+M98xPuRzzqVqB5ptkjS2JhXhDP4I1S3xtUea+ZByPnljor9nfNRd8iiE702zMy+5zk5p9FotNyHJaxHw60BnrkkYXrSKIDo7Kw17+joiGe9WVUAM2sIb1JDjWiHC4zj3K2vDzY3Nn6KDHBxcdleGA4EWxnDAlMBAhsPZQhIiki9s6tgGJuUMz6SH/E7vboa45lcZ3PlClU8HZOpBiPTKsvLMewU8LAZlJ3e2BDFqejViu4dzTdO/hJB8z1o5U3o/uCplYsGnGNnVCDOzGh15YnwrMiZpfNZm2JAnQBCN25iGv9mcEW8IJiWoTMs7xNgsdn81tLPVzkIIiApvZbxUazuLMHUt4G4XREoTzOv2gnuKOcKSPR4obr9TsbW8Z2fudXisOY1UCJXQoH5x4DseNHAU/tNS4YoDtfvVOz1OK8PIfFKgwnStvp/b873qTV4W/zGvI/uF3x8pI9Y0s+C/4WtF13UeoLqHz9THlIeWZpvFLPKqqysROFwkjOz374atTTmrRslpMgIGRveW/0RrFimCJvbAo3r7WX/gC8tx72mPh7zzc7W/spyU1y1N83SE6xTIbxYGNEzuLnTEB4j7sbf092Nn7BYnLiJkGAG1npPHoN6v9i/zh8qgu4eBKHjTswT095n++XllEWoaOf0yTRpeNytRrSBdqzlYnmxG5Pff63Y15XV1dObbq7qUgchwLTSUmE6/Zas2D8OPvpYpoNmnYNkcxSnJfEC850WOVKtmyHOvNCvwWjaOyHEO2tMtMIiZqu1BHKR+BzK/3qgknlyEAjkk3dSgj/VOC6NyyXq6utXRu/G17auN7p/2lHtxAcMkEau6q3Ym5q2FC4PZNjlQItOL7MIMDXKIAwOt4VX0unhQdLrfyhxrISKRVeoRjGjzpPGEl9YAdz0WiWb7PLblcsoCDH3M4cztci22FxKHLQZXtZn8fNcYFs6EThumb6JobzTh+w9YtZuyLk/qQ/NSGd6frzPx4E97XikS7JNTU2BuWOBa07KPdgwFKnUmgP7Uzgidzfn2Pd/DPN/JSRzegeqQYpKaUwMljlQPT5rCzt0lblXwr8AUEsHCCNYfe3gBgAAHAcAAFBLAwQUAAgACAB5q5FDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgACAB5q5FDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1bWXPbOBJ+zvwKFB/mKaKIg1dGzlQc19SmKlets1tb+waRkISYIhiSsqXU/Kk5fkd+0zYAUqJOW1HitXfWTgKSaKDR/fUFkBn8PJ9m6FqUlVT5mYNdz0EiT1Qq8/GZM6tHvcj5+fkPg7FQYzEsORqpcsrrM4dpSpmeOQkZJjga8Z5HxajHkjTucS8c9nAcREMWRGEyShyE5pV8lqu3fCqqgifiMpmIKX+tEl4bxpO6Lp71+zc3N27LylXluD8eD915lToIlplXZ05z8QymWxt0Qw058Tzc/9eb13b6nsyrmueJcJAWYSaf//BkcCPzVN2gG5nWExCYRMRBEyHHExAq9KmD+pqqAI0UIqnltahgbOfWCF1PC8eQ8Vz3P7FXKFvK46BUXstUlGeO52I/8LyAMI+wOMAOUqUUed1Q4oZjv51rcC3FjZ1UXxl+zEG1UtmQ6/nQr78i4hEPPdUNtg2BJghsl2efedQ2xDbMNr6lYXY4s6TM0jBLw0AL17KSw0ycOSOeVaBAmY9KAG95X9WLTJj1NA9WsuOnIFMlPwMx9cBKrMbhuec91X9BGU+Z7uivC4k7XOtydiTTliUgegRPcpKktGVKdslJ/D1yBgeYWsHvJKjf4QmszB/zd4sjPSTmJkd7fxrDgN2LiIN+6yuDxj1QNdG0jfnUYlpph6Ex8mNt9xj54BxBCGbuIxxDExIE7oCwj5gPtzhCgW5DREPoYIiiCGk6TJHxDj+Cf1hoJguQD5PppyE4JcLAiCGfImyciiFwJWQcE5yUUKDwfeTDIM0eEz0FDRAL4I5GiMEatU+GGAgpDIR7YE8QxYjqwThEJECBng8z7etBpJcOUxIUeCjAekJwa3Bp685AHyGqpQkadcm8mNVrKkqmaXtZq2KJBVBDQFoFPRug1mLik0HGhyKDPHGpkUTommfaIwyjkcprtHRI+2xc8mIik+pS1DWMqtBHfs1f81rMfwHqquVtaBOVV+9LVb9U2WyaVwglKvOWa1YZ7lyT5arhhnY6WLfD73QEnetwJ18FPWhWCeCvyqol52n6SlOsQgNo8l2eLc5Lwa8KJdfFGPRNyhmIWZLJVPL8n2CsmovWC+pkIG+VgfwobleiyvRyUYEJo/m/RakgyJDQ9eLlb8RCBy1sFyXMpThqf8Hdq4Rr32O+y/zOL/jlYk9XA524XgLE52Il67jUjt25eVWdq2z1yIj/khf1rDS1A8TGUsv0Ih9nwpiIcWxIzMnVUM0vrW1QO9eHRQF3nl3BcGzUjiA0EN8HgqYd2tbQ6KUtqTxD4xkKrzU2mS77cUwMhWmHtjVUYL12aY2ouBUTey0bWZmA5jmN27TBStu+TvOzXNav25taJlcrUfWAt7PpUCwtaH1O/K3mHPQ3TGxwJcpcZI1FA5gzNausg3aMPRWJnMKt7WhUwjVc/4AF2KepGJeiXXhm6jKrMNPrdW1167GZ6pdSTV/l1x/AFjYWMOi3qxxUSSkLbXNoCFngSqysKpUVhySSdsdpFwTRE50sQD21Vg0456yeqNJUXhBToNWel4kpVFqoNuZlLHSp5hemgNP6RGr4EcLaMvPZ/hVg0L3T1IxR8qyYcF3kNUJnfCHKNTWY+d6odFM5oHsjAbh4YbEthLBmYdcLFwVMZ7xpLUaBtis0P3N6wJVBbF/AJXYZAWf6bGt4W8NqebWfrYVm+3QDLLAgq6pblHb++JUWubApaXVGqf9NdJao6ZTnKcpNgXMpxvq5s0q53NMGhzjWKrT6mdVtB7ezNXNsIVA1s7U65rdgsJ7OUmn1pTNVQy0PI+R9PT7rphlFXvfHKj1yfcyszomLMaYhawnwZlCuoVy4gk1RZer0uskR5uJvMk2FKRVt0vqU2yGVjZRyWmQykfVS15m2iFd5DXFTmMCxHQ6vhCh0HnqXfyh5XumNrqXphNk9gL+RqfWTOyL+8jDi6z73chvv9YSx2+l0CT62zdA2p6PKXILx0nfC+Dv4zrsSwvhY5Tx7DXawodCXVqF8S6HDwwrVJrVU1/A2fXZs4vv6SOMLi33uAsqlvhtSjL2tguXb+Ma3xiE5Aofk/zjsxOFQLLh4/PmX6IPDhWbu338AubCGm2wZbnqE4aYPxXD35djeKskyN/Rp4Plx+xPcdyB5I8tSlXfF4eJHXqjqp2PyYzvkv+oZK1ACl0bY8wNAgNKQ4LCx9oAwEhFCwyiEi5Dcd915saVrcVzdKU6tOz/eRyyH8AJBWquc2M3RZ30V4ZgG38n076G+3A3seQPsymXW4B0dB+/oUcCL3diPu37UlKMAdhTEjLLIDwISRsQij6kbeT6mhNEABgb+/5gJXBw2gfFxJjB+KInNHGz4G+FyobPZVmz9bMBnLPCCkMC/PglCxv5aME+Og3nyWA4Q/pomYA7Md4d6ncrJrlT+5bfDJmCOYpcAA7UeD+uZtep3w4BBjmQhhElIoHHzFuIu9dRuG7naZyPY27YSfNBK3o1GlajN3oE09e1OGzphb8bLpFN8tbudLFM3fxejTMwNJqcAuOHBBsbtc6Evvx8F4++bMBKXhiGNYxwGAY3DgJ6KYraNYvtK5utR7BG7TaGPD8UlfNj6JNE+uYXiH0eh+Mctzkjbg9EH5ow91njj48NxuSWy4XRPWv3y51E4/nmrN4YP0x3tGyT8wFAU86IENloFrXbEvIZyHzrOnB8/zVT906tKVQkMqVBd8kJ8lrOp7TCTraOlRzvrU925DNrhOPpLsdNqHfONRCVKOVp9T2BfigdOW3o0pFXNy/q9PgxA9giNMLI69MG+DacuLKpzFhR2Txj2HzAOlcoEz5diy00zXhnlKacrd1fUyjLDJt8Tcrho5IXxFPPsPS/BxkRWyVRUx0n+8QFKvtyx3i75W5X3ikZ6JD7NeIa+QglXD0kJ9uyMeuGdlfAiy6RIkQnNR0qePSDJqT0jp8HuSvdoyY85J9yTDafHbTKnp24y1X1sMvUZYdjdZNrXQIHLSNjZZNp3QLHr+Rg2l81ZUvvB1CPcYh48ZdjeluTHQZ8/BuixG+Ml2IEFuBe6fkjiEC/fljxahC9k8+X7UT6eNqNe3Ok1TD6bQvWSrN6LbY7eiKeBGzKf+BiqYeKFhEZ3hxl/lbR7Dbpd6cX510l4cX6bbOEJsh1OU+rhpSmGd28Bd6WpC8nHucq2c/POcp+slftv1LWw35miC1QrlEwg22mnFKZyRmpkruX2rgBpW6nqWbpAsq5QUapClLUU1d23C+SU7cLJgWsk55DcN/Fe3xb0qBuRePUTNW+DqRvGUef53o1Bv/tlpfl+ufmvOM//A1BLBwivbegitAkAACc0AABQSwECFAAUAAgACAB5q5FDI1h97eAGAAAcBwAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIAHmrkUPWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAACQHAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAeauRQ69t6CK0CQAAJzQAAAwAAAAAAAAAAAAAAAAAgQcAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAMIAAABvEQAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | | <ggb_applet width="1282" height="601" version="4.0" ggbBase64="UEsDBBQACAAIAHmrkUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ31VeTQUChdXUWOEwbRYxmDsjJEYUtYZIWGsYzxKWbIbI8ngTZYMyuOpDMnYxmMoKaOyPOvYl7Ll1YTsy2AeUkwNn++/9/V95/vj3nt+99xz7u/ec+79pWLsLIWBUkA+Pj5hayu040HsPjAPwNEDr/Gc28fHd3TWGm3mfPvjWn6clStWpquAW+JWkvQKWOTvfHHgXQKNSXk4ABS71+meaFbtMye0M9ov6zhLp0sCje9x2+HJBigUNjRCyWZ0DMpzcKgyUZRKRpT6abAkBFPjokhlgyPbetAp2Zgfv37Gc+qoMesbk1t1i9QITlyVQFKm/Av8KZC5GaBILgkDMlcFyIOTQEBzgIB8UsK/0z/Bn6r+A+oc2sfE+/YHTPR4a7JBwBkxszaSEHZke/F9ZeGsWLOl18XW4/xYfu9rQ+a1l9+ydQ1FIboaNtiKnc2sefXQwRLSu+h+bvjJWNJXX3iJnJMNSNDmrWakYPGsQko/eU9q5dINKkW3rXNL+swWObeqt4m7GqiUzaQ80nTq+0LsCoN0fSpYqNjdvbtFfnQfA+JM4p6uHtD6L9KdBaurwWhLy1nK5stW0ZcdxQlU0t6P6AJfcRUwM4hej0mtDRqfmbKEqO/NdAgFs17ZChaWidfX14+OdnVZ2iI862nZ1o2vX1POZ/28kstyOBzur/pIjd6roltIJLKJ1/JNmgtRT9fOJ99VSzmFidwQ1ev/vrOt/byujZ0GR9W3C/OAOojl/oCk5Qual806U9+7esobXc2+8Za6cQeTWaSx7JOVxza1txcNEhfIfWzAYm1MP4kEuDEA9NbWajK5GTg0VM1am4UqwK6JCnfsFcoxubvXJjVNfGg+1coOmXQ1ckj7UUXOZDp3JXAOYnz8F0fxzeGRIRDUZJ0V5O9vaud2evjBg2kDAj98/HnJWu8J5jN3gRsh8CAJgVwiwSBs4vD6FEfCMAOCCnc9GYzMM2SPSz2KYlDMsMcP6Zw963Klo6PjtqPj4SfnRqJiXoe1S4knIGH5ZaqqqpjpK7MmRwyX2tNdN+ItEGDm8s22V6GQJxREcwWNkBmpPafd1ZCOCWFoLV+sVHjUyGA4PzMBT0xMlD99erOUEo1bWIlnezFcF96MAMLzkEVr7+QzVh8UFysE67zaX5o+oqisLAJCZ2AEiUmXkhO3p3ZaiimA4jlt9aoauqCVrYCILL/Mb9gTSPlDf3+D3uLl6YcpqKhYzodvzlkzGIzCmhqnWpGXl92FAvQm04b2TT1k8F9U8TP8+M98xPuRzzqVqB5ptkjS2JhXhDP4