Line 327: |
Line 327: |
| *Materials/ Resources needed: Laptop, geogebra file, projector and a pointer. | | *Materials/ Resources needed: Laptop, geogebra file, projector and a pointer. |
| *Prerequisites/Instructions, if any | | *Prerequisites/Instructions, if any |
− | # The students should know a circle and its parts. | + | # Circles and quadrilaterals should have been covered. |
− | # They should know that a quadrilateral is a 4 sided closed figure.
| |
| *Multimedia resources : Laptop | | *Multimedia resources : Laptop |
− | *Website interactives/ links/ / Geogebra Applets | + | *Website interactives/ links/ / Geogebra Applets; This geogebra file was created by ITfC-Edu-Team. |
| <ggb_applet width="1282" height="601" version="4.0" ggbBase64="UEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ21WeTTUixf/YrzGMgyZLBONsdQgKiFZMjWYIUuDMCGlxCDFpAlDDT2ylGd9xvYajKUsyTLWNFmSaLEVUVMyg0YYGmN5Pf3zzu+c9/vj3nvu/ePeez7n3Pv53HF2tIVIqkgCAADBYTH47fh824LBv217g5EtfwCQ2IXDoF3J47yCoGCXi0q98/sNY9RP+R2WvCXruFOI0En2UiClke0VxPt2HwRlTiTpnbhIU4bv859LSQ7mkrqQiib5R7zemPbYldd1quhkVul3XyvOS1YIbmzW+8byKxrL/zJ78fHroR/5Mz/tHVvaKFERkcub61Mf/RBAJ1PpihRwEwFYQQEEGICCALAoABIBqACA/lW+SVIoeettn9GRb/t70o7en3VPBdqRxxjwXT+EAZyU1diuqP0Atetlldnj2S7h6ZYn2gmFoeS4wrVz7dizoysy3i5LztgDukOajFg+fXctG13k2RDwwfxFG94SlVrzZanFSI7jOiMG1QykHtkMqeedNPL+ab2rQfwoZj016/Hzoev6mtisQPkxiqVhJUI2Ok+3X6HwEjkYM/jgZW9NTs/vKI212GpIjE3u2VxZqlVayVJz1BOvbgKF9CBfLUgi7GOHVljnVMNGX3msLj++v+RlU2fL6cRH068ZiZsvoqEgqmZBXsTL+0OKFpX1BoCVwa7/AvAvLgCaKi0t7WLff6OO0Fpe99ZBO0Pjc63HeEXHlK0jR1xFRcW63ipthdF03fm5s+vwcX8+Tn2H/Wf+lqrRk7EJp4GBWHxIlTv4WdFE+8SJW51aGBkQTtbGpgeD63zqTZhD3iszqOY3eylWMN+hBt1dhm6BqYj127FCPv/eHR08svZ9ZJdQCLOCTqZ963SoTwSo5Ta4PtQbR6y1W/XDbynlgyJguinT3U7qyefU1Ek6hcUCwHQJZlNfwKbnCj5QZAH8aX5pIwF6Dqq5+nRtfX6AttE9Iw9Jt4I6gO6ffmB4qqamFX5qBzp9aN+McS93UqDZfJQDS+j/iswb0L5Lo9F8v3xA3hXv3/V6M1942OBS4ZG6wjx7wVSEVNbl8czFIL4wevj9e+VVj45oIfO7tdmal1UZVRokmrmxZncwgLPRb9swSDhECaXfk6XocSRAfOzT4KYJa4SJsfGLW14Egp12Bmp6n45OElbKKcfyrJublhSrDvtz3mI+angnV8J0If9glk6jmXzM2SO1Wja2P/NU/A4oTWuYW2SHo6EFj7i5OYHrqhn75m/rvRgcYHxoaK5nD0AOb83OhiEeA/gDY2NjyVb+p0qsfmxsSTQbZw/fGFRGPs8XKCbrf8IIanHogpwc24y9ToyOjg6o8hEKm3U7MzdXGZmIR4Dp4Wgm8eKHK/H+savU3TcNBwy753socJcYyq2nAMxV8fmYcdUVlclaf0lln4OJfnOMCpJw+WtJNsJOmTV0ilqSizCHXpLIBtsTx/rR3LmIPpF9qs+Kn6Fae3iNPNKnMbHl1QFK7B0sR06AubvQi++mYdV+DSW/uHGOfVVn/c3JM7T+rwCJdPQ5s7e8ImgyggzPMsnKGPte+r47+StpwQNrA0t+gFdWVpaTx35vnlxIFGQi0VBVSeRAj/f6qu5KASdtn+mUxaJ+SPXESQ0/DVqrT2uvY0+7TeS34pzpw/poeSMpMl0nO92j0hOKSaAuKsjMvK+E1bdEWoQ8uiynlTh6cMQNs6VGHBoZuWbt3bxTNVr/Lw00096dFh8Q5sqd006QYs3jarmS1PKkQ+VJhMb5md92/LZRUXJujFknBqYTV+1CtRIFx2U97444rFEA0B0pH8NBsZBZTXDN1V4bKBQDI29amUpWlemMkqnxsXsBdDXtlWVQxljkWoKoawSDIKAuXka1lUJvIq4+G5GT4NyOqFxVezMAaYzKH+ZaqqHuNu3pD1dPXKfW7t7POXMtPC6EJ3N186NAdLs1mhnZPaIHFkVgM63sSLKjKcpBXa43wKIkFJYeVZvSE62ipOTMix4diiDOBt9GQDUt7KANbDW9hT4qYvtLeN1CmK/1wQPFwPIm5kn6IUUZ+lTsPR8AqnmZvAVyWuT/EDiXthrvB/2h1g4gsB8Wkajqu++iCjJdGuz00olbJ/b4qc/EmQVc0AsbhB0rihcM/FqK/GO+OkK3qpywN/vd8vkKKkWc5oVTehtT+UBJsLF9u1MGVxcVr6865c0OFcOWCSuMjzQubyt03hFagQFBMUbksI9xF03pK86XBS6XdRU3nGdxUJ8zNVmpjWgamHXS+JhcnTo8dNxX2E3P5cWch4FGdMHp0DrGSfpLzvfikdHj4+x3J1T/lqH9ZEdX1rvPMUBsI8Sf3VLo4b0acaPVBFvxUDVG6LjM2yCIdiRJgI98V5dY+NATV1rdPvyO4hW+U/mZOJvyaPGKKjj9APn1gfEMoljOet/oFyh90Rf56v1nd/uoAo8Thw7T2rwxzEupJsMzC9wyS09UGb/Qoy0dapUWr86rVtIt7Ag/D7kjnJbxzD9fZl2y1Fk8VyDxxCR54LMKAY4xm/1D1kcaZQGAcEe8Epomomp86nwDWcnVZFcfz/FFwk61lOm3XGLAUuPr0bgzJ47Ka6LJeXvM9VWomhB9azKriHZlo3TqeoqdI09Srmzum9N0C9l4LpHp1Q2Xdo65FtP1GK22daUi4E/+0HUREI7olrwnNDtlVkXP1qH3nHqypoz9BV6dy/dPT8wy/qzyP/rVDIbccWy9c3FOFXdjReQmQm7RF36s0xAmLS2L5xeVWTeklPaNC3cPCIkH2ze3bNZXuhyJvGsuZzihpI1nAt9BGAinaq6RXXY/QGShnWgelTlF1GF8s+jnzjxEHQ4a3594CJweiWNqvnlhYFTjzZ47W78QAKDxpyc//+Xayo7p5sHGrN8UwJFBPmpICDWgmD3YfmaJJNIrJiu6rL+ihEpA0H7vxXlkXnC7yoTn2EP07t9GtOg4kAmSr/IdhofDdqVZX1A