Changes

Jump to navigation Jump to search
Line 86: Line 86:  
# The students should have prior knowlede about line segments, angles and bisectors.
 
# The students should have prior knowlede about line segments, angles and bisectors.
 
*Multimedia resources: Laptop
 
*Multimedia resources: Laptop
*Website interactives/ links/ / Geogebra Applets
+
*Website interactives/ links/ / Geogebra Applets : This geogebra file has been created by ITfC-Edu-Team
 
<ggb_applet width="1282" height="601" version="4.0" ggbBase64="UEsDBBQACAAIAExplEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwFQGa/miVBORw0KGgoAAAANSUhEUgAAAMgAAABgCAYAAABYFz0dAAAZF0lEQVR42u1dC3QVRZpmd2cPnh0ERR1YFATds6yrq6sSAgFBGRwUZ0QYdWRUljd5EpKQSEIiCISAQcHHepBlFYjxgYDISyYBgQAJiAgJj0AevEN4iLx1xhj+vV+Fulu3b3V139ybpPve7nPq3Lpd1X/9VV1/1/+o/69mpLiOHz9ORtf58+f9Km8sGHbCNdT6a2Vcm6kqnz592hDg5cuX/SpvLBh2wjXU+mtlXJUEUlZWZgjw1KlTfpU3Fgw74Rpq/bUyrs3ARmGlqKysZASBPO4hv3v3bt0y/lxxcTErl5Uhv3fvXnfZvn37WJ6X8edQh8PXluEXbfAywJDhfODAAY+2ZTijjha+iHNFRYVXmRZn3h8RvggTMLRlWpx5f7TjxZ8DDNlYingBhl4Zx1nbHy1e4rvTw1nbHy1e4rvTw9lMf3bt2qX7/vmY6JXx5wDDzPv3ZT47LJakvNn7o+nBpVN9goFnxF+96/HVs+lX/xPpsFjBwGKFqpCOSf7Akinuyd5lWSZL+N8pN5Xd6758Bv1mUZIHYfDEy3qtyJbC4Pf+9dMM9svr3f3JRPYLPMR6vC7/D/i3LUx0hPSmFtKxzBpdJ06c8Ku8sWD40o52NRAnd4ecFHav55eve0zibl/MoL+fN4b9F8vuvE5QIgy0c89nk+jv3h/jbgf17vokzV3eekGCGzavy/9z+KH4bhobhsNi+VCOSdnQuJppw2GxLMJiOQTi9NchEEfN66hOHVz11byqylB3GV1nz571q7yxYNgJ11Drr5VxdVgsh21xcFWxWFBr4SYoB8sL8riH/P79+3XL+HPl5eWsXFaGPFYhXgYNAfK8jD+HOhy+tgy/aIOXAYYM5yNHjni0LcMZdbTwRZyh1taWaXHm/RHhizABQ1umxZn3Rzte/DnAkI2liBdg6JVxnLX90eIlvjs9nMX+HDp0yAsv8d3p4WymPwcPHtR9/3xM9Mr4c4Bh5v37Mp8dGcTmMJo1836FuPfjjz+yOsjz/zIYsudFuJhU/D9SbW2tO48k4iprQ9WOiBdvR2xbhCeDoa3X6DKIlVksDAp/SbjOnDnjNXjigCIPOKoJgXLtS9bWd1vbr9/XtiOW602Y+o5ZWFiYuy18LXk7AwYMYF93EadWrVrRxYsXKT8/3/3/hx9+oHvvvZfat2/P6t1xxx2s7MKFC+w/4OA/h4X7LVu2ZETB4XD4/D+vjwtt5OXluXHiMPi4I/G2RTwBH+0AN9Tnz/EyPMOfl+HI6wWFmlf8+sgmGQaJ3+ODwAdCHGAMCn9R/EVyGHwQtfCxb0iEoR3sqqoq92DzMsDHhTb4pOBluMR7skkKWA5f76h5HRbL6a+j5rWjKnHZy2GOmtfB1VHzhqqat1kz5900GYtlxRVEr24g2xkyZIjfMFQTN5Bj1rUr2QbXxmonoCuISm+8Z88eQ70x5BSVHUTU+evZQVBHZQe5q/0t1L9nJ5oe242mRIbRG/G9acvsZNqYnUAbXh/H8nmZMSxf8EaSVxnuIY86+I88ypHPju9FU6O60qTRYdSp/W2UmZmptIPw/ujZQf7ttt70WO/+NH78eEpLS2MpMTGRJkyYwPIpKSkUFxfH8riHemIZ/o8bN86rDHmUs3xqIrW5M4Kys7OVdhBuG9KzG9z6j72oT5unKKNHBk3sPpHSuqVRet90D5yBC8dLhvPYsWM9yno/35sino2gHs/1oG6DutEDTz1AzW+8n+Gan39O1w5SWlqqtIPIbFja/gCGaj5DieLrfLYFixX+H21p9Oj/ooMHd9DDk/+TUj9OoKtnqjzSmcNlXvfM1ElcFE0lJVuobc821P3+tn73J+KhblSW8ildq6ltkDG7+vNlemf7BAoL7+o3rg/dGkYpv0mhmmk1RFVUlzL8wzV7bTaVniylqvNVVHigkNr2aku33dXGb1yd3byKKysugoqK8ikmZiRt253PCOTK6RMBIZC4eaMoMnIYbdq+mjJjwunatWt+4Yov6c/VF6kqfbkukdR3zDhx4Bft+DuuWDmqd1VT+r+nU80TLiJZ5br5CdX93uBKtb7huqp4FTWPak5D5w+lzfs2M+IAkWBFCUoZxCoOU5nR3WjsgjE08q2XKezph2hibpLXRK8s2WlIINo6p10E0+0PXShq7nAGf2pkmN+4gjXBpSISFYw15R/RR9vfok1HvqSzV6o8iCN13Qt0+W8XqfhUIQ1Lf5Zqr9X6hWtqt1S2ajAi6eUikvCauoJ+rlTj+/vtN7sf1dTWUOmxUmrzSBsq2FfAVpKuA7taYh4F3GHKKi63BW+Od0/qQ3t30SuJ8XTx5FGPyV5dUWpIIGIdEEfS2Fj2y+8VzPLfjRV8OL/0iEQFY8vR1ZRX+jkVHf8LnblaRyCnr5ygN4sSaV3lEvqx5gptP7GORk55jq7RNb9wTY9IJ4Kp6w0XkYx3EUmai0hqXJRxoX7v98KPdVZzjEHp0VJ6cf6LtLJ4JXX/Y3dLzKOgjYu1ZU6Kx0SXEYkvLJaMOJC2uAjRX1y1rI+MSHwZM5GtUrVTLxart0vgmOnK7K/7X13tIpL060RSD1w5cfB756+ep7RlacHLYllFzbtpljdLpSWS4wf2GBII6ugRB9LG18f5jWtaQjL9fOoiHY35mL7PKaJrP//iQSSX1pXS2dNn6EphJcu7+CTdNvSIAxc0S/7i6gHjutxRXeVJJGbfr5Y4uExyQ9QNlJycbDlzgWk1r6qyVbaabMhOkE54kUiO7NttSCD7dhTqEgfS1zPG+o0rVJ64jkTm0oU1e1j+l/NX6a8VZxmRnP+ymKoPHWPEcWFVCZFEKYA2VMQhthMIXLVyh7iSmHm/MuIQZZJA4GrJrSZWY7EuVB2lwy5C4EkkkpMGMgiIYmzUGF3iaCgWS8ZuXTp/0X0PE2jaqmnsl19nzp9SEkegWCwPGBc8yziRGPHtmFAy4uAySaBwtaTDFFYQI8MKjC8qQyE38KgMhdygpWcoypsey+QHpI//dx4NGfwn14pRzFgmrBx7v9lKMaNHUMFfVtPiRR/SqcoDtG1DHivDMxUlOylq5HAqKSpg/3EfzyIPwR3/8bs+K87QYUrmdCPinJSUpHSYOrXvMO2LXcCIBPcmLp5IOQU51G58O6o+XU2HT1RS1vpYOnn2hNLBKD4+3tBh6uTJk0rDGmCoHKawpR6GQhCL7P3jNyoqysMpToYzxsSMA5jKUIi+GBkKRScy2ZzlTle+zGfbsVhrv1hCz/y+v3slOFleyvI7Nq2jP/R/ghbNe4/ZSD6c+990qfqYh8xhxIYFksVSXVUlFWwl2Vn5LVs9oArdcGADjV+SSG9tS2FEYnQFnMXSuUpKSrwEd1HmMCOnBi2LZUU1r0qFqxXctQK5kSo40GpeFQywW/MHjKFD1ZWMQCrOllH8ymdp8spXTY2Z2XYCAUOr3QJxYGXhX9nGwNVR8+pc2K6uVfOqVLhumaR8v5dAbqQK1sog4lb5QMggWhgnDpZTzrNjKXXyKzT4o140bfUUJouYGbOAyyAGMDiRZGVlMe3Xo48+avr92loGsauaV6bC5XnIJN26dmFEoldHlgKh5vVV/Vq+v5jadbiJ4ibE+jRmAVfzmoCBCOutW7emqVOn0k8//dSouDpq3nqoecXE5QvOVoFItMZEq8ggHAa0VLMLkqm4cDuVJOfQ1UtX2F4wM2PWWDIIh8FlDhCJyG41Fq6OmteEmteIxdLKHFqZxFcWqyHZFq2dAywLNyZajcXS2jlEmSSkWSw7CelQ5cqMgCKRWEVIhwpXZufgdpIfzp6zjJAOda/MzsGJxAzbYmsh3Q4OU2unRbvtINiRi4mOPLeDwGg4augQZinXliFfXLSZ4iJH0d7tW5R2kPzMGEM7iJHDFLQ7KjvIseojNGXtGGYMlAWOgwp4f9xCRiQquwGcrozsIEYOU4ChsoMgwc4h2qlEnMFuRUdHu9vTs3VgTIzsILZ0mLLaCjLv7TlUvG0zLV70gWtCH/CQOWAkxP/VSz+j/Tu3SbeljIuJ8toF3JgrCGersIIoBcW9R+hYwmf0txPn2b4u2X6thl5BOFtltEUcxkSZncRR8zaBDLLs4xxas3Qx5a1YRt8fq6Sy4m/d20fmvvUmnT50kJbmLqIP577LjIRaApAJ7o0lg4gyh5kx+z5nGx360zz6Ycl3XuXYxzUxNU254dEfXEWZwwyusl3AISGDWFmLpRXIzWxWRB09f5KG1GJpBXIzY3Zh9R76Pnc7HXphHhPcseGx9vJfWTk2OU6IT1JueKwvrlqB3Oz7lRLJ9R3C45OCVItlVTuIbMu62e3uKqcrf+0gNbU/08tTn6Q15Tm02pV+qa3xIA44OsELcNOBNe68URt6TleBsC30eaEPZa3JopzCHLYtHaFKtQK5L+/Xi0ged6UFrhWkb5ol5lHQxsUS1bx6/hy++qTLiCQQLNZLWb+jzUdW0tZjaxhRvFHoEtqv1n2VNh9dxTwCN5avZHk9j0BtGzIiCQTbgsgjW8u3UqcJnei1pa9RyispXs/4+n7dRPK9i0hewNeNKCMiw1HzNqRwlR3fm8YtjKSY90dQi66/pkkfpSjdac243HIieWRQdxr7wWhql9iWXo/rGTDBV+XPUZ8x0xJJIARfePphH9h3Fd+xcD2PZT0WEFyrD7qI5HYXkeyui5aS3j09OIV0q8gg06LDWWie++5bz6KPyKKamJVBtPfGvDPUHS0FMbdgyW7e3D8ZBESBIGl6/hz1HTORSLj8oArGZtQOfMXLTpRRlwFdKPy1cFpYuJC+2vNV/XHl0VCGuohkoYtI2rmIpKyG0sLTLDGPgnY37xMRHVhcLBBJhetrJ4uLVZ8VhMfF4iGFnuzRQamuNINrn76P0luFKUpnJ3/GjBNJ39/29RvXDvd1oNt7306RH0SylQQpY3kdO8TdZc+dO2e+DXglZrpSLtVFS1lcRySPd3jcb1wtaSg8fPiwoWEFBhyVoZA7qagMhfwkJD1D0c03dqTeD3dmcaumjOlCM2MjmLwAoRqaJ+Th7IQ8bBnaMtxDHnXwH3mUI58V052tHBOGPkitWnSmSZMmKQ2FMqcbEeeb2txDPR7po