I1S3xtUea+ZByPnljor9nfNRd8iiE702zMy+5zk5p9FotNyHJaxHw60BnrkkYXrSKIDo7Kw17+joiGe9WVUAM2sIb1JDjWiHC4zj3K2vDzY3Nn6KDHBxcdleGA4EWxnDAlMBAhsPZQhIiki9s6tgGJuUMz6SH/E7vboa45lcZ3PlClU8HZOpBiPTKsvLMewU8LAZlJ3e2BDFqejViu4dzTdO/hJB8z1o5U3o/uCplYsGnGNnVCDOzGh15YnwrMiZpfNZm2JAnQBCN25iGv9mcEW8IJiWoTMs7xNgsdn81tLPVzkIIiApvZbxUazuLMHUt4G4XREoTzOv2gnuKOcKSPR4obr9TsbW8Z2fudXisOY1UCJXQoH5x4DseNHAU/tNS4YoDtfvVOz1OK8PIfFKgwnStvp/b873qTV4W/zGvI/uF3x8pI9Y0s+C/4WtF13UeoLqHz9THlIeWZpvFLPKqqysROFwkjOz374atTTmrRslpMgIGRveW/0RrFimCJvbAo3r7WX/gC8tx72mPh7zzc7W/spyU1y1N83SE6xTIbxYGNEzuLnTEB4j7sbf092Nn7BYnLiJkGAG1npPHoN6v9i/zh8qgu4eBKHjTswT095n++XllEWoaOf0yTRpeNytRrSBdqzlYnmxG5Pff63Y15XV1dObbq7qUgchwLTSUmE6/Zas2D8OPvpYpoNmnYNkcxSnJfEC850WOVKtmyHOvNCvwWjaOyHEO2tMtMIiZqu1BHKR+BzK/3qgknlyEAjkk3dSgj/VOC6NyyXq6utXRu/G17auN7p/2lHtxAcMkEau6q3Ym5q2FC4PZNjlQItOL7MIMDXKIAwOt4VX0unhQdLrfyhxrISKRVeoRjGjzpPGEl9YAdz0WiWb7PLblcsoCDH3M4cztci22FxKHLQZXtZn8fNcYFs6EThumb6JobzTh+w9YtZuyLk/qQ/NSGd6frzPx4E97XikS7JNTU2BuWOBa07KPdgwFKnUmgP7Uzgidzfn2Pd/DPN/JSRzegeqQYpKaUwMljlQPT5rCzt0lblXwr8AUEsHCCNYfe3gBgAAHAcAAFBLAwQUAAgACAB5q5FDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgACAB5q5FDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1bWXPbOBJ+zvwKFB/mKaKIg1dGzlQc19SmKlets1tb+waRkISYIhiSsqXU/Kk5fkd+0zYAUqJOW1HitXfWTgKSaKDR/fUFkBn8PJ9m6FqUlVT5mYNdz0EiT1Qq8/GZM6tHvcj5+fkPg7FQYzEsORqpcsrrM4dpSpmeOQkZJjga8Z5HxajHkjTucS8c9nAcREMWRGEyShyE5pV8lqu3fCqqgifiMpmIKX+tEl4bxpO6Lp71+zc3N27LylXluD8eD915lToIlplXZ05z8QymWxt0Qw058Tzc/9eb13b6nsyrmueJcJAWYSaf//BkcCPzVN2gG5nWExCYRMRBEyHHExAq9KmD+pqqAI0UIqnltahgbOfWCF1PC8eQ8Vz3P7FXKFvK46BUXstUlGeO52I/8LyAMI+wOMAOUqUUed1Q4oZjv51rcC3FjZ1UXxl+zEG1UtmQ6/nQr78i4hEPPdUNtg2BJghsl2efedQ2xDbMNr6lYXY4s6TM0jBLw0AL17KSw0ycOSOeVaBAmY9KAG95X9WLTJj1NA9WsuOnIFMlPwMx9cBKrMbhuec91X9BGU+Z7uivC4k7XOtydiTTliUgegRPcpKktGVKdslJ/D1yBgeYWsHvJKjf4QmszB/zd4sjPSTmJkd7fxrDgN2LiIN+6yuDxj1QNdG0jfnUYlpph6Ex8mNt9xj54BxBCGbuIxxDExIE7oCwj5gPtzhCgW5DREPoYIiiCGk6TJHxDj+Cf1hoJguQD5PppyE4JcLAiCGfImyciiFwJWQcE5yUUKDwfeTDIM0eEz0FDRAL4I5GiMEatU+GGAgpDIR7YE8QxYjqwThEJECBng8z7etBpJcOUxIUeCjAekJwa3Bp685AHyGqpQkadcm8mNVrKkqmaXtZq2KJBVBDQFoFPRug1mLik0HGhyKDPHGpkUTommfaIwyjkcprtHRI+2xc8mIik+pS1DWMqtBHfs1f81rMfwHqquVtaBOVV+9LVb9U2WyaVwglKvOWa1YZ7lyT5arhhnY6WLfD73QEnetwJ18FPWhWCeCvyqol52n6SlOsQgNo8l2eLc5Lwa8KJdfFGPRNyhmIWZLJVPL8n2CsmovWC+pkIG+VgfwobleiyvRyUYEJo/m/RakgyJDQ9eLlb8RCBy1sFyXMpThqf8Hdq4Rr32O+y/zOL/jlYk9XA524XgLE52Il67jUjt25eVWdq2z1yIj/khf1rDS1A8TGUsv0Ih9nwpiIcWxIzMnVUM0vrW1QO9eHRQF3nl3BcGzUjiA0EN8HgqYd2tbQ6KUtqTxD4xkKrzU2mS77cUwMhWmHtjVUYL12aY2ouBUTey0bWZmA5jmN27TBStu+TvOzXNav25taJlcrUfWAt7PpUCwtaH1O/K3mHPQ3TGxwJcpcZI1FA5gzNausg3aMPRWJnMKt7WhUwjVc/4AF2KepGJeiXXhm6jKrMNPrdW1167GZ6pdSTV/l1x/AFjYWMOi3qxxUSSkLbXNoCFngSqysKpUVhySSdsdpFwTRE50sQD21Vg0456yeqNJUXhBToNWel4kpVFqoNuZlLHSp5hemgNP6RGr4EcLaMvPZ/hVg0L3T1IxR8qyYcF3kNUJnfCHKNTWY+d6odFM5oHsjAbh4YbEthLBmYdcLFwVMZ7xpLUaBtis0P3N6wJVBbF/AJXYZAWf6bGt4W8NqebWfrYVm+3QDLLAgq6pblHb++JUWubApaXVGqf9NdJao6ZTnKcpNgXMpxvq5s0q53NMGhzjWKrT6mdVtB7ezNXNsIVA1s7U65rdgsJ7OUmn1pTNVQy0PI+R9PT7rphlFXvfHKj1yfcyszomLMaYhawnwZlCuoVy4gk1RZer0uskR5uJvMk2FKRVt0vqU2yGVjZRyWmQykfVS15m2iFd5DXFTmMCxHQ6vhCh0HnqXfyh5XumNrqXphNk9gL+RqfWTOyL+8jDi6z73chvv9YSx2+l0CT62zdA2p6PKXILx0nfC+Dv4zrsSwvhY5Tx7DXawodCXVqF8S6HDwwrVJrVU1/A2fXZs4vv6SOMLi33uAsqlvhtSjL2tguXb+Ma3xiE5Aofk/zjsxOFQLLh4/PmX6IPDhWbu338AubCGm2wZbnqE4aYPxXD35djeKskyN/Rp4Plx+xPcdyB5I8tSlXfF4eJHXqjqp2PyYzvkv+oZK1ACl0bY8wNAgNKQ4LCx9oAwEhFCwyiEi5Dcd915saVrcVzdKU6tOz/eRyyH8AJBWquc2M3RZ30V4ZgG38n076G+3A3seQPsymXW4B0dB+/oUcCL3diPu37UlKMAdhTEjLLIDwISRsQij6kbeT6mhNEABgb+/5gJXBw2gfFxJjB+KInNHGz4G+FyobPZVmz9bMBnLPCCkMC/PglCxv5aME+Og3nyWA4Q/pomYA7Md4d6ncrJrlT+5bfDJmCOYpcAA7UeD+uZtep3w4BBjmQhhElIoHHzFuIu9dRuG7naZyPY27YSfNBK3o1GlajN3oE09e1OGzphb8bLpFN8tbudLFM3fxejTMwNJqcAuOHBBsbtc6Evvx8F4++bMBKXhiGNYxwGAY3DgJ6KYraNYvtK5utR7BG7TaGPD8UlfNj6JNE+uYXiH0eh+Mctzkjbg9EH5ow91njj48NxuSWy4XRPWv3y51E4/nmrN4YP0x3tGyT8wFAU86IENloFrXbEvIZyHzrOnB8/zVT906tKVQkMqVBd8kJ8lrOp7TCTraOlRzvrU925DNrhOPpLsdNqHfONRCVKOVp9T2BfigdOW3o0pFXNy/q9PgxA9giNMLI69MG+DacuLKpzFhR2Txj2HzAOlcoEz5diy00zXhnlKacrd1fUyjLDJt8Tcrho5IXxFPPsPS/BxkRWyVRUx0n+8QFKvtyx3i75W5X3ikZ6JD7NeIa+QglXD0kJ9uyMeuGdlfAiy6RIkQnNR0qePSDJqT0jp8HuSvdoyY85J9yTDafHbTKnp24y1X1sMvUZYdjdZNrXQIHLSNjZZNp3QLHr+Rg2l81ZUvvB1CPcYh48ZdjeluTHQZ8/BuixG+Ml