/RbSCerNkJ9lE2WSW219k+HK0pRqMw19qkTFnAdQSSBs3qTXelHnDeo9JeekkXpu4GQ6z00n1MP57901EIMT9HrlJQSZ66npQW9ye9k4tp8qo3v+S5n859F9q/X9S43+Y9lda3nMMxN1IMsYnZW8LJQBn7YipPu5L/QdQSwcIRnoUezEJAABPCQAAUEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vrvcts2Ev+cPgWGN5MvjSX8B5jK6cjOdC4zadOp05ub+0aRkIyaIhWSsuVMX6pp2sfwM90CICnJcnxW3DqXu2bigACWWGB/+9td0Bl9vZrn6NxUtS2Lw4gMcIRMkZaZLWaH0bKZHujo62dfjGamnJlJlaBpWc2T5jDiTtJmhxGTMplMM3wQC54ccJziA50ochBTIlSG6WRidITQqrZPi/K7ZG7qRZKak/TUzJOXZZo0XvFp0yyeDocXFxeDTtWgrGbD2WwyWNVZhGCbRX0YtQ9PYbmtly6YF6cYk+E/v30Zlj+wRd0kRWoi5I6wtM++eDS6sEVWXqALmzWncGCqaYROjZ2dwqGUYBEaOqkFWGRh0saemxre3ej6QzfzReTFksLNPwpPKO/PE6HMntvMVIcRHoAShQXhmmIRg0IeobKypmhaYdIqHXbLjc6tuQjruievEl5qyjKfJG5J9PPPiGKK0RPXkNBQaKQMUziMYRYaGhoeGhFkeHidB1EeZHiQ4WCIc1vbSW4Oo2mS12BDW0wrwK/v181lbvx+2oH18ckTOFNt34Iww+AowegwjvET9yPhh7uJ4fYhyYbWplruqbRTSQgWd9dJ76OT9TrlDSqp+MAx5S3WDXu40znFhmlBlf/rf3Y0MrqHxtC/n0LJH+SIo2FHlVHLDlSfOtkWycbMa8cXFiMRO7cnSAA3pAIvF4jE0CiKgA2ICMQFdIlG0rUKMQUTHDGkkZMjDHlyCA3/cOUXk0jAYm5UAScRAUUcCYaI5xRHwCTkeQkcpQwkhEACXnLqCXVLMIm4hB7TiMMeHSUVAUEGL0If1FPECGLuZaIQlUi69Qh3VJfabR2WpEhiJIlbEFgNjA5sBnmNmDuNbM1li8Wy2TJROs+6x6Zc9FiANMSjddgL8WkrKj4a5cnE5JApThySCJ0nuWOEVzQtiwZ1INIwNquSxalN6xPTNPBWjX5KzpOXSWNW34B03en2smlZ1N9XZXNc5st5USOUljnu91zmZOOZ9ruGDtuY4JsTYmNCbjyrG/WWMIOWtQH9ZVV34kmWvXAS69AAlnxV5JdHlUnOFqXdPsZo6JPOyCzT3GY2Kf4Bzuq0OLugPgf5cNXlIBHH3U7KKju5rMGF0epfpiohVBHh0u5l6LHQq9PEcUxgP7XZ88uY897cycqsdz6rHE03Oi/qozJfD/nDHCeLZln5WgAiXeV2OC5mufGAe5pCok3PJuXqJCDNwlqvLxfQa3cwmXkjIiA6FXDSWdtOQutl3NZ6KexlsJfAnevYrJ8nMfUSvp2E1kuBL4attUcl3TEJ7tTY2ocnHLUk6EKP82SXtpeFbV52ncamZ+ujuhe+W84npveH7TXJH7XmaHjNYUZnpipM3vongLksl3Wg24brZia1c+iGidYkiYPrR9hAGM3MrDLdxnNfZwWD+Vm86Xk7w36pb6py/qI4fw2+cG0Do2G3y1GdVnbhfA5NIKafmbVXZbZOICVkm+85QsHRUxf6wTyNMw1QbdmclpWvpCBCQOt4lJs5lE2o8e7lPbQ38ytfkDl7onLyEwSpPo+F+TVgMH2jq3mnTPLFaeKKtvbQeXJpqi0z+PW+LbPrxgHb+xMAYRe+6gN0F8YExwg7hocFLOj5tBVzwN41WgHJBhSK5Uv