4ysCMOZKrIifLhVkRUnx71CbVo8xDYNqgyFkCFVhrV/aN6RbvmX2xmrhSiI4YPCqc/gPqyNjn07MpkEuKgiK6Jv7rKECXXRGV0sFeQOrBzjOo+jG391P8NVZSjkTld6xkD0xchQCBiq+cydrnyZz87xB0EKw992uLusc/yBDdS8zvEHDdtOYwaV1mvLUfM2MYxAtqM6b088bszoCDa9M/dkp3Jp6/M6em3I2jE6Tk4GK9DvpksXR81rCeEqUO2IR7nxTYeqI9cg1KrOBcRRbv3792f3xAnLz+HjR83h0h4DJ57zd/ToUd028BzyHFfxmDm94+fEs/7s8m6aXM1rldi8gYBhJ1xDrb9WxtVhsYIUhoNrI7BYDoE4/Q15ArGawxTOO9fqunkAO63zET/IXsxjLxB/jvPfnBfn/LZWB88PqeeOQfzM9Po4THE9up7DlNgfmcMUdw4ycjACDH8dpsR3p4eztj9avMR3p4ezmf7Y0mGqodW8q1atYpNx+PDh7nuyw+g5HhBEtWeUQ7gUBVg8zwVg8Rx1/IpEwwVVDpff53kONxTUvA6uFlXz9uvXz5Tjv8NiObiGZFws/pV2vqjOCuLExWpAGFiFli1bRvPnz6fJkyd7pQULFlBRUZGz1YS/9OssJpe39C4ur4nPiMZEkV3VM0bigvxg13G1rRYLRLFkyRLmnIO0cuVKXcMmNl0uX76cbbpD3bVr14YE24IoiJiwMTEx7nuivHXPPfd4yFsyGa+qqkop461YscIt42mJhst4LVu29JIrtTKeo+YNIAxMduyI3bFjR73aWbduHXt+w4YNXuVXr15lKVj4+kuXLjkySEMRiNVYLKwE2Fqtndj1bQeEhm3bnO+Eihj/U1NTdY+DthOLhe3dCQkJXttH7MQOWprFstJuXhAF2CMeVTxQ7fBQ/rD5oBwyCyZVsAi+c+bMqRcMjDNPZvEYMWJE8AnpdnCYuuWmVnT/nf9MW2Yn03o4Rb2RxPIbsxNoAxyfXPmvZ8azvKwM95BHHfxHHuVi2bQ/9qBbW99MTz/9tF8OU2BLjQyF4qlbMkMhYBgZ1rjxTc9QCCL/fcSDHn0VxwQpf3osSx9GD6Tpg7pTj87tXePclmY824P9z4l/jo23bCz5OD/T8yEaOXKk0lBopj+2dJiywgoCeeGO1i0pNnKUMiqiL2F/9GJs3X5zC9q4cWNQqE7BLg75bZjuWBR9nceC7k1KfYU2561h98qLd1KvHhEsj7FGlEocbYc6OMlLBmfxhKFs1XXUvE3AO2IbAwYfgeNUAd/8CdoghhGCKy6PrRsMat71mdFe/T3m+kigv/PemSMdj4nJSV5jBuLAMx+8945XfbQRsjJIU2qxoMaFQI5fHhdLRSS+xsWSxdiCjzqPLBgMWqyC1+M9+rujYD1Fjhjm7q9szLQEItb58rNcypr8qmc8Y1cbIavFakoCgXFv165dLC8GjtMjEl8JRBaAjgeOg3ZLpimzM4GApcK4GY2ZikCQ8ld+4UEkIU0gTeUwheO9xK/4+pnxumd+8Hs4FsGIQHgdveiM66b//zFoYLUaq78NAQNX/tRI93jFjhmlOx4qApHVAXsGQmEE42ojELja0mGqqVxu586dy+QP95dQcoCOlkjMxsXSIw7t8QdQDsgs7nZyMd44I471Kz46Utpf2ZhpCURvXEFwGHu0EQhcneMPfKgDe4d46R3BJhKJGRYLB+3oEYcsNq8WDzuyWDhX/rNFH5iSycywWCLLBqE9pFmsplDzAsEZM2Z4lKtOueVEcthAiwWigMrytIKQtNHdZQRiJ0Ph19NjvOQOI7W3lkBU6nN8bNBGoIyatjMUNoVHIYRzsDe+HMGGg3GiRgxj5xTKjmDD/aiRw2lnwdc+HcGWm5vLNuPZ1aNwacqLNCU91