2IEFuBe6fkjiEC/fljxahC9k8+X7UT6eNqNe3Ok1TD6bQvWSrN6LbY7eiKeBGzKf+BiqYeKFhEZ3hxl/lbR7Dbpd6cX510l4cX6bbOEJsh1OU+rhpSmGd28Bd6WpC8nHucq2c/POcp+slftv1LWw35miC1QrlEwg22mnFKZyRmpkruX2rgBpW6nqWbpAsq5QUapClLUU1d23C+SU7cLJgWsk55DcN/Fe3xb0qBuRePUTNW+DqRvGUef53o1Bv/tlpfl+ufmvOM//A1BLBwivbegitAkAACc0AABQSwECFAAUAAgACAB5q5FDI1h97eAGAAAcBwAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIAHmrkUPWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAACQHAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAeauRQ69t6CK0CQAAJzQAAAwAAAAAAAAAAAAAAAAAgQcAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAMIAAABvEQAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> |
| *Process: | | *Process: |
− | # Recall the figure trapezium abd its properties. | + | # Recall the figure trapezium and its properties. |
− | # State that when two non- parallel sides are equal it is an isosceles trapezium. | + | # State that a trapezium with two non- parallel sides equal is an isosceles trapezium. |
| # By moving the vertices of the trapezium, you can observe trapeziums of different sizes and shapes. | | # By moving the vertices of the trapezium, you can observe trapeziums of different sizes and shapes. |
− | # Make sure you note when your trapezoid turns into a rectangle. | + | # Make sure you note when your trapezium turns into a rectangle. |
− | # Observe the symmetry of an isosceles trapezoid | + | # Observe the symmetry of an isosceles trapezium. |
| # Study its properties. | | # Study its properties. |
− | # Drag the vertices of the trapezoid and observe your angle measures. | + | # Drag the vertices of the trapezium and observe your angle measures. |
− | # Make a conjecture about the base angles of an isosceles trapezoid. (Both of the parallel sides are considered bases, so a trapezoid has two pairs of base angles.) | + | # Make a conjecture about the base angles of an isosceles trapezium. (Both of the parallel sides are considered bases, so a trapezium has two pairs of base angles.) |
| *Developmental Questions: | | *Developmental Questions: |
| # What are parallel lines ? | | # What are parallel lines ? |