Line 100: |
Line 100: |
| *Materials/ Resources needed : Laptop, geogebra file, projector and a pointer. | | *Materials/ Resources needed : Laptop, geogebra file, projector and a pointer. |
| *Prerequisites/Instructions, if any | | *Prerequisites/Instructions, if any |
− | # The students should have prior knowledge of a circle and circumference. | + | # Circles and its parts should have been done. |
− | # They should know that an arc is a curved line along the circumference of a circle.
| |
− | # If the end points of an arc are joined to a third point on the circumference of a circle, then an angle on the circumference is formed.
| |
− | # If the end points of an arc are joined to the centre of a circle, then an angle at the centre of the circle is formed.
| |
− | # They should know to measure the angles.
| |
| *Multimedia resources: Laptop and a projector. | | *Multimedia resources: Laptop and a projector. |
| *Website interactives/ links/ / Geogebra Applets | | *Website interactives/ links/ / Geogebra Applets |
| <ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAKtagkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwFcD6PwiVBORw0KGgoAAAANSUhEUgAAAMgAAABcCAYAAAArr/rLAAAPI0lEQVR42u2deVQURx7HNWuexriJxgNQFPHgclHkEFFUEAUFYQRBREUUETVyqBi8HRQfnkFjNCoSFXHxeCZrUMQLCWvQkMMXj7zse/kn8e26Ocy6u3nJuslmf+uvTM/29FTP9Mx0DwP8eO/7uqeP6upf1Yeq+lV1Vbt27doBybnl4+oDs0JnkS2aR2QEePdDpwxL0NrYtZqEqzRM6XX2xEWL92gTgCzWJTPj4ba5AbEnLlpkgGJdMTdce5+lJiDPdezIZOl+AsRGvbe3nBnv+uuHjIwpaE5MHDysvmow8MkNJfBz3fvcxEN9c/YyzJ442ejYv6/cgFdfXsqOZcVNhe9rGwznlMbFUhjCdsb4aPjr2xfh0flrUJg2x2ycpcelGUo3TGd4Bj4vMzbByDZyz1MaZ9695uwjjcvHZZWGYx+VHeNeK343aZzMxf3LU+dYup/Sb2m7gHi4uMF/6z9gBsFtPxdXg5Eihwezfczwwd6+hnv+XlMP2xbmwkg/f26Y3n094P7p84ZwogJDwNOtN/zrciM79u07VyDQyweCvHyNMoC5uPDCwPvFYQjbr/9wyZDIj680mo2z9LgUkA7PdGBbIb5oC+l1vOcpfW/evXL2EcIVxyU7PtFw/4IpUy2WINI4ycVdeDam+09Xb7ZdQFbPmssMcW5LKduumjnXxLBSQHB/T94K+EfNu0Zhndm0jRleyOByRTxmgIBBXiyhxeeVxMVcGML2qyeJPm5YoFHc5OIsPY6ZBDNQdNBIo3CFZwmA/HKtCTp36iT7PKVx5t0rZx9eXIRr/nmhAbo819kkfcXx5MXJXNx5pWqbA+TukZPMAAeWr2bbO4dPmBglY9IUoyoWbrFaUrV+s1FY1SWl8J8nCcKr9oj35aoQSuJiLgxhmxIxgZVg0nO8OEuP78pZzqogvKqJUK3BY/W7D1h8npI48+61poq1O6fAYDNe+orjyYuTubgTIC3c+4Wl1HfVdVC2Yq3q4W9J3NIi7LA0OY398/L18CQ3L8kx6tKxC6yMWUm2IEBIPGHHYEDfALJFSwJkbHk59Ax+6lXKBiDjaSjs+yA7tDBAegQFGfbFgMx5+PDpfvv2ZFAV1KNLDyiYWEC2aGmAdHZ1JYM5QEsiloB7N3eyRUsDpMPzz8MzHTpY99+wezeoPrGv1enU9rVwesc6TcL+vP5aq7RZc2mLfpn6gPTX6SBIrzdS74gI8ExMNDmO18qF08/dDeDRp0YqQhep5Jg1Unq/tc+Ru158XNivXTgbahel2/UeWryzWmFbeh7PJlrEW433/uOFY87rxUJA8CUFNRcgSu5RCsgv396BrV1fYPr5q1uaZlg1bGbLvfYC4ui0btGA8Ay6q29vtl82fAjs9nA3Ovdm6HCT617z7GtkdOl9h4KHckHE+4R96X1y4YuvER8X7tnRszvbHhzmZ5KYvLjzzqEqxoZCUfv2sufF++ZsJoQj927iMHi2w2OC/Xi2QPHiJbYtL0xL8bY1rdsEIMLv8pAAo3Nv+A42yjS8RMOt9D7c3+nSE0r7uHIT8Q0/L5P75MIXX8MDZHOnjmz7UaneKCHk4s479/h+kxEg4vNCXMX75mwmhCP3buIw8Lk82wn2MweInG156aEk3ramdasERI1qx+GwIIfV+S3pZFwUfP+nd50mPq1Jaqd1mwCERCJAVNbXN87CNzffcdrwSASIRUAc7Yq1py5rjWvXGbw3cmFp5TI+rYs2tCns9R6qGcdWA4ijXLFKwpDKXteuta5pLfs9tOqT2dThN/D4y/dVeY82CYizuGKlz5dzr4qPb+veTTY8If48l6jU1cq7TuoOVuIe5dkJ4d3nPVD2vaRx4dmVlybScHjvwrOrUve0+FrxMXvduy0OEGdwxeIxIzeqnHuV44KUC88cIFJXq7m+BaXuUZ671uR5MvHn/TYHCM89be5drHkPKSBi17ca7l1qpDvYFcsLz5mrQra6VVvDOxEgJFJrAOT5zs9B5uwkkozOvVpJdtBYcdHj6JPblij85iM/Kp9sQd+kt+6v/2KGxEBGWAbop+jhUPohOJ9znunsy2dh/6z9bG5dPB/lE8UmYxB/GOX6An2ERoC0Mg3qNYj950cI3lr4FhROKoSs0VmQFJgEkd6R4OXixeTr5st+pwSlwMKxC2HN5DUGcBZFZkN2ZKYhzGet/BCNRIA45Uwjl/IvQWVmJcwbNQ/8+/gbYLBGOFtJXGQCTEkOh5qcGlYCkX0JkBarCK8IaFjRABumbLAZCrHG5uXA5s8WQfqtBAjuHww7k3fCxfyLNM0PAdLyFq7BKtGeGXsgqH+Q3WB49/GF2P17YOYdHRx5tRZmfKgznBs1cBQrmY7PP04TNhAgzq84/ziozauFMYPH2A2GoPiqCki7HQ+5xftgrf73kPZxosk10UOioX55PYwcMJLSgQBxTq2LXQfHM4+zRrZacPgOGAST97vApN3boerYZ5B2vQlm3k6RbaPU5NYwzxelBwHiNOr0bCc4mnEU9PF61cAQ4Ji05yW2RegOzj74tC2S6wpDgz359zy5bm/aXtiauJWtD0LpQ4A0u7D+PydsjmZw4O/M8ExIG5H2tN2R0RuCovuZvb8wppBBQulDgDSriuKLYPXk1ZrCgcLSY97fHrH9kIR+EJrsbjEcLEnmhs2ldCJAmkfTAqdBxbwKzeHAtsWOaTsMv7F6hdUsi2E9qW5dyL2gasM9MjIS5qTPgpgY0z4YoInJCRBBrEGcU6N6g1wKB6ogugB0ATqj66KKeiruXETvllou4NjYWMjNyQG9Xg979+41gOHp6cm2L774Ijt29uxZuH//Ptu/d+8eO45/eEx8HQHSSnU5/zKM8ByhORyofTP3mbp1d3RXHDb2uFfNr1LlvaOjJ0LRhvWQmppKpQQBwhcur7xt2jaHwBHqGQpbk7baBQgKAaEedwJEc6Hr9MbKG6oMHbEEB2pj/EYYO3isKSClL1n1HOxxv7z0MmVcAkRbLRq7iC1S4wg4BO8V77i1JQiqNKWUBjgSINrq+ivXVWmYK4Fjot9ENtRdLUBwgGNtbi1lXgJEG4UPCofXUl9zCBwobHtgG0QtQFBnFp2hQY0EiDbaPHUzpASnOAQOc9Ur1ITiHuDTb7DVz88fnw9Z4VmUgQkQ9YX9CY6CA/s9lkYtlf82xMx4LEv9IueWnKMMTICo/7nsscxjDoFD6Psw5ykLndEHQhL62hQX7F0Xf+NurfLy8iAlJZl7zlxvuvSc3LW3b98mQFqa5o+eD1ljshwCh1znoFg4WDFsVh+b4oOTROBEELbaYs2aNZCQkMD2zfWmiyGQ9qBj77rwJ94X7hF63oWt0BtPgDipNiVsgqThSQ6BA7/nQJm7Rul4LJ5yx+fC3FG2D2Is3bkdKiuOUDWKAPm/Dmcc5nbYqQ2HUHpYciV79xkME7f0sAkQHDaP38lTJiZA1Bt7tfSyQ+DAdoel6pW9rl6cUgjn4aJMTICoJvzOXGs4UIvHLVZclbMVECydzuWQJ4sAUVGX8i5pCseQAT5QcikTklLDoddveykDxMrxWGJdzLtImZgAUU+YobSAIzTRA97481yo+mE5NH5eDbMz42HV/gxNSxAUloiUiQkQh3USWgOHf8AA1hM+eV83qH94BD799C6cf/s8PLj6AIoWF8GRH7JZI1zLNsjRuUcpExMg6qlyXiUbMm4rHDgsJPxlVwZF5LqeMMR3IDt+95O7oC/UQ0VZBfzU+BNceOcCfPKwDsrvFGoGyPTg6VCsK6ZMTICop+KEYqPPXpXCgb3deB7bC4FRHibnU+NS4buH38Gt+ltQW1ILBYsLoKGuAY48WmyxNELQ/LxscwRkjs6kTEyAqCeWqcIzFcEhrkLhFD1y1aVHv85Ssn3Tdvix6Uf44t4X8OAvD+Bk5UkICRnCwjA7V2+uKwwbaf14LOwDoe9CCBDVJ2kom10mC4dcFUqpytPLuSN2ETa5e0YkujNZC0j1kmq2PgllYgJEVTUUNJjAYakKpUSThkxiM5dISxeEDsOWu2/4OA8YPb+31R2RuBQDZWACRHW9nvY6TAmNgbjDXSF6W3eLVSil2jV9FyuheOewVAqO7SfrDRu3zMWqZ2WPyYYV0SsoAxMg6svf3Q908wIhalMPq6tQcmJ/TU83bIyVq7fJNbEHu6nmyTq54CQbuk8ZmABRXX169ILc2AWqzqSIAwfRAWDuGqzGhWe72Q0IVq/qltdR5iVA1NXewkLDPs7gbilDWyNcZEfJJBDYFuF9YmvNcBP8ZBgn2abMS4BoJlzqoGl1kzozm4iWNLAkdOeid8zWEgRnNGlc2UgZlwDRXtjJtn7KersBwQazsKSBEqHb93f+A2wC5MCsAxDlHUUZlwBxzOyKjYWNsp4npVJaegjCXnNplUoJIPihF45GpkxLgDhM473Hw5mFZ2yGQ7qkgVKhWxf7P5QCgtW4umV14OfmR5mWAHGscFoenM7TFkCkSxooX/F2sJHbN+IVF5Nql1insk+x51B6ESDNIhw2botXy9rqldE3JMnuhhlN0P0bMLq/rNdqY8JGSicCpHnbIzh0w5rSQG5JA2uEpQiWJnLjsXBgpVprgpAIELvUtXNXtqCO0pJEbkkDq9owT0oNrF6h+xeHo0hH657OPs1c0pQ+BIjTlCS4XmHp9FJNq1fSTsKhIzwhclUvQ4O8KqsKSqaWUJoQIM6pZVHLmHdLzgVsbkkDa4XjwXBuLPRkYbUNpyaaETKD0oEAcW5N8JnAVqHCqo60x93ckga2aOIGN9BlDYdrhVchyCOI7E+AtJwq14IxC+CD1R8YtU3Uql4heCtjVkLT2pswYtxA6P7rvLWPb9wg+xMgLWvsFs7r+94r70F6WDqUJJbYBQZOuIAzL95cdRPyxucxEMnOBEirKFFC/EdB6uiZbBk3/MQWXbHoHpabLQU9XTjLIo7ZwsY33rcjeQdEeEWQTQmQVjgzimiqHWwv5Eflw9bErXAi6wQ0rGiAK0uvwNVlV9n22vJrUJlZyc4viVjCPqQiGxIgrVa4HoewJsfQsDCyCQFCkpYe1F4gQEgyDXWayZAAIclIN0wHwR7BZAsChMQTfvdBdiBASDIDGbFDj2xBgJA4wtVxaR4qAoSkoO+DRICQRHLv5s46A8kWBAiJI4TD9QVXskUb1P8An+rTHWD9D7EAAAAASUVORK5CYIJQSwcI/1i+CmEPAABcDwAAUEsDBBQACAAIAKtagkMAAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s1VdNU9swED2XX6HR3Xb8lQ8mhiFhAsxAmSkcelVsJVGxJddSCOHXdyXZkDQQmpYwJQdbXq/ert6T1pv+8UORo3taSSZ4gn23hRHlqcgYnyZ4riZOFx8fHfSnVEzpuCJoIqqCqARH2hM9SHbIxVdSUFmSlN6kM1qQS5ESZeBmSpWHnrdYLNwGwBXV1JtOlfsgM4wgOJcJrgeHALc2aREa96DV8r3vV5cW3mFcKsJTihEkVpC0EigtMp1EglPKVSUYQCsh8pds5zQvdUSWCj5iOdVjOROLC34LbwekSrCq5gCeinI5JKVeiaxtTbwLXs4VIq0En2BE/AQP4BYkeIi9xuV6rhqfM2OFcBJAUo2HFFM2Mpmrmaj0KCNKW8CT5rSAlJFalmApBeMKo5yMaa7jHR186et8kRj/oKlqsq3fmwdP+8DrochFhQAdpJqa6zjBQRxD2LycEbCAiMY5J0taoXuSa6/aAnhXIqNrVsJZYbRFUlGg0QfuSkozM7L5wqAEOLN/JiSXdTqpEFUm0YPeOZ0IoyVk4oLvo910xscs9YY91jHDVata5qup9L2apTf4GnwoX9eTiaRKL9IJArNGv71vOh1zZiGUE7vB3vkcfv795/tutyGs3X0XxlJRFIRniJt6c8UyS5qey55KxcCWimFNz3N9OLVwNcgbApxuCmBXuV2BdmQk0Lexve28pWN7aHvb9HlmOXajhuQo7K3+4o+j/OQ1yke7UD76YMq3sNp1g46l1Xc73TVa97GTv5Hly4yebjCabWe0AqSGruwtPleO7WtVpPUebHbceH1rGmpbbrvdWv3Zr5QTdlw/iJt6zji1PKoZS+84ldAjBE0NatnBOcsyqrsqO4f+5HaK1NcEs6LMWcrUE5e5rloXXEE3Rk2fIG3iK3zcUVreAvQ1v60Il7obsz7NHtxFzLoijTbEpH8uJv1fxHRCN/KNgD1zSECyCFqNXvRpBXsC/k22zMpGN2Q726Wqnf3Vl3wfRS3shG7H74axbZmcAL7QftSN2s3hDI2aHegXo3b0T+XNW+3C9bPp1fWg+X9y9AtQSwcIprFHkh0DAAASDQAAUEsDBBQACAAIAKtagkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACrWoJDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVba27jRhL+nZyioQXyYxHT/SY7sRPYwQY7wCSeycwuFvtnQZEtiWuKVEjKlge5wJ5ir5DnBXKAHGJPslXdpB6WTEu2kzjBWHx0s7urvvrq0WROPl1Mc3Jlqzori9MBC+iA2CIp06wYnw7mzegoGnz6yfsnY1uO7bCKyaispnFzOpDYM0tPB2bEI8ljehQy+JGCiaNYieFRymNlEibDZCgGhCzq7KOi/DKe2noWJ/ZNMrHT+GWZxI2beNI0s4+Oj6+vr4NuqqCsxsfj8TBY1OmAwDKL+nTQnnwEw208dC1cd04pO/7HFy/98EdZUTdxkdgBQRHm2Sfvv3dynRVpeU2us7SZgMA8AjkmNhtPQKhQ8QE5xl4z0MjMJk12ZWt4du3SCd1MZwPXLS6w/T1/RvKlPAOSZldZaqvTAQ04FYyrASmrzBZN24O1Mx13Y5xcZfbaD4Znbh45IE1Z5sMYxyHffEM45ZR8iAfmDxwOWvsm6u9R4Q/cH6Q/KN9H+sel7yp9H+n7SADqKquzYW5PB6M4r0FxWTGqALTldd3c5Natp72xkpl9CDLV2TvoLCho1Wsa7lP6If5p+JPYcLwpJFubtanmB07aTcl4GO0/J3+UpKKblOsdcnJ1h5y6Z1Iv+F6CqrU5YSr3z/1tzSj6xLw9o79+3IRa/iYinhx3XDlp6UHqCfZtzaex0xoJIwxRBu2eEQXk0CGYuSLMwCHkBOhAmCJSwSWLiMZjSEQIDZIIEhHsxwRx7FAR/MjQDaaJgsHwbgikJAwmkkQJwhypJAEqEUdMICkX0EMpouAhnJ5xHEJoIjVciYhIWCNyMmTQUcCDcA3TcyIYEfgwCwnXRON4TCLXdYRLhyE50ZRohgMCrYHSns7QPyICpdFudfBf52yyYjZvNnSVTNPutClnS1CgN3imldfznmrDKb53ksdDm0OgeIOQEnIV50gNN9GoLBqyZKa/N67i2SRL6je2aeCpmvw7vopfxo1dfA69625u1zcpi/pVVTaflfl8WtSEJGVOl2suc7Z2zperhgux1iDXG9Rag147D3fOW0ILmdcW5i+ruusep+kL7LHyEaDJiyK/Oa9sfDkrs00xTo5dzDmx8yTP0iwu/g5Wi7OgXsgqBKHj6kKQiqJuJWWVvrmpwZbJ4p+2KpFdPOBMMh2GLKSGwmM3voVHUWDgDgsjQbEH8LBOYmQhDwMmqZBSKBMyw0PwQje72wRTfm57tcQoXtiVuOMKSb528aI+L/PVLaeBz+JZM69c/gB+skKxzopxbp2VOJJDcE4uh+XijTcP4cd6ezODK+pXMBw7zROMe9DsfofLVlxUXzsOt2wHmV0Pdxz6o+sFpusX1QrJOgHZcpqsdm6NDlrOdC4LDR+D/LzImpfdRZMllysh8YEv59OhXZrP5pjsqcY8Ob5lXyeXtips3pozwDgv57Vn55qlpzbJpnDpG1qVxAjU32AB/m5qx5XtFp67rMwrzLXSdUPduu2G+rwqpy+Kq7dgBbcWcHLcrfKkTqpshtZGhhALLu3KntKsjiGUpOvPIf9A9ARDBqinQdUAM+fNpKxc3gUOBY5Iu9xOId8ijTMst56lmn/5zuVvsKZ5t+wgCrnWUnNlgAxatjysc0zjyDSDAKX+/PO3AzKNFy7Yu4t4WIOLaiChBU0Vq4TWO4yW4iHHbBmeku7kBrJmdzLKFnbpfmH92TvACxezsheEnJTDf4PbXYZoL8KqDzSvrJ16a+dKOWt3xzifTWIUkbWWH9+ASOtouTG/KNNWGew2Qxpw3JeQp4LdwXhNS1V38tcsTW2xfCauEuR1Gw2WxgC25hADfzbrFAnBxHomLAecwdKc61gzlBbHLUSdt1mq4y+DLXVtMmu3vpx+UF9Uen3hcakvuqe+7hCTbcvIdsnYkqhGE1EB1YzR0EjJBdQN2tnLkQL/DlbJoJDgEd4fkHe+XvP1CupiTe/rd29Rc1+Fnm0rdA/7e4w+L0aj2jaohCMeObG5OETdaN+HK/zIBJQppaTTrxCR9BqXgVaRDrWODIRXqqJejcsn0Pir31HjygmtfgN1s4CH0iiqdAQmHprQTy0CKBolYwqymIhpA7nIU+g7KafTuEhJ4UqQr0oov+1glQrHFA2dxMyFBBJzRMGreN50Hc79oO1Q94B4/juCKJwmWdiH4hoSAKAS0hguuTGQeAremn4YhFJxEVFJuRJG9jubh0HhcsLdSLzyQJxvAfHL9/1I3Irx398b48P9gyzkHWnmrR+T/razl+LAKCz39YLGM2N3zNnKYh8bo/O8vP7KjnK7cFL51rUs8w4g39gx3r8LytsYxv0Q1u1oHQDxPXRa8zF9ANCHB/U1woSBAfcUReC1pDbgxRw+yBaqqVBUQFkGMcOx5UioQEM3DmYmIKQrrXsA0/2A2a8L/0jta4FsOsuzJGuW2s3R474oGqgMrEuNtxP+S2tnWGNdFG+ruKhxI/dxEL/yEG/TdHgYxMNnBDEDJyeVlkYLClWxFt4jsoBB4a2Y4EoC8gx3StEj0kBEUEFrwTkcediXNz9viF/Cks8zHLmsbuEcbwGc9AOM4i/RS+7Ly++Ad7Osfxr2bvH0Zjepkb5SBVxwMAAqIwl5d9gDLX84tA9CZLiFSHoAIumzQWQXrW52k/AdFgMAYEi5AQQ1NaLbKfvtIFmy7xYeifeE6RYsF4dkjhe/e/pv9sRNgOPTzDAuVYQAMc8kLmSgJGSMymAyKUJfMhkZwM2QS8gvIe0X7FEl6yYin2VVspVGXtwVmGw/HJDiZclS3fZhYanDA1LrXRsw6jCy7LRtc49tZ2NbXDm/UROyoO1r3RvqDYK86+4smCsCsI21t96xtTwfqr0qW5Czrv9Z1+uMI9o0UBzwx01nwyjFuvlMtHOcSazoeGSUxqIupCIKQR9nChQSyAi4K7AtitgdhMQXDdkoSx6Re15s4T86LDEZPaPE5IgHDLyfgSgF9DJGhj58qSDEYkZo+KFGgTqRcmFAdaQMww2jEJgqe6zpeecluxE+vwvh8WEIj58TwpBwaCaUZBKCn4rw5S16VREwoXFPUEchDU1k2vqCq4BCEQv9gVsa4ucft77o2Qu4uHMv4IeD9gJ+uL0XwHCPQ3DDFQM2wYl6kr2Af7GeEL17T74/JKxvivp3B7J3PyC1SVn5bbpuR+7BkeSR+wR2MatgGlxKp0K7aMBDQcPp4IOv52Xz8VmV1AQtwY1Vk3o+bGyR2pQMb2Clduq7uaE3AcaxBpsDPy5gt+8HORUPp7N7713bKhut3hH7L2L4oCNXq9y6iavmFaY7xCfDKoi0AMduNOS+CsKjQzsKjDZgpvgJjwlDurENfb+2+Ya2304sccTY1HNcEICaxA1qnCQwXmVJVpO0nA+dwbRPffAnRj/efDRr8LG4uPEvfwmaHXSv7DTOCnynNwMpSTnyI7tsbX9E+QPdM7496CtV1t4uL7kpjEefrdDHtqdBHz/9uQf9MNCQE0kuIaumEZehQ18HmDhpJSOFW+VMHoa+2OSaQz4DsGGR08yjgTjH/jV9C/Le8Ij94dntMX/5jvzvP/8lhv787R8BxT04HAbGMMAK4jfllHsKI7W5oZAlG2kwsCtxF4zbWwC7N922M5/JATsAk1+jtHlw4gMpLNi9QRuPtIkoa7XGA8okFPpQYkJiRMNOazKgUFtCMWkgVYIisy+5lU+zDbCpy2FZ5jYuVm9K28B/K8N4+Ev8/oRh35o+or4uB0X1AhHPHDHdPe8iwKP7IPAAPTw/LXhPKli/OW5roQ1l6Cbn05GtLH5J/KD9IetJO/G5LN/i7utDtoleP2ybCLeFHq3MI79Bx/V+zIaSRkD5H4IjlEYDX/1b/aMIKp2IQSUbMaVC80QfMxxaU7zeril+PKim+HHvb4ie1PL7P+JZrxf8FgHbjVbf+8N73OaTvj/cBdTr+4q/nw4C6qd7gTqg+Ht6oLyD4vxgmMSvCtPx+qd27mvW9v/M+OT/UEsHCJzJjSWxCwAANjIAAFBLAQIUABQACAAIAKtagkP/WL4KYQ8AAFwPAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAq1qCQ6axR5IdAwAAEg0AABIAAAAAAAAAAAAAAAAApQ8AAGdlb2dlYnJhX21hY3JvLnhtbFBLAQIUABQACAAIAKtagkNFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAITAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAq1qCQ5zJjSWxCwAANjIAAAwAAAAAAAAAAAAAAAAAYBMAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEAAIBAABLHwAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | | <ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAKtagkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwFcD6PwiVBORw0KGgoAAAANSUhEUgAAAMgAAABcCAYAAAArr/rLAAAPI0lEQVR42u2deVQURx7HNWuexriJxgNQFPHgclHkEFFUEAUFYQRBREUUETVyqBi8HRQfnkFjNCoSFXHxeCZrUMQLCWvQkMMXj7zse/kn8e26Ocy6u3nJuslmf+uvTM/29FTP9Mx0DwP8eO/7uqeP6upf1Yeq+lV1Vbt27doBybnl4+oDs0JnkS2aR2QEePdDpwxL0NrYtZqEqzRM6XX2xEWL92gTgCzWJTPj4ba5AbEnLlpkgGJdMTdce5+lJiDPdezIZOl+AsRGvbe3nBnv+uuHjIwpaE5MHDysvmow8MkNJfBz3fvcxEN9c/YyzJ442ejYv6/cgFdfXsqOZcVNhe9rGwznlMbFUhjCdsb4aPjr2xfh0flrUJg2x2ycpcelGUo3TGd4Bj4vMzbByDZyz1MaZ9695uwjjcvHZZWGYx+VHeNeK343aZzMxf3LU+dYup/Sb2m7gHi4uMF/6z9gBsFtPxdXg5Eihwezfczwwd6+hnv+XlMP2xbmwkg/f26Y3n094P7p84ZwogJDwNOtN/zrciM79u07VyDQyweCvHyNMoC5uPDCwPvFYQjbr/9wyZDIj680mo2z9LgUkA7PdGBbIb5oC+l1vOcpfW/evXL2EcIVxyU7PtFw/4IpUy2WINI4ycVdeDam+09Xb7ZdQFbPmssMcW5LKduumjnXxLBSQHB/T94K+EfNu0Zhndm0jRleyOByRTxmgIBBXiyhxeeVxMVcGML2qyeJPm5YoFHc5OIsPY6ZBDNQdNBIo3CFZwmA/HKtCTp36iT7PKVx5t0rZx9eXIRr/nmhAbo819kkfcXx5MXJXNx5pWqbA+TukZPMAAeWr2bbO4dPmBglY9IUoyoWbrFaUrV+s1FY1SWl8J8nCcKr9oj35aoQSuJiLgxhmxIxgZVg0nO8OEuP78pZzqogvKqJUK3BY/W7D1h8npI48+61poq1O6fAYDNe+orjyYuTubgTIC3c+4Wl1HfVdVC2Yq3q4W9J3NIi7LA0OY398/L18CQ3L8kx6tKxC6yMWUm2IEBIPGHHYEDfALJFSwJkbHk59Ax+6lXKBiDjaSjs+yA7tDBAegQFGfbFgMx5+PDpfvv2ZFAV1KNLDyiYWEC2aGmAdHZ1JYM5QEsiloB7N3eyRUsDpMPzz8MzHTpY99+wezeoPrGv1enU9rVwesc6TcL+vP5aq7RZc2mLfpn6gPTX6SBIrzdS74gI8ExMNDmO18qF08/dDeDRp0YqQhep5Jg1Unq/tc+Ru158XNivXTgbahel2/UeWryzWmFbeh7PJlrEW433/uOFY87rxUJA8CUFNRcgSu5RCsgv396BrV1fYPr5q1uaZlg1bGbLvfYC4ui0btGA8Ay6q29vtl82fAjs9nA3Ovdm6HCT617z7GtkdOl9h4KHckHE+4R96X1y4YuvER8X7tnRszvbHhzmZ5KYvLjzzqEqxoZCUfv2sufF++ZsJoQj927iMHi2w2OC/Xi2QPHiJbYtL0xL8bY1rdsEIMLv8pAAo3Nv+A42yjS8RMOt9D7c3+nSE0r7uHIT8Q0/L5P75MIXX8MDZHOnjmz7UaneKCHk4s479/h+kxEg4vNCXMX75mwmhCP3buIw8Lk82wn2MweInG156aEk3ramdasERI1qx+GwIIfV+S3pZFwUfP+nd50mPq1Jaqd1mwCERCJAVNbXN87CNzffcdrwSASIRUAc7Yq1py5rjWvXGbw3cmFp5TI+rYs2tCns9R6qGcdWA4ijXLFKwpDKXteuta5pLfs9tOqT2dThN/D4y/dVeY82CYizuGKlz5dzr4qPb+veTTY8If48l6jU1cq7TuoOVuIe5dkJ4d3nPVD2vaRx4dmVlybScHjvwrOrUve0+FrxMXvduy0OEGdwxeIxIzeqnHuV44KUC88cIFJXq7m+BaXuUZ671uR5MvHn/TYHCM89be5drHkPKSBi17ca7l1qpDvYFcsLz5mrQra6VVvDOxEgJFJrAOT5zs9B5uwkkozOvVpJdtBYcdHj6JPblij85iM/Kp9sQd+kt+6v/2KGxEBGWAbop+jhUPohOJ9znunsy2dh/6z9bG5dPB/lE8UmYxB/GOX6An2ERoC0Mg3qNYj950cI3lr4FhROKoSs0VmQFJgEkd6R4OXixeTr5st+pwSlwMKxC2HN5DUGcBZFZkN2ZKYhzGet/BCNRIA45Uwjl/IvQWVmJcwbNQ/8+/gbYLBGOFtJXGQCTEkOh5qcGlYCkX0JkBarCK8IaFjRABumbLAZCrHG5uXA5s8WQfqtBAjuHww7k3fCxfyLNM0PAdLyFq7BKtGeGXsgqH+Q3WB49/GF2P17YOYdHRx5tRZmfKgznBs1cBQrmY7PP04TNhAgzq84/ziozauFMYPH2A2GoPiqCki7HQ+5xftgrf73kPZxosk10UOioX55PYwcMJLSgQBxTq2LXQfHM4+zRrZacPgOGAST97vApN3boerYZ5B2vQlm3k6RbaPU5NYwzxelBwHiNOr0bCc4mnEU9PF61cAQ4Ji05yW2RegOzj74tC2S6wpDgz359zy5bm/aXtiauJWtD0LpQ4A0u7D+PydsjmZw4O/M8ExIG5H2tN2R0RuCovuZvb8wppBBQulDgDSriuKLYPXk1ZrCgcLSY97fHrH9kIR+EJrsbjEcLEnmhs2ldCJAmkfTAqdBxbwKzeHAtsWOaTsMv7F6hdUsi2E9qW5dyL2gasM9MjIS5qTPgpgY0z4YoInJCRBBrEGcU6N6g1wKB6ogugB0ATqj66KKeiruXETvllou4NjYWMjNyQG9Xg979+41gOHp6cm2L774Ijt29uxZuH//Ptu/d+8eO45/eEx8HQHSSnU5/zKM8ByhORyofTP3mbp1d3RXHDb2uFfNr1LlvaOjJ0LRhvWQmppKpQQBwhcur7