3OoOHt6EiDxWpO61j2VaYDaPXoAL/CYbyxp3PkyJDhU+8x7ZKcxOtM0GCneVQQvoVy2XTTaRhsXaJHfsDbjbt7Zv+B/tvnPdDABBXfn8sAGvuN5BjzqCQrn1t17ShyD/83WaZ8fVFiI12Zopz2CuEeLii4PYCdImDfvS2G1mBfQ5CgCXt0FuyAQ5AX9kVGnfy405qTN1DjKmK+z8aTjlmrYox5KiDAPtYeCUAfNjcmyKcpw7RwmVeO7Xp7Qh/70mxDXC6g+zx7chuM+v4o5jVhfoujH9iZuEB3L4YYYJLIpWkLuUCz+gAx3Dri6XSsYyJpOJPYN3dMDnaB5OjB8Xk1XRam8aZ8YDE3m5wg3kAyASTsSCaESwBu4AYMEQzrpTmimsiCeD5J0B2YmZu/BpoxyFSHu1gl9yOXd2u1qGT3CdW+igJ8Any8ZxaG5kOYkYZ0bCq0oJh3VuZasYkUUQQrBgWQnkzH5CBdgWr0pJSzWOt2D3i77UQZ+eL3Ka26e2bO/d4UTRQHhlfH+xWPWfGLFy5+ap4XSVF7b5PBZmNaupevHy+Dy+f/y/ESjGQAD0ESaYxjWPeRkrKMZFAPc05w0TJTxYpx/sgMv5kkTKYjTwEXhAEMYu5UJLDvzRQmAykit2Xx1jrmBAeswcLlM9DoBzvQDfZL1BO7hUoMf0DAyUbxO57KsdKMcahhujiJFFUAls0BrZwrZ1SFycpmD9WXGpKGcNYyc82TN4M8dGHIM72gzj778mFUFlwgWNKINIpAWAHInFAnmMN8VAKIBILiZANpJBQgohYMK45+XzT4K21zvMdfM1++Jr73wvvkRDX4Dqmcgo5DW5iXDEtBJYtvJpAuqNQ/kNNw1r6xoNYxUBdDNQFdrPPl77+g93N5HUY05swvvrldpD9p6AeQpB278N+lq31XeyTcK9ikH2EhrKh/Rr1cZ9nCN71A3JHP9j5Mnh33JIq3ciOXcbO8/LiBzPNzcob9j4o9BTzKOxG0qt3e6HwbhcFHiso2VyxpiBnCf4XCrso9LWKR2H3bnf1614o/HoDCpxrFsN9Ci6xSqm/QNgFYdzdrD0Ix7sgvN8LhPc3BCRAgcaSiRgY8X+JglktKlDjbhvdGc2qgcoJJg6jx2+WZfPV8WUKuQm9WSZZZfMEUlKShxm/2rbR3evR9lqfuJbzv3WsTWWn69/Qtb+ej7r024rWTVI1/r6JXHlABqStBuTWxfZ2A1791lrv6hf0JQLuo10rXXPN3667JoO6hIgYiksG5aWK2f1xvfq929Y7t633d9jW7w+wLecidMvdHufNV2P0pWuO0SEiGj/+G8F++Ah27trn7fidnZB+0oJzalcm2zbKjq/pQfjIRgax/pCvDTd/K+Z/k9z+t6hn/wZQSwcIahw98e0IAACzJQAAUEsBAhQAFAAIAAgA64WEQ0Z6FHsxCQAATwkAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADrhYRD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAB1CQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAOuFhENqHD3x7QgAALMlAAAMAAAAAAAAAAAAAAAAANIJAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAA+RIAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | | <ggb_applet