Line 260:
Line 260:
* Multimedia resources:Laptop
* Multimedia resources:Laptop
* Website interactives/ links/ Geogebra Applets:
* Website interactives/ links/ Geogebra Applets:
+
<ggb_applet width="1282" height="601" version="4.0" ggbBase64="UEsDBBQACAAIAMN8mkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ21XZ1QT3LJFyAeJdELvTXpvShEIIAFpUaqQUKVceodQBBIgiFRBkC6igFKUIiV0DSAEIj1Il957UWmXe/+8t9Z7P86ZdebHWXvPmZkz+znMGEp9m/02CQkJtb6ezuMb+/1m+QDJb/YPkNSbA+0rfR2IWejUDiLS0BzK3DtVlZgXp3stOyxkxO41ElwFw5o/SpD8UJQnyeE1u2hNZr4/3SPpEhcvYqVY6jy828Bch31E1lAt4u3RonvXPUvysQasyw2g4Wdj9vQAHFuXj7yf2ny02h4yv4SYI/65k3G+2xbgShjIny/IkQ/48YKUHO2QKFJ9Y0Bf7QMzeB8dIGIIX0xwNnqKc2HwivV1kgSTAM7x1ouc1JXcF2fVAy4HLeLolsCdchafaSVnqc4laYw+7VuL3bTniDXt+XVs4V+KaL+clKNfoyfJOjEjaUU59d/px5oioaRqRxxtakzjKQFqYRkskCzT9usLBaeSCrnvfitqZitjfcUTeezzlbswoZAfFUQzNvOc5b9C5V72X3b11BGI3PdcCSxWqXSxhKU58vWTx8QT9YKHx1aopYhI0c7MOz1msrvfLJzYD+VNWheBmbYeeR60pfwtQF6ln34KAglS0iiJsoiOEFTNgTnbctPhfbGSFjn8SWlP7z0s9tvWcY/5FteWfltpA0ZCdUWUeBfiRVYRhDlYVhntthylyVNOYIOQm8iIDY95LiG/Ujl9/OSsLGZkrP3M5SspFNbiOWuTJSMx7pcCNQGkH71cSs8/vLy1RPI3WS4bIil+WSqHFa+D+7hHJJZNFMygy0+qW0o9aM2FmttB7hxWVaoXlzNmZwdBO/iMY1hVDIE8Qli6adlBBsJKJQREdwEcZPhzeNun9ma75eveh3s4nTm3dRPVIgoMjsfyv2b7H0T0UqDSkhFVeuNfBaYX++Krq0XXPZfd8/M1yJJ+I4jNOcmz2SfMqJ/YF7tsdSfUcJ6u/WNGogLIgkipVhW1PiG9fO6yIhtOmMVS9Ss+uyXfxQB5yqEKadgbDYsjMKfCiIyBSv6KNKV1xfVbMwM9u/gwSkgDPjwsvl90TVaclheppDnSQsImjhgVtEJI79dfQeTKt0CBdo0pgtl4z2RtovdrFyOu/7nWtHvT8wAYZARxFcj2Wg/FdXfYDCLWXJSC7SZsgLWIuVF57OHZZlLHYgB0sv2HotGTvqpKllDraxkb6bfn2CDyZriLByc2OM+0U2K9Rj/sc5VorJkBblqexR+zPkwyvta8+zOx2/5/he81LxU5OLbLHiXDapgG7GpFxmQXl5SQLVLexj1SGNn+ORTVRSrye1M8UiB4rpd3qeqHBqbxrpf/HE9z2JeV1rH6p4KV1s73ok5KUnU+H0qABWPT09OppVtlREWefmjyhYiwc+sfbLJz8LkM86P5X8qNHFibgj1V/AFz0zVkYa4uiTLVpkhhZiaIk8GLlVazxeEvUdeMluT9jC2hNb/YhPRYHbtQTGn5FzaTjT52nc59c82mIlzc+huEy310Bi+WGxB+Syvc1WeosU4cB3t2KAhv9SPznmt2UpaWv9Nrq9+G+TFcdxyB2UTGgxim7oXu83rOYs0vCjWi1Gc6ojTeHFLhB5kS46GPsevGzW4J77cgDMRqxdaucT7m+IbTYANk30b/mga+H2UnAXdrUnJceZiA/3GXbjldiEdIL+HthwCrWit2/nyNKO7blJR/qm7CyJslhRDT43cKWos97X8lXsmV9F0ISFNxuje/58+FsdLjJBdwBD22s6P9MzL55IG+/vPXeTdvQI9paFCSZestUV2YwZlykoMFt6Mz9k3LjJFJljY2lBxKnkAYHkd2bAIQmRwLSinaJ3wf7+VSxodSd1gZ4newPuMb97rFpcgS9Ec0yvB74xJQWJQ8RIsSmsodZ6JxOeYfwRmP6Hh2XwbwoWUV9ljl+odor2V0LZo8ECDrx6dZMjxE8nwjpck/zOJQkCqCaYEHSqK005DF0/+8yKSiI4e3GJ2VxSxbf0ju9su6wfOJPdB/92U6L2sWM+mCCpmYyDMpm2fABUeyzkGXpaP5gt2wrMKz+mjhM169tI/svT7if4pN/fwlpK5dULE0/v7+EZvUQ1Pmjx4NHwG6uDW5HYuhDJxT61f4f7SnBUowOStFrKPhY94FvBzXc4q42pc8WG+tT6KbPkJ6bm8qK6lOd2e3jo7UHNb0wyZJw6m372NVQ0SlpFySHVCxPPs78461eePTfLnYTYI9CsDY6D3LMK0uoha631mxNuwY5xMVRdI3PFuY0AU4EKfhUZdgbG1t5TQuUq9KDljEgdy8vJjE5+/96KTGAOFb+2c93wbz7rbQVTc3/9Rc9J3aHQSA/Lfn2jiCtyf5gP7bk7J+1BiDRp/54B5l3wWSsbGxhEjzps+Y2y/OP1RWZoVTWscR01mrEGe7swFI8sYvvDH0dlGXits/6zCKqSAGqwVSHrFSLs0M6UgN/ozQwVxFgnKi4aLXdAPEyamkqSHyPJi+qAsAYv0s3DUYH4wS3jZMSwOIeZl4mkNH/WwLI1OwfuxgHrsl+EVK4kfU1WUqBNIVdC/8VJ2K7fGOfwEh/OyK22Wg/Ewlksp9ipWuuzuZDhwwg/T+CBuRl8uS7hBa1hIUHNOytuYCC9INRZI4s/i2oznYd9h6Zun/UxatWCyFlv5db8/YjdEtePUoMvJSOyH5/u7b+trFzRFo+b/A5DRqt169Cql/CgMVCwD7Q47XEQeqsgcSOlAeJ9Sxgq/tUMa870Is4gpOLPpOaBfL5Ex9F7hGUE6I9pk3Uf8zvIKtrDfItj34L8J32zcJ87FlIvOhNp0gbrLGtXtvr71lKTMbNKK9f3wrE6FJmcV1VODwzZjywTcBUS4xNpr3hWEf2Y0LW9f+w/bkIypdwGO2fSNowwk2mhXOHJTw3sCyTRcqyE2zQXdv7CsfC/gdxfxyTk7OrWnxuG9YzXCtm7/EsMZ7VmV6ldQi+gW6wkiNRe41761/qvUB34S04DVlTBE35SiygKeABdMcoR4wk4N1SFi2fONUrKK9DVqOBkFo0OLdiD8r2ZAPSWoOrigA5z3RhgCmFlXNAHl26puuGs3HymnYQmZdvz0l0mePem0SOz1tf5jfBzuJNIfhkQcdLHxIazmPG2iu6S2iLCPzJhjafnXgwz+6n7ippVc6AAGNg3F3PLI6Nx1tORxQx3TVSrZxTSA/36oNdsarOjrCNR2nBw0ZM210eZIIPbsNO1+kgQq8Hfnku7LjItCtmfjVugdQk86qsTPAdd9LgfPi6g2sdSre+vd+BS3aeKJ2yfnz2bItn0D8yOV7mT+zfZXOhnTnQ2MzVKKmZZphtljTg0L4seBx3rRJ6xfwIRh38DWVhVTKY65Qza1pdiETrN0/wFhe+YHxLCMDafsVcCA/4kKIvTKhRtX4JCvGEl1bpQzbuhhflgm/KDSmQcfToCBoipqNbJAj7cXKqBisU5q2N5WHdv7ZuaQHBxjX0WmU8Lvtwb1OGlrxJKAQcDeJukxyeb3kBSJbDnJBWnFNwuTeiXwo41X9NFYE8nkNeNNfSE/tBJL2+YAE5aE21yZSzJOrQ6YB4COUgoICa8S49T/WFduHDAyGCbFycpCZaE6jEvygvCvBTbhSIfbvap5P7LQxgEaD3yEp5b7evbOXhnSUAAh0tMKiCrW56e66p9nuHrIzdYfTcEnxYh0UOf52i/OCX/pxtDRZMKI/gM4AuEr7Zpv0NNM9Z2+uzYM1t6GxsS5eVwXyXdVB8FlpIjj45HpqWHWZUKD6a3UwzxtTug6pra9nlEJgcdacBADkuuGGf+r3fiJSq6sDptnd4bcUP10sepWs9egRPVgwH4TCaaJ05IYqJa+JQDSIX/OapNvXcFIbqS0ExpEvAMbzFF/6ku/+dia+N6QTHqp/8ayKFaFJfB9zLD0AZEDB24PZdN+noCagVfBzf+mRQK6eVtl4cf4RECqFquHCg1JC6tcOMyDQNbNeCVQ74QIx5rumDccxPJ04r7P/44rvbpxaEcbHocnIO1nM7TT1nZ+XZzfZ9UJGr0Pj7i8Ca9c61fVyc5YDsdF8k/lSgNtHDYMBKsjJIDeWdxfqD+BQDRtWVgfjtOfgbEigoVjrYY8VWhudWc+IHiU7nvDuViY1dvOrKyqLrhgsJK3ufpMHM+kyfurZJxPq+fyvOaPOpdzDAYMhogXFJZOkgBrIf3UgSM/gaB6j1ZTal6G1lEUlDoB45Aq//ZVFJ477ouWLyJf1SYnB3QUX/FoZy/61VlNi/7M2YmJIj1evSB0+PMcv7qEuza07JVjwS7UwMmsr+ma0/3/moRtX0i7Du996sjiJxJjyn6f+FI0mOBZci2dJZ8QOwcaGPldtIzfMpG3XBxlp9En18F1EPmmqq/ruK7jFEUgnfEo3LWaPOrY/rFeD38haQx8gtpy2zbe/2M/CVyZBoVvJyVdddnWHqSdSgfBm5pslVYhFYlgRzK9YK3/pEZSu38QIbZ/Ve4T8wcH4fq+1fd+QIE9YM0OK0L567a7in3MAb5MuuzOfIasQUm6AeKu2dK1ga0Mhohpfdv273iB8fRPyykCqgjP1TcOnsKLl8S/JnHaS2dVXgV6stYAP2PXfeSvCq+p8KLjyFm0lxjYgrCseTeNKGbl6GtO7qraahObRcsgX5ShtmslOb5PncGTpTSxp0ZUx+CaROpfThmC09A41t8VinMMmT4fYTIygUvKFLXhoOzQBnwr+V3nQc5+d3Hh2bXjS3a1PdbxIhJxglQEqqcO5qR5TzW3WvFzbfwB0P8/tE8fHBensJEERzYEnrqUUfNC0ZIySCsYKnCiUwMtyNTFro1VzkPD670+znTQBB3PURiTu84zDImdqIZC/jK93dEXWvo9k/e6nIlGIGXL9zIOnw8Wtc+2wUB6XgU9a24xUlnxC/nVhu0vqgCVLIlbZZq1J4XY/6mGj495t+gZLbxbiyunQOFos29oiEQqbJhraPpGqFFA2uoGz88ZDu/AdxVvNguR9wmqIllb8+p9hWOQXFTXhRsgQjSHdfxVhLD2kVVERK7/112ngo4Gdekg2Zrx2fRHpxPAFDx/4HMP7VCzzlYEixUhkQQ6MRkW+xl3rXZPLqnEB8nEWJDvryV+VgDpji4KuzoK+Jywm7aXy59aKP+RQabz19jqrauOcemfjW6yWSv9sDuCABf+Cue4Kmpa7F2Y6w0a12AI3KlYRpH0V8sX9zn6u/hPdJfMiqYRtj3E1PPCQG1CcS7bRTjAUySMNcnGMJSiUy4eM3B9XE8W/KXXOas9pzlkez4Gt1DbJK28t9nU4j1bAyStWn+im0eP6Q6eL9idm+h5+sxdn/j8S4YY45LfGYcLtKz1Lyxc3Op1E/4GxTrWWPerfUEsHCMkN6ffIDwAAzg8AAFBLAwQUAAgACADDfJpDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgACADDfJpDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1b63LjRBb+PTxFl7eKgtpE7nu3BgcqsU0xVTNA7cxuUQv8kK2OIyJLRpITh2UfaoHn4Jn2dLfkSxyPL0mGCbuBiS591N3nO985ffpI6Xw2G6foyhRlkmcnLRLgFjLZMI+TbHTSmlbnx7r12acfdEYmH5lBEaHzvBhH1UmLW8kkPmnhWMchNeaYRvCLD6Q4HhipjyOjjIkViaiOWgjNyuR5ln8ZjU05iYbm9fDCjKOX+TCq3MAXVTV53m5fX18HzVBBXozao9EgmJVxC8E0s/KkVZ88h+5WHrpmTpxiTNrfvHrpuz9OsrKKsqFpIavCNPn0g2ed6ySL82t0ncTVBShMNW2hC5OMLkApJVgLta3UBBCZmGGVXJkSnl26dEpX40nLiUWZbX/mz1A616eF4uQqiU0BAAVESIwl5ZjyUJIWyovEZFUtSeoR201fnavEXPtO7Zkbj7dQlefpILL9oZ9/RhRTjI7sgfgDhYOUvgn7e5j5A/UH7g/Cy3D/OPei3MtwL8MBhaukTAapOWmdR2kJACbZeQHGm1+X1U1q3HzqGwvdyRHoVCY/gTDDwBKPONzH+Mj+AzCOuG1orypJlkatiumegzZDEqz2GJPeZ0zWjEnvUpOKDWrKt6Dr57CTnmJpTBjK/e/+rY3I6B4j+uv7DSj5O1Gx025cpVN7ByovrGxtycqMS+svLEQitLQnSIBvSAUsF4iEcFAUgTcgIhAXcEk0kvaoEFPQwBFDGlk5wpBzDqHhF1euM4kEdGbvKvBJRGAgjgRDxPkUR+BJyPkl+ChlICEEEvCQHZ5Q2wWTiEu4YhpxmKN1SUVAkMGDcA3DU8QIYvZhohCVSNr+CLeuLrWdOnRJkcRIEtsheDV4tPdmkNeIWW1kDVeSTabVCkTDcdycVvlkbguQhni0iHk+Pq2ExGedNBqYFJaJ19aSCF1FqfUIN9B5nlWoMSL190ZFNLlIhuVrU1XwVIl+iK6il1FlZp+DdNmM7WSHeVZ+XeRVN0+n46xEaJineD7nPCVL53Q+a7hgSw18uUEsNcilc3XnuDm0oGlpYPy8KBvxKI5fWIlFaAAkv8rSm7PCRJeTPFlVo9N2K07HTIdpEidR9g8gqx3F4oLmC5ALV80CJMKwmUlexK9vSqAwmv3TFLkFEtZcGYpQaMYJpxTMeuObqCCBwlQJWGMwY5IImNwwst7HVcAJkfa/UCguJDTdbG5zg5uruZGimVnoOyqscy9dvCjP8nRxy0HQjSbVtHDpA8THwup1mo1S42jinBvW5uHlIJ+99vxgvq83NxO4wn4Gg5GDHhVWN5jxqD4O/NHJ2KnNpbCTwU4CN4RL4nk7CamTcMeBPzopYLCfWq0qadQkuBkmKX2i06pdpwlYlv92pZ9mSfWyuaiS4eVCVfvAl9PxwMxZtNoneag+O+1bNOtcmiIzac1qMOY0n5beSZcIH5thMoZL31BDEllz/R0m4O/GZlSYZuKpS808YK4VL/N17bbr6vMiH7/Irt4AF25NoNNuZtkph0UysZxDA1gJLs2CVXFSRrCQxMvPWTcE1Yd2wQB4KgsNOOi0usgLl3xBXIGj9b7UjCHZQpWjl2PoHOZTl8NZPFE++AFC23z18+0Lg0HznVRzpIzSyUVk87xa6TS6McUKDK6/V3l8GxzA3mkAbj5xiSJYd2KMJ4afMZxMoEPnTyuRCvAu0cwm4qEQhDIGKZ1SIbdRASYWCMykZCEhigpGGKzIP/n83ue3FgjrgCtx29+9ZUWglsdwC5pn7xTNr87PS1NZAI6J8irvBfYhUOMAYivk0wTA1pTRMPRgH0NgJkxRCVaQgmIbYx8A7GE+HkdZjDKXNr02I3u/tVjII2wpjCJisffATqumIfK91X2sma6se2uME20x3hIem6yHD/eEBcQyEESxEBMumFJM6QZgSUJCgcw4DIW0FgeAjykOFA0V55oQTkKGxe2gXkHKcQn7qtKl+lW9xriTL5I4Ni7d9Ivej5l/pPSRNhlP0mSYVHNkU8uMF1kFcde4wLMeTi+Nmdh17KvsTRFlpd0re5mlML2TL3X/IF+CRc/iDfg+sivpINRMKhJiQaUI8dyRCNhZCwmmJkoR/c4cqesd6XTNkQb7OdLgPXGkYxlISjUPBYPfDDObE9aximrBtcSEaGUjGCDMaRCCiFQag+9pzJ6QH+1i3TNv3e6adYf7WXf4nlgXUgUsuAiZVlxC3s5w6KyrA8mVlKFSlGgmlLcug/AJQZXDj+AMzP5krfu1i5Krto3WjNp7u1FXQ23vHqGW4Ho3YY8HJy7vIEmkAcRZpTWWmFOsGfGxgAQihIWT2ABBmZLqMeLtS6DZLZP1vDsO1ywXv91ylrFzw8TrhlvdRb2fzkhYAMIC7rh1DkzyON642SBz77xlldhbZbBmlf4+/tQ/yJ9sxXDkDwN/uL9dOBWB0ATycSoVwK/qJCPkAWWcK2KtpYXwyaSQgeYKchJunSEMyaOnHLUX9NfwNvstSua9WZSwBKht/UlRxWDT6bN3EXDGBKTtkkgINspvRTVk+gRLprktZz2tRcnMJgVMzEblhtVmVkFQhYaT1oc/TvPqkzcXUWpK0MJAV8/RKbKaodp2cDuqUFKiSVREaWpSVOUot+0JwJufow//QvAnEaqKxJVQ6rdJrjuUw68CVde5k4Y+inySF1Yt6OrGj+5mvEobO8XW6nwP4k1TkPPMEeRw6pwnMxOvolzXjktTJOeLOqsvFMpWY+D6+bKKisqlBMitpxT25zrE4PJUYKmVLS3e2AqJIFRh5uIA7C5XduebnbaX1C8P79xx99bXrlr+dEv6kU3HoN1wsY4tnrM9AhzTGiYRYBJSDcEq5AoUkrs7MdlO2TdAARhzmbPf5VemsDz9l79Gf0Uf2Ve2355+//H8vOfOvcC/0XdH6MT+mj+wpA7aQsJ6Bn9k9ErKl9Eb883OJMRv4aAD8lUSu8Xh29Mj1Pv+7rxP1Vsxyg9iYG9TzaeBvnd2GAN7Z7cZCNtCqUP40UrZ1IazB6cgDLoTBXtLFDzbjYK26x0o2NtWuXyqFOwdobMNFJRhTcE1K+0TBNdTl7n3b8kZNwbB/m0K8kArrBihhEqh4efhg2B//yDY3zEI9ncLgtuS5qfKQAiC/bsZSOpknIQHEbC/qaDTIN/vHkbAfnc9BmpNCA1JyAlsn7GmD85AGHQnBvaXGNjdjYG26x0Y2N9WcX6qDOwfoe4GBqqagfRh88B987+Hz/uedaLpLEmTqLjZtbC2b6qxb4rxCKnFw2m5cTXbdxV7+NXr4ZTcGDH3jZSPECEP0NJ9U3K3ipa09K5XOb//5+2auq32XE+QvqUnBspKTrnQVAupaT33Q2vHG8HYGjXXvl3ZvVYSFcOlalZTZE7T/Ppv5jw1M4frfYwwdyZnhPXw+Psvexnhl9tGgH27fREsrUsxBSfy3VphKYlmTUHxyRmp28T1TUb6dS8j/fp/Tzk8XHW9EdbX2N9/28sIv231lP89I9xdqFUr2XY3z+zfP5i1Gq2rudov0qLsZqncmp+jpcKsK9SuVmBv13VtzRY0LmLXQbB7gVbdJydv3k3eIyt/hPosJcK+YCFYUMJ4XQcTgXAf9WAuJIN0V24q0N5tTrpiztPeyXwTdNqbb5Fq1LfthXx/DwD7Pq+EHxt4HSiGhQyZEoxrxppPBCnRIWWQe0OIxjzcD3Wxinp/CfX+IaiLPxvqhEDuz6iw361pyjUWDewcYyLsa0ZJVr9w2o46X0G9d7ZAvXd2COr8T/YOCKguICUkVFDNCZd+j08C+1EmBBxISEIF+809uS5XUO93F6j3u4egLv9kqBMaYMmw/aYspJKGmtewM0JCRSHkMMnsa/X9YGe3AnsbOH4C4aUNqJ8sSl0fQZhvA/8/PsQU7P51L4rv8bnCg/Mf9uActuMCUxVKb4djSNU4mEAqAr+o0JLyTZZoL39a7/6Ipf5zzE//C1BLBwgYdWSJowsAACs6AABQSwECFAAUAAgACADDfJpDyQ3p98gPAADODwAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIAMN8mkPWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAwQAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAw3yaQxh1ZImjCwAAKzoAAAwAAAAAAAAAAAAAAAAAaRAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAMIAAABGHAAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
* Process (How to do the activity):
* Process (How to do the activity):
# The teacher can reiterate a triangle and its elements.
# The teacher can reiterate a triangle and its elements.
Line 269:
Line 270:
# What is a parallel line ?
# What is a parallel line ?
# What does the basic proportonality theorm state ?
# What does the basic proportonality theorm state ?
−
# Name the parallel line from file /
+
# Name the parallel line from file ?
# DE is parallel to which side of the triangle ?
# DE is parallel to which side of the triangle ?
# What are the lengths of AD and DB ?
# What are the lengths of AD and DB ?