xt2jaHwBHqGQpbk7baBQgKAaEedwJEc6Hr9MbKG6oMHbEEB2pj/EYYO3isKSClL1n1HOxxv7z0MmVcAkRbLRq7iC1S4wg4BO8V77i1JQiqNKWUBjgSINrq+ivXVWmYK4Fjot9ENtRdLUBwgGNtbi1lXgJEG4UPCofXUl9zCBwobHtgG0QtQFBnFp2hQY0EiDbaPHUzpASnOAQOc9Ur1ITiHuDTb7DVz88fnw9Z4VmUgQkQ9YX9CY6CA/s9lkYtlf82xMx4LEv9IueWnKMMTICo/7nsscxjDoFD6Psw5ykLndEHQhL62hQX7F0Xf+NurfLy8iAlJZl7zlxvuvSc3LW3b98mQFqa5o+eD1ljshwCh1znoFg4WDFsVh+b4oOTROBEELbaYs2aNZCQkMD2zfWmiyGQ9qBj77rwJ94X7hF63oWt0BtPgDipNiVsgqThSQ6BA7/nQJm7Rul4LJ5yx+fC3FG2D2Is3bkdKiuOUDWKAPm/Dmcc5nbYqQ2HUHpYciV79xkME7f0sAkQHDaP38lTJiZA1Bt7tfSyQ+DAdoel6pW9rl6cUgjn4aJMTICoJvzOXGs4UIvHLVZclbMVECydzuWQJ4sAUVGX8i5pCseQAT5QcikTklLDoddveykDxMrxWGJdzLtImZgAUU+YobSAIzTRA97481yo+mE5NH5eDbMz42HV/gxNSxAUloiUiQkQh3USWgOHf8AA1hM+eV83qH94BD799C6cf/s8PLj6AIoWF8GRH7JZI1zLNsjRuUcpExMg6qlyXiUbMm4rHDgsJPxlVwZF5LqeMMR3IDt+95O7oC/UQ0VZBfzU+BNceOcCfPKwDsrvFGoGyPTg6VCsK6ZMTICop+KEYqPPXpXCgb3deB7bC4FRHibnU+NS4buH38Gt+ltQW1ILBYsLoKGuAY48WmyxNELQ/LxscwRkjs6kTEyAqCeWqcIzFcEhrkLhFD1y1aVHv85Ssn3Tdvix6Uf44t4X8OAvD+Bk5UkICRnCwjA7V2+uKwwbaf14LOwDoe9CCBDVJ2kom10mC4dcFUqpytPLuSN2ETa5e0YkujNZC0j1kmq2PgllYgJEVTUUNJjAYakKpUSThkxiM5dISxeEDsOWu2/4OA8YPb+31R2RuBQDZWACRHW9nvY6TAmNgbjDXSF6W3eLVSil2jV9FyuheOewVAqO7SfrDRu3zMWqZ2WPyYYV0SsoAxMg6svf3Q908wIhalMPq6tQcmJ/TU83bIyVq7fJNbEHu6nmyTq54CQbuk8ZmABRXX169ILc2AWqzqSIAwfRAWDuGqzGhWe72Q0IVq/qltdR5iVA1NXewkLDPs7gbilDWyNcZEfJJBDYFuF9YmvNcBP8ZBgn2abMS4BoJlzqoGl1kzozm4iWNLAkdOeid8zWEgRnNGlc2UgZlwDRXtjJtn7KersBwQazsKSBEqHb93f+A2wC5MCsAxDlHUUZlwBxzOyKjYWNsp4npVJaegjCXnNplUoJIPihF45GpkxLgDhM473Hw5mFZ2yGQ7qkgVKhWxf7P5QCgtW4umV14OfmR5mWAHGscFoenM7TFkCkSxooX/F2sJHbN+IVF5Nql1insk+x51B6ESDNIhw2botXy9rqldE3JMnuhhlN0P0bMLq/rNdqY8JGSicCpHnbIzh0w5rSQG5JA2uEpQiWJnLjsXBgpVprgpAIELvUtXNXtqCO0pJEbkkDq9owT0oNrF6h+xeHo0hH657OPs1c0pQ+BIjTlCS4XmHp9FJNq1fSTsKhIzwhclUvQ4O8KqsKSqaWUJoQIM6pZVHLmHdLzgVsbkkDa4XjwXBuLPRkYbUNpyaaETKD0oEAcW5N8JnAVqHCqo60x93ckga2aOIGN9BlDYdrhVchyCOI7E+AtJwq14IxC+CD1R8YtU3Uql4heCtjVkLT2pswYtxA6P7rvLWPb9wg+xMgLWvsFs7r+94r70F6WDqUJJbYBQZOuIAzL95cdRPyxucxEMnOBEirKFFC/EdB6uiZbBk3/MQWXbHoHpabLQU9XTjLIo7ZwsY33rcjeQdEeEWQTQmQVjgzimiqHWwv5Eflw9bErXAi6wQ0rGiAK0uvwNVlV9n22vJrUJlZyc4viVjCPqQiGxIgrVa4HoewJsfQsDCyCQFCkpYe1F4gQEgyDXWayZAAIclIN0wHwR7BZAsChMQTfvdBdiBASDIDGbFDj2xBgJA4wtVxaR4qAoSkoO+DRICQRHLv5s46A8kWBAiJI4TD9QVXskUb1P8An+rTHWD9D7EAAAAASUVORK5CYIJQSwcI/1i+CmEPAABcDwAAUEsDBBQACAAIAKtagkMAAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s1VdNU9swED2XX6HR3Xb8lQ8mhiFhAsxAmSkcelVsJVGxJddSCOHXdyXZkDQQmpYwJQdbXq/ert6T1pv+8UORo3taSSZ4gn23hRHlqcgYnyZ4riZOFx8fHfSnVEzpuCJoIqqCqARH2hM9SHbIxVdSUFmSlN6kM1qQS5ESZeBmSpWHnrdYLNwGwBXV1JtOlfsgM4wgOJcJrgeHALc2aREa96DV8r3vV5cW3mFcKsJTihEkVpC0EigtMp1EglPKVSUYQCsh8pds5zQvdUSWCj5iOdVjOROLC34LbwekSrCq5gCeinI5JKVeiaxtTbwLXs4VIq0En2BE/AQP4BYkeIi9xuV6rhqfM2OFcBJAUo2HFFM2Mpmrmaj0KCNKW8CT5rSAlJFalmApBeMKo5yMaa7jHR186et8kRj/oKlqsq3fmwdP+8DrochFhQAdpJqa6zjBQRxD2LycEbCAiMY5J0taoXuSa6/aAnhXIqNrVsJZYbRFUlGg0QfuSkozM7L5wqAEOLN/JiSXdTqpEFUm0YPeOZ0IoyVk4oLvo910xscs9YY91jHDVata5qup9L2apTf4GnwoX9eTiaRKL9IJArNGv71vOh1zZiGUE7vB3vkcfv795/tutyGs3X0XxlJRFIRniJt6c8UyS5qey55KxcCWimFNz3N9OLVwNcgbApxuCmBXuV2BdmQk0Lexve28pWN7aHvb9HlmOXajhuQo7K3+4o+j/OQ1yke7UD76YMq3sNp1g46l1Xc73TVa97GTv5Hly4yebjCabWe0AqSGruwtPleO7WtVpPUebHbceH1rGmpbbrvdWv3Zr5QTdlw/iJt6zji1PKoZS+84ldAjBE0NatnBOcsyqrsqO4f+5HaK1NcEs6LMWcrUE5e5rloXXEE3Rk2fIG3iK3zcUVreAvQ1v60Il7obsz7NHtxFzLoijTbEpH8uJv1fxHRCN/KNgD1zSECyCFqNXvRpBXsC/k22zMpGN2Q726Wqnf3Vl3wfRS3shG7H74axbZmcAL7QftSN2s3hDI2aHegXo3b0T+XNW+3C9bPp1fWg+X9y9AtQSwcIprFHkh0DAAASDQAAUEsDBBQACAAIAKtagkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACrWoJDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVba27jRhL+nZyioQXyYxHT/SY7sRPYwQY7wCSeycwuFvtnQZEtiWuKVEjKlge5wJ5ir5DnBXKAHGJPslXdpB6WTEu2kzjBWHx0s7urvvrq0WROPl1Mc3Jlqzori9MBC+iA2CIp06wYnw7mzegoGnz6yfsnY1uO7bCKyaispnFzOpDYM0tPB2bEI8ljehQy+JGCiaNYieFRymNlEibDZCgGhCzq7KOi/DKe2noWJ/ZNMrHT+GWZxI2beNI0s4+Oj6+vr4NuqqCsxsfj8TBY1OmAwDKL+nTQnnwEw208dC1cd04pO/7HFy/98EdZUTdxkdgBQRHm2Sfvv3dynRVpeU2us7SZgMA8AjkmNhtPQKhQ8QE5xl4z0MjMJk12ZWt4du3SCd1MZwPXLS6w/T1/RvKlPAOSZldZaqvTAQ04FYyrASmrzBZN24O1Mx13Y5xcZfbaD4Znbh45IE1Z5sMYxyHffEM45ZR8iAfmDxwOWvsm6u9R4Q/cH6Q/KN9H+sel7yp9H+n7SADqKquzYW5PB6M4r0FxWTGqALTldd3c5Natp72xkpl9CDLV2TvoLCho1Wsa7lP6If5p+JPYcLwpJFubtanmB07aTcl4GO0/J3+UpKKblOsdcnJ1h5y6Z1Iv+F6CqrU5YSr3z/1tzSj6xLw9o79+3IRa/iYinhx3XDlp6UHqCfZtzaex0xoJIwxRBu2eEQXk0CGYuSLMwCHkBOhAmCJSwSWLiMZjSEQIDZIIEhHsxwRx7FAR/MjQDaaJgsHwbgikJAwmkkQJwhypJAEqEUdMICkX0EMpouAhnJ5xHEJoIjVciYhIWCNyMmTQUcCDcA3TcyIYEfgwCwnXRON4TCLXdYRLhyE50ZRohgMCrYHSns7QPyICpdFudfBf52yyYjZvNnSVTNPutClnS1CgN3imldfznmrDKb53ksdDm0OgeIOQEnIV50gNN9GoLBqyZKa/N67i2SRL6je2aeCpmvw7vopfxo1dfA69625u1zcpi/pVVTaflfl8WtSEJGVOl2suc7Z2zperhgux1iDXG9Rag147D3fOW0ILmdcW5i+ruusep+kL7LHyEaDJiyK/Oa9sfDkrs00xTo5dzDmx8yTP0iwu/g5Wi7OgXsgqBKHj6kKQiqJuJWWVvrmpwZbJ4p+2KpFdPOBMMh2GLKSGwmM3voVHUWDgDgsjQbEH8LBOYmQhDwMmqZBSKBMyw0PwQje72wRTfm57tcQoXtiVuOMKSb528aI+L/PVLaeBz+JZM69c/gB+skKxzopxbp2VOJJDcE4uh+XijTcP4cd6ezODK+pXMBw7zROMe9DsfofLVlxUXzsOt2wHmV0Pdxz6o+sFpusX1QrJOgHZcpqsdm6NDlrOdC4LDR+D/LzImpfdRZMllysh8YEv59OhXZrP5pjsqcY8Ob5lXyeXtips3pozwDgv57Vn55qlpzbJpnDpG1qVxAjU32AB/m5qx5XtFp67rMwrzLXSdUPduu2G+rwqpy+Kq7dgBbcWcHLcrfKkTqpshtZGhhALLu3KntKsjiGUpOvPIf9A9ARDBqinQdUAM+fNpKxc3gUOBY5Iu9xOId8ijTMst56lmn/5zuVvsKZ5t+wgCrnWUnNlgAxatjysc0zjyDSDAKX+/PO3AzKNFy7Yu4t4WIOLaiChBU0Vq4TWO4yW4iHHbBmeku7kBrJmdzLKFnbpfmH92TvACxezsheEnJTDf4PbXYZoL8KqDzSvrJ16a+dKOWt3xzifTWIUkbWWH9+ASOtouTG/KNNWGew2Qxpw3JeQp4LdwXhNS1V38tcsTW2xfCauEuR1Gw2WxgC25hADfzbrFAnBxHomLAecwdKc61gzlBbHLUSdt1mq4y+DLXVtMmu3vpx+UF9Uen3hcakvuqe+7hCTbcvIdsnYkqhGE1EB1YzR0EjJBdQN2tnLkQL/DlbJoJDgEd4fkHe+XvP1CupiTe/rd29Rc1+Fnm0rdA/7e4w+L0aj2jaohCMeObG5OETdaN+HK/zIBJQppaTTrxCR9BqXgVaRDrWODIRXqqJejcsn0Pir31HjygmtfgN1s4CH0iiqdAQmHprQTy0CKBolYwqymIhpA7nIU+g7KafTuEhJ4UqQr0oov+1glQrHFA2dxMyFBBJzRMGreN50Hc79oO1Q94B4/juCKJwmWdiH4hoSAKAS0hguuTGQeAremn4YhFJxEVFJuRJG9jubh0HhcsLdSLzyQJxvAfHL9/1I3Irx398b48P9gyzkHWnmrR+T/razl+LAKCz39YLGM2N3zNnKYh8bo/O8vP7KjnK7cFL51rUs8w4g39gx3r8LytsYxv0Q1u1oHQDxPXRa8zF9ANCHB/U1woSBAfcUReC1pDbgxRw+yBaqqVBUQFkGMcOx5UioQEM3DmYmIKQrrXsA0/2A2a8L/0jta4FsOsuzJGuW2s3R474oGqgMrEuNtxP+S2tnWGNdFG+ruKhxI/dxEL/yEG/TdHgYxMNnBDEDJyeVlkYLClWxFt4