d1XcUyQcCSdtix5XJzHOB/8brvHc+J4TXt1Ii1N/nPoehQ2BYslMzqZOeVW7/QoUebw9ZRb7CQAwdqVxXr7pT5Utvtb02pvX1gspF1bN9G8EU+GLovVFEK6jEDMnHKLL5pWcM+aOtlD5qjPKbdafOwkpE8fGM76hf1UZoN5mxXSeUIbRixM0ArpTWFJlxGI7Ag2PSs5JxKwFgmx0R6b7oys7bIj2LT42MWSji/hgAc6ugmEJ6OdBTJLumrMJj31MNM68ku2yTFoLel2W0FEduvGFi1owFP9ffoaBtMKEhsbS3e1vYVNeL003rW6au9hL5ZRHTF1bncrDR482FHzWl0G4bwylzlkMomvMogMHzvJIFmDuvm09cZXGYSxsa42HDVvI6rWZASiUvOK6kitEVArkxjt+JUd4qnFx05q3sxnuvq8u9kXNS8S2ghqNW+wyCD7dhRKjYAikfgqg4DFRCAIO8oguGY935Pt3vVld7MvMsj+ndvonZf7BARXy8ogVnOYgsCHCCSirjs/K05pB4GRMGrkMEYkMjtIcdFmioscRRXF3yrtIBtmxnvghU2Ln3/+uS0dprgdZOaUSbp2EG7jUNlBju4v1rWDZGdOYW0Y2UGC1mGqKYR0IDdr1izTQjpnqyoMNitiJRkXE6V0utIK6R5nfttQzYt9UipLur9qXox7SO/FaiqHKe0WDz0WS5Q5zDhM7di0Tul0pWWxZFtN7OYwhX1Y2I8VaBarZPtWejt7Zmg7TDXVbl4EGoDLqGoF0QrkZnfzqpyuxBUEIYUQd8suXzq9FUTceRvIFQRjf+74IWc3b1Oo1oCk+PXWqnllW9Z9cZjSIxJRzQt/ENnRxXZ0mMLXXsZq1VfNuzR3kXuHcEjv5m1Kn/R3333X7RMislh6/hy++qTLiISzWPAmhIBuJ1ZAj8XifUMAhjdnZPrNYmH/lUhsIc1iNWVUE9GrkNtBVM5O9YlqoiUS2EG4L7zd9PWyC1vR0a+jpdVuIjGyC6nsIPABwfh7fFSCfbu7FVksUQ6APAIWS0Uc9Q3aoCUSsFhg7crLj9iOFVCxWDffXOshXEMmgeCuYrFeevHP7jHD2MAPXRuwQWSxEI6Xp5Bhsaxwyu2nn35Kz0fcxzYeqpydzArpKqerQWGdmS+KHYVJ2YtOHPiY7lhAhoDa+73Zs9zGRIzvk7973GuDIz5MICwZnK+mRHpsVgw6Id1qDlMyY1DrX3ekAWEPKiMr5mXGGEZWRB29yIozBj9Grf7pPsrImKSMrGgXh6nIyHh6+O5HlJEV106NouUTh9Gcl/qwSIphd7eju9q0ZpEVMweG07tD+9GKjBHKyIq97u1FAwcODU2HKSudk46VRBVntr7tQObA9hasHHb+0jm4hpCaV68cMgkEdzHiiT/tIO4WBHIOzznWzMHV1scfcO0WVMAQpkVjoi/tgCBAaHCnFW0doXLClINrEKh5jcqxFILlAqFg79Y333yjhIHVIiMjg9WHUAlCCyZ1pINrCKp5zZajU5j0svMJeYIMY8ZN1WFbHFxtpeYNRaHVEdKtA+P/AAl4bjurJoYjAAAAAElFTkSuQmCCUEsHCLF+oBZVGQAAUBkAAFBLAwQUAAgACABMaZRDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgACABMaZRDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1d63LbxhX+nTzFDn902qlIYXFnKqVD3Swlku3YjpvJZTIgsKRggQANgLqk6UM196TTPoKfqWd3ARAXggQoiQI0liwDxC728n3nnD1nsVju/P164qBL4ge25+52cE/oIOKanmW7493OLBx19c7fP/5wZ0y8MRn6Bhp5/sQIdzsyzWlbcMtI7wsS0bqCqJhd2SRS1zCNfneoDGV5NBpZggg50XVgf+R6T40JCaaGSV6a52RinHqmEbKKz8Nw+tH29tXVVS+uquf54+3xeNi7DqwOgma6wW4nOvkIisvcdCWx7KIg4O0vzk558V3bDULDNUkH0S7M7I8//GDnynYt7wpd2VZ4Dq0XdbGDzok9PodOaYrUQds01xQQmRIztC9JAPemPrJOh5Nph2UzXJr+AT9DTtKfDrLsS9si/m5H6GFFFQRVlAVR7qu4gzzfJm4Y5cRRjdtxWTuXNrnihdIzVp/cQaHnOUODloe+/x6JgCraogfMDyIcVJUnCfyaIPGDyA8yPyg8j8xvl3lWmeeReR4ZULi0A3vokN3OyHACANB2Rz6Ql3wOwhuHsPZEF+Z9x1vQp8D+DjJLAnDPEYfrgrBF/wCMLZkmbGc7iVO1hv6sZqVxlcBojTrFW/VUiisVF/VTVEr6qS6plHe8UkeVVJ1QFfvH/go1Ssu6ma+Rf75dhaq8kS7ubMe6shOpBwrOad5IfEIyCajCSH2k9KncY6SAcqgaiLmCcB8OmohAHRBWkKzAR6wjlR41JGmQICMJ6YjmwxJi2qHo8J+sscJUpEBh9KoGSokwVCQjRUKYKZWMQJUQU0xQUlGCHIqCFLiJVo9FWoSkIlmFT5KOZGgj1UkNQ0YJboTPUL2IJIwkejPWkKgilZaHZarrqk6bDkWKSBWQimmBoNag0lydIb+OJNobNYLLdqezMIIoQt2cWDFcoTdNLkN2sEhzq8ctVMYofrDjGEPiwEDxklKJ0KXhUJVgNY08N0SJRvJrY9+Ynttm8JKEIdwVoDfGpXFqhOT6CHIHcd0sr+m5wXPfC/c9ZzZxA4RMzxHihsI5Tp2L8854jpRKkNMJSipBTZ1rC+v1IAXNAgL1e34QZzcs64TmmNsGgPKZ69zs+cS4mHp2ths722zM2SEz07Et23Bfg7TSWiguKDUECfMhSMV63BLPt17eBCDD6PpL4nswCkhiTxPmP6AnNzxF0XBP76d+oGmmQZVPUXpC+gcU86Y0iVVMLhOCjGsy7+vYtxNRoecnwZ7nWEky6/2+MQ1nPvMdwDb6tEsDd+wQJiFMsWFgNi+G3vVLLhoSL+vVzRQ+CbwBwzFDHYFpEBUFMkTHIT+yPLRlSS6B5RFYDiGWNdtK0nFfZDnYcciPLBcIL29a1FMc9xILcTV2wAya0MmqDRN9OszPXDs8jT+Etnkx7yq94elsMiSJAGXLxHdV5s52TsJ2LojvEicSaOBy5s0Crp8pWbeIaU/gI0+IIDEoXZ9DA/hVi4x9EjfcYX4ZB4ylCmlRLVxmRR353uTEvXwFspBrwM523MqdwPTtKRU5NIRR4ILMpcqyAwMGESt9H9VA6LpJBwuAJ6TQgG7OwnPPZ54XmBQ4UsVzyAQ8LRQy8WISmsA8YA4cxRN5wzdg1ZKRj6fPCYPkhaLGhNJwpucGdfKiTjvGDfEzMLDyzjwrDw5gz3oAGj7l3E4J4WLB2wsnUyiOaVPGRAHaAbre7XQl6oTfgCbT43fcfefuK+0qVbGMUeZXczyB8HCUVuC11368hDuGy/QmE8O1kMvcmueeczP23M58oDUEKmbIwBQ9ZIjUj+cIzcI4fQp3YZ7H4HmGcIBRzIQDDGAQ+hgwdO3DAUatA96EqOIFjPEmxJzwwrOWLoQh+AIijYA5v2FkeNnJsW1ZhPlf28u5TqGbJhvT8AnAV3Bkiuds4zpsl4tkQMb0U9IQYy2hXNLOqlIplsmWFMlWFytJYWtgT966/JaAm357MnVs0w4T+XGonJ+4IQwEhFnCon2/IGRKB9Zn7ivfcAMaufM8qXGjIs7DxuCc2DyxJ9KAVRXkPgRaEpYOuzSwYtD3MIaIWIJ4WxUViL4VSFMeDRlmY8iIhb4bS70oPyKhtxqDcyzzQgRzv8UoZ72K/bUwptMLY34Y8sPabsXs2nZsw7/JNj8NfomhATr0DbhdB80HKDHJm8DjsP1uqLhBr/2o/XAp9+q1v4yMftZrP+Qe+VHBXSfLHfD8EEJWwF/iSGcnNNZG/7F6p1kRf/J4RHwTBvS4/XCJdwxXFYvwhFuE44JFGNWzCKOGWYS2uu5VODvinD0pcDaux9m4IZx183FAy6x4jZG3qGfn9Tg7bypnaqsoWzaSnGx0JHk2GgUkZJBiPgGElzFwF+OMtkFH/ZMHAlPcEJb4fiffFxuTE25MPikYE7ueMbEbYkwesxv/afv90kTGN+HHn7YfL+0B/PhPuUk4LZiEN/VMwpuGmYTH7MeflHF2UY+zi4ZwVvAJRfzoOPuEc/ZpgTOnHmdOUzmThBZzxhZl5Rg74Izt81UIewXi3v17OXNsuU/CC+Sm90N7ZhGkuKdogtZXJVHV+rLeV1VexXpDGBaK5FZdZFBY/VWdN8M3U+NSPBY6jnf1gowccs2AvQ0L+5n1IoMiCz/UYuGHlSzo71kosrDHWRhwFg6KLPxYi4Uf3+vCOixEa6cOOAv7RRZ+qsXCT+9ZWMXCgR29MJMlYsiJMAsMTJYT4M4mxLfNBL5JnoFkDK0yduO12m7Fi+vybXfrtd29z7Yv9qGOy55CTuv5UNP1fChRkFO9wYJ4F36UlJ/CaLUf9RxEZEKg8BxzfOFlgbY4d5JcXfxy9+YtmXjvwnhY9jAlqCeMwXrCSJdTjaPVVXfu0yfC2K6FVVnakoLzssiJCwrEnS0nLjvddLbZdUip2f4+n6GWqnGqxpxirMXTSvqdziuVjDORfpwVYLai/Icr8M5rfOq+nLaLPSxiSRQkWVKUviqL8i10n1xPfZBuOpMXVfyKXIdQKYKU3c6f3s688G9fe5fEpzrxT/4Z/RX9mb7L+9XhN39Jzs/YOc/wL/T1Ftql/yU3pPrDXi/L9j6ESju5FjywobCDU+MV+SK/8I292hYAVaP5a2DsZSahE2t+VAD01w+fU+niWJ7ZFpO1rw630Nk3i6Vd5uKurCWDZ2U2Osb+7Ml6Mnj25AFkECqtJINnKRl8Uk0GadEVZPBs1dqiFsvg2RZ6UiKDosanlOG4jhQer7KEx2tawuOHsITHFS3hcX1LeFzNEh6vaQnv0H+/PzE8XmIKZS6G/dvYwmLwlNiAozVt4dFD2MKj+rbwqKItPKpmC1ctJW6zFIIxPCqRwmitfxdL60RNp2UrEMJ6UVPYkMcghYhJbtcKhBqPG4uProxvVwTthdcTv8UN4a0Q6rZrGVq1SDeMpvq+LU69PK0T6z594HduUitKlHsPZxdNvD+NH7izifeiIrz7eTmcuYn3n4tTp5quSH0dq5LU12RZj5peF/J4e4hF61mWT73PDTzdgiIOuBo7L7+IpNPYTDGSnhZJ+qUWSb/cF0nrPh0pBiTt4+hpPPwzjk6KHP1ai6Nfm6xIXSlaiaS2jqZoscpJqSr9Voum35qrSjgK7RfPpjaZo5PMmLSAo99rcfR7k1WJB77xTlAtIulpRpGKC/be/VGLpD+aq0iRrcNawzgqTh/QSB5nZg+e+96U+KFNAuSNkIGCtzPDJzyts2IqgJd2i6AmnhS91UxAachPo/XSmD9aL6vpeP6ryNwi9nuKlt5ADadXJK+lBJFjVgz93/23lhL8t7lK0MVLXx9psqX6NOOZLRhO/leLpP81eTiJHqF243nJxtC0LAh/1v73G4rva97j+yDP24+XcMdwVdmf7Rm3A8+X7c8m8jzet5jnmrITabczZCfybsdkJ8pu5zO+T9uLVdNNxX3axMe8T5u37kToHeymtPotunatQFux1q9JSHfFXj/7s2LrtsfExLBRTOg9