width="1282" height="601" version="4.0" ggbBase64="UEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ21WeTTUixf/YrzGMgyZLBONsdQgKiFZMjWYIUuDMCGlxCDFpAlDDT2ylGd9xvYajKUsyTLWNFmSaLEVUVMyg0YYGmN5Pf3zzu+c9/vj3nvu/ePeez7n3Pv53HF2tIVIqkgCAADBYTH47fh824LBv217g5EtfwCQ2IXDoF3J47yCoGCXi0q98/sNY9RP+R2WvCXruFOI0En2UiClke0VxPt2HwRlTiTpnbhIU4bv859LSQ7mkrqQiib5R7zemPbYldd1quhkVul3XyvOS1YIbmzW+8byKxrL/zJ78fHroR/5Mz/tHVvaKFERkcub61Mf/RBAJ1PpihRwEwFYQQEEGICCALAoABIBqACA/lW+SVIoeettn9GRb/t70o7en3VPBdqRxxjwXT+EAZyU1diuqP0Atetlldnj2S7h6ZYn2gmFoeS4wrVz7dizoysy3i5LztgDukOajFg+fXctG13k2RDwwfxFG94SlVrzZanFSI7jOiMG1QykHtkMqeedNPL+ab2rQfwoZj016/Hzoev6mtisQPkxiqVhJUI2Ok+3X6HwEjkYM/jgZW9NTs/vKI212GpIjE3u2VxZqlVayVJz1BOvbgKF9CBfLUgi7GOHVljnVMNGX3msLj++v+RlU2fL6cRH068ZiZsvoqEgqmZBXsTL+0OKFpX1BoCVwa7/AvAvLgCaKi0t7WLff6OO0Fpe99ZBO0Pjc63HeEXHlK0jR1xFRcW63ipthdF03fm5s+vwcX8+Tn2H/Wf+lqrRk7EJp4GBWHxIlTv4WdFE+8SJW51aGBkQTtbGpgeD63zqTZhD3iszqOY3eylWMN+hBt1dhm6BqYj127FCPv/eHR08svZ9ZJdQCLOCTqZ963SoTwSo5Ta4PtQbR6y1W/XDbynlgyJguinT3U7qyefU1Ek6hcUCwHQJZlNfwKbnCj5QZAH8aX5pIwF6Dqq5+nRtfX6AttE9Iw9Jt4I6gO6ffmB4qqamFX5qBzp9aN+McS93UqDZfJQDS+j/iswb0L5Lo9F8v3xA3hXv3/V6M1942OBS4ZG6wjx7wVSEVNbl8czFIL4wevj9e+VVj45oIfO7tdmal1UZVRokmrmxZncwgLPRb9swSDhECaXfk6XocSRAfOzT4KYJa4SJsfGLW14Egp12Bmp6n45OElbKKcfyrJublhSrDvtz3mI+angnV8J0If9glk6jmXzM2SO1Wja2P/NU/A4oTWuYW2SHo6EFj7i5OYHrqhn75m/rvRgcYHxoaK5nD0AOb83OhiEeA/gDY2NjyVb+p0qsfmxsSTQbZw/fGFRGPs8XKCbrf8IIanHogpwc24y9ToyOjg6o8hEKm3U7MzdXGZmIR4Dp4Wgm8eKHK/H+savU3TcNBwy753socJcYyq2nAMxV8fmYcdUVlclaf0lln4OJfnOMCpJw+WtJNsJOmTV0ilqSizCHXpLIBtsTx/rR3LmIPpF9qs+Kn6Fae3iNPNKnMbHl1QFK7B0sR06AubvQi++mYdV+DSW/uHGOfVVn/c3JM7T+rwCJdPQ5s7e8ImgyggzPMsnKGPte+r47+StpwQNrA0t+gFdWVpaTx35vnlxIFGQi0VBVSeRAj/f6qu5KASdtn+mUxaJ+SPXESQ0/DVqrT2uvY0+7TeS34pzpw/poeSMpMl0nO92j0hOKSaAuKsjMvK+E1bdEWoQ8uiynlTh6cMQNs6VGHBoZuWbt3bxTNVr/Lw00096dFh8Q5sqd006QYs3jarmS1PKkQ+VJhMb5md92/LZRUXJujFknBqYTV+1CtRIFx2U97444rFEA0B0pH8NBsZBZTXDN1V4bKBQDI29amUpWlemMkqnxsXsBdDXtlWVQxljkWoKoawSDIKAuXka1lUJvIq4+G5GT4NyOqFxVezMAaYzKH+ZaqqHuNu3pD1dPXKfW7t7POXMtPC6EJ3N186NAdLs1mhnZPaIHFkVgM63sSLKjKcpBXa43wKIkFJYeVZvSE62ipOTMix4diiDOBt9GQDUt7KANbDW9hT4qYvtLeN1CmK/1wQPFwPIm5kn6IUUZ+lTsPR8AqnmZvAVyWuT/EDiXthrvB/2h1g4gsB8Wkajqu++iCjJdGuz00olbJ/b4qc/EmQVc0AsbhB0rihcM/FqK/GO+OkK3qpywN/vd8vkKKkWc5oVTehtT+UBJsLF9u1MGVxcVr6865c0OFcOWCSuMjzQubyt03hFagQFBMUbksI9xF03pK86XBS6XdRU3nGdxUJ8zNVmpjWgamHXS+JhcnTo8dNxX2E3P5cWch4FGdMHp0DrGSfpLzvfikdHj4+x3J1T/lqH9ZEdX1rvPMUBsI8Sf3VLo4b0acaPVBFvxUDVG6LjM2yCIdiRJgI98V5dY+NATV1rdPvyO4hW+U/mZOJvyaPGKKjj9APn1gfEMoljOet/oFyh90Rf56v1nd/uoAo8Thw7T2rwxzEupJsMzC9wyS09UGb/Qoy0dapUWr86rVtIt7Ag/D7kjnJbxzD9fZl2y1Fk8VyDxxCR54LMKAY4xm/1D1kcaZQGAcEe8Epomomp86nwDWcnVZFcfz/FFwk61lOm3XGLAUuPr0bgzJ47Ka6LJeXvM9VWomhB9azKriHZlo3TqeoqdI09Srmzum9N0C9l4LpHp1Q2Xdo65FtP1GK22daUi4E/+0HUREI7olrwnNDtlVkXP1qH3nHqypoz9BV6dy/dPT8wy/qzyP/rVDIbccWy9c3FOFXdjReQmQm7RF36s0xAmLS2L5xeVWTeklPaNC3cPCIkH2ze3bNZXuhyJvGsuZzihpI1nAt9BGAinaq6RXXY/QGShnWgelTlF1GF8s+jnzjxEHQ4a3594CJweiWNqvnlhYFTjzZ47W78QAKDxpyc//+Xayo7p5sHGrN8UwJFBPmpICDWgmD3YfmaJJNIrJiu6rL+ihEpA0H7vxXlkXnC7yoTn2EP07t9GtOg4kAmSr/IdhofDdqVZX1A/RbSCerNkJ9lE2WSW219k+HK0pRqMw19qkTFnAdQSSBs3qTXelHnDeo9JeekkXpu4GQ6z00n1MP57901EIMT9HrlJQSZ66npQW9ye9k4tp8qo3v+S5n859F9q/X9S43+Y9lda3nMMxN1IMsYnZW8LJQBn7YipPu5L/QdQSwcIRnoUezEJAABPCQAAUEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAOuFhEMAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vrvcts2Ev+cPgWGN5MvjSX8B5jK6cjOdC4zadOp05ub+0aRkIyaIhWSsuVMX6pp2sfwM90CICnJcnxW3DqXu2bigACWWGB/+9td0Bl9vZrn6NxUtS2Lw4gMcIRMkZaZLWaH0bKZHujo62dfjGamnJlJlaBpWc2T5jDiTtJmhxGTMplMM3wQC54ccJziA50ochBTIlSG6WRidITQqrZPi/K7ZG7qRZKak/TUzJOXZZo0XvFp0yyeDocXFxeDTtWgrGbD2WwyWNVZhGCbRX0YtQ9PYbmtly6YF6cYk+E/v30Zlj+wRd0kRWoi5I6wtM++eDS6sEVWXqALmzWncGCqaYROjZ2dwqGUYBEaOqkFWGRh0saemxre3ej6QzfzReTFksLNPwpPKO/PE6HMntvMVIcRHoAShQXhmmIRg0IeobKypmhaYdIqHXbLjc6tuQjruievEl5qyjKfJG5J9PPPiGKK0RPXkNBQaKQMUziMYRYaGhoeGhFkeHidB1EeZHiQ4WCIc1vbSW4Oo2mS12BDW0wrwK/v181lbvx+2oH18ckTOFNt34Iww+AowegwjvET9yPhh7uJ4fYhyYbWplruqbRTSQgWd9dJ76OT9TrlDSqp+MAx5S3WDXu40znFhmlBlf/rf3Y0MrqHxtC/n0LJH+SIo2FHlVHLDlSfOtkWycbMa8cXFiMRO7cnSAA3pAIvF4jE0CiKgA2ICMQFdIlG0rUKMQUTHDGkkZMjDHlyCA3/cOUXk0jAYm5UAScRAUUcCYaI5xRHwCTkeQkcpQwkhEACXnLqCXVLMIm4hB7TiMMeHSUVAUEGL0If1FPECGLuZaIQlUi69Qh3VJfabR2WpEhiJIlbEFgNjA5sBnmNmDuNbM1li8Wy2TJROs+6x6Zc9FiANMSjddgL8WkrKj4a5cnE5JApThySCJ0nuWOEVzQtiwZ1INIwNquSxalN6xPTNPBWjX5KzpOXSWNW34B03en2smlZ1N9XZXNc5st5USOUljnu91zmZOOZ9ruGDtuY4JsTYmNCbjyrG/WWMIOWtQH9ZVV34kmWvXAS69AAlnxV5JdHlUnOFqXdPsZo6JPOyCzT3GY2Kf4Bzuq0OLugPgf5cNXlIBHH3U7KKju5rMGF0epfpiohVBHh0u5l6LHQq9PEcUxgP7XZ88uY897cycqsdz6rHE03Oi/qozJfD/nDHCeLZln5WgAiXeV2OC5mufGAe5pCok3PJuXqJCDNwlqvLxfQa3cwmXkjIiA6FXDSWdtOQutl3NZ6KexlsJfAnevYrJ8nMfUSvp2E1kuBL4attUcl3TEJ7tTY2ocnHLUk6EKP82SXtpeFbV52ncamZ+ujuhe+W84npveH7TXJH7XmaHjNYUZnpipM3vongLksl3Wg24brZia1c+iGidYkiYPrR9hAGM3MrDLdxnNfZwWD+Vm86Xk7w36pb6py/qI4fw2+cG0Do2G3y1GdVnbhfA5NIKafmbVXZbZOICVkm+85QsHRUxf6wTyNMw1QbdmclpWvpCBCQOt4lJs5lE2o8e7lPbQ38ytfkDl7onLyEwSpPo+F+TVgMH2jq3mnTPLFaeKKtvbQeXJpqi0z+PW+LbPrxgHb+xMAYRe+6gN0F8YExwg7hocFLOj5tBVzwN41WgHJBhSK5Uv3OoOHt6EiDxWpO61j2VaYDaPXoAL/CYbyxp3PkyJDhU+8x7ZKcxOtM0GCneVQQvoVy2XTTaRhsXaJHfsDbjbt7Zv+B/tvnPdDABBXfn8sAGvuN5BjzqCQrn1t17ShyD/83WaZ8fVFiI12Zopz2CuEeLii4PYCdImDfvS2G1mBfQ5CgCXt0FuyAQ5AX9kVGnfy405qTN1DjKmK+z8aTjlmrYox5KiDAPtYeCUAfNjcmyKcpw7RwmVeO7Xp7Qh/70mxDXC6g+zx7chuM+v4o5jVhfoujH9iZuEB3L4YYYJLIpWkLuUCz+gAx3Dri6XSsYyJpOJPYN3dMDnaB5OjB8Xk1XRam8aZ8YDE3m5wg3kAyASTsSCaESwBu4AYMEQzrpTmimsiCeD5J0B2YmZu/BpoxyFSHu1gl9yOXd2u1qGT3CdW+igJ8Any8ZxaG5kOYkYZ0bCq0oJh3VuZasYkUUQQrBgWQnkzH5CBdgWr0pJSzWOt2D3i77UQZ+eL3Ka26e2bO/d4UTRQHhlfH+xWPWfGLFy5+ap4XSVF7b5PBZmNaupevHy+Dy+f/y/ESjGQAD0ESaYxjWPeRkrKMZFAPc05w0TJTxYpx/sgMv5kkTKYjTwEXhAEMYu5UJLDvzRQmAykit2Xx1jrmBAeswcLlM9DoBzvQDfZL1BO7hUoMf0DAyUbxO57KsdKMcahhujiJFFUAls0BrZwrZ1SFycpmD9WXGpKGcNYyc82TN4M8dGHIM72gzj778mFUFlwgWNKINIpAWAHInFAnmMN8VAKIBILiZANpJBQgohYMK45+XzT4K21zvMdfM1++Jr73wvvkRDX4Dqmcgo5DW5iXDEtBJYtvJpAuqNQ/kNNw1r6xoNYxUBdDNQFdrPPl77+g93N5HUY05swvvrldpD9p6AeQpB278N+lq31XeyTcK9ikH2EhrKh/Rr1cZ9nCN71A3JHP9j5Mnh33JIq3ciOXcbO8/LiBzPNzcob9j4o9BTzKOxG0qt3e6HwbhcFHiso2VyxpiBnCf4XCrso9LWKR2H3bnf1614o/HoDCpxrFsN9Ci6xSqm/QNgFYdzdrD0Ix7sgvN8LhPc3BCRAgcaSiRgY8X+JglktKlDjbhvdGc2qgcoJJg6jx2+WZfPV8WUKuQm9WSZZZfMEUlKShxm/2rbR3evR9lqfuJbzv3WsTWWn69/Qtb+ej7r024rWTVI1/r6JXHlABqStBuTWxfZ2A1791lrv6hf0JQLuo10rXXPN3667JoO6hIgYiksG5aWK2f1xvfq929Y7t633d9jW7w+wLecidMvdHufNV2P0pWuO0SEiGj/+G8F++Ah27trn7fidnZB+0oJzalcm2zbKjq/pQfjIRgax/pCvDTd/K+Z/k9z+t6hn/wZQSwcIahw98e0IAACzJQAAUEsBAhQAFAAIAAgA64WEQ0Z6FHsxCQAATwkAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADrhYRD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAB1CQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAOuFhENqHD3x7QgAALMlAAAMAAAAAAAAAAAAAAAAANIJAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAA+RIAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> |
| *Process: | | *Process: |
− | # The teacher can recall the concept of a circle, quadrilateral, circumcircle. | + | # Show the geogebra file. |
− | # Can explain a cyclic quadrilateral and show the geogebra applet.
| |
| # Move points, the vertices of the quadrilateral and let the students observe the sum of opposite interior angles. | | # Move points, the vertices of the quadrilateral and let the students observe the sum of opposite interior angles. |
| Developmental Questions: | | Developmental Questions: |
Line 346: |
Line 344: |
| *Question Corner | | *Question Corner |
| # Name this special quadrilateral. | | # Name this special quadrilateral. |
| + | |
| ===Activity No # 2.Properties of a Cyclic quadrilateral=== | | ===Activity No # 2.Properties of a Cyclic quadrilateral=== |
| *Estimated Time: 45 minutes | | *Estimated Time: 45 minutes |