jsoBB4a2Y4EoC8gx3StEj0kBEUEFrwTkcediXNz9viF/Cks8zHLmsbuEcbwGc9AOM4i/RS+7Ly++Ad7Osfxr2bvH0Zjepkb5SBVxwMAAqIwl5d9gDLX84tA9CZLiFSHoAIumzQWQXrW52k/AdFgMAYEi5AQQ1NaLbKfvtIFmy7xYeifeE6RYsF4dkjhe/e/pv9sRNgOPTzDAuVYQAMc8kLmSgJGSMymAyKUJfMhkZwM2QS8gvIe0X7FEl6yYin2VVspVGXtwVmGw/HJDiZclS3fZhYanDA1LrXRsw6jCy7LRtc49tZ2NbXDm/UROyoO1r3RvqDYK86+4smCsCsI21t96xtTwfqr0qW5Czrv9Z1+uMI9o0UBzwx01nwyjFuvlMtHOcSazoeGSUxqIupCIKQR9nChQSyAi4K7AtitgdhMQXDdkoSx6Re15s4T86LDEZPaPE5IgHDLyfgSgF9DJGhj58qSDEYkZo+KFGgTqRcmFAdaQMww2jEJgqe6zpeecluxE+vwvh8WEIj58TwpBwaCaUZBKCn4rw5S16VREwoXFPUEchDU1k2vqCq4BCEQv9gVsa4ucft77o2Qu4uHMv4IeD9gJ+uL0XwHCPQ3DDFQM2wYl6kr2Af7GeEL17T74/JKxvivp3B7J3PyC1SVn5bbpuR+7BkeSR+wR2MatgGlxKp0K7aMBDQcPp4IOv52Xz8VmV1AQtwY1Vk3o+bGyR2pQMb2Clduq7uaE3AcaxBpsDPy5gt+8HORUPp7N7713bKhut3hH7L2L4oCNXq9y6iavmFaY7xCfDKoi0AMduNOS+CsKjQzsKjDZgpvgJjwlDurENfb+2+Ya2304sccTY1HNcEICaxA1qnCQwXmVJVpO0nA+dwbRPffAnRj/efDRr8LG4uPEvfwmaHXSv7DTOCnynNwMpSTnyI7tsbX9E+QPdM7496CtV1t4uL7kpjEefrdDHtqdBHz/9uQf9MNCQE0kuIaumEZehQ18HmDhpJSOFW+VMHoa+2OSaQz4DsGGR08yjgTjH/jV9C/Le8Ij94dntMX/5jvzvP/8lhv787R8BxT04HAbGMMAK4jfllHsKI7W5oZAlG2kwsCtxF4zbWwC7N922M5/JATsAk1+jtHlw4gMpLNi9QRuPtIkoa7XGA8okFPpQYkJiRMNOazKgUFtCMWkgVYIisy+5lU+zDbCpy2FZ5jYuVm9K28B/K8N4+Ev8/oRh35o+or4uB0X1AhHPHDHdPe8iwKP7IPAAPTw/LXhPKli/OW5roQ1l6Cbn05GtLH5J/KD9IetJO/G5LN/i7utDtoleP2ybCLeFHq3MI79Bx/V+zIaSRkD5H4IjlEYDX/1b/aMIKp2IQSUbMaVC80QfMxxaU7zeril+PKim+HHvb4ie1PL7P+JZrxf8FgHbjVbf+8N73OaTvj/cBdTr+4q/nw4C6qd7gTqg+Ht6oLyD4vxgmMSvCtPx+qd27mvW9v/M+OT/UEsHCJzJjSWxCwAANjIAAFBLAQIUABQACAAIAKtagkP/WL4KYQ8AAFwPAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAq1qCQ6axR5IdAwAAEg0AABIAAAAAAAAAAAAAAAAApQ8AAGdlb2dlYnJhX21hY3JvLnhtbFBLAQIUABQACAAIAKtagkNFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAITAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAq1qCQ5zJjSWxCwAANjIAAAwAAAAAAAAAAAAAAAAAYBMAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEAAIBAABLHwAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> |
| *Process: | | *Process: |
− | # The teacher should initially discuss about the circle , radius, centre and circumference. | + | # Project the geogebra file and ask the questions listed below. |
− | # Projecting geogebra file she can show the major and the minor arcs.
| |
− | # Name the arc in discussion.
| |
− | # Let students find out and name the angle subtended by the arc at the centre and angle subtended by the same arc on the circumference.
| |
− | # Observe that the end points of the arc lie on the angle.
| |
− | # Each side of the angle contains at least one end -point of the arc.
| |
− | # Project different angles subtended by the same arc on the circumference. What is the inference ?
| |
− | # Compare angle formed at the centre and angle formed on the circumference by the same arc.
| |
− | # Change the angles/arc using slider. Note down the two angles in each case.
| |
− | # Ask students what they observed ? Let them infer.
| |
| *Developmental Questions: | | *Developmental Questions: |
| # Name the centre of the circle? | | # Name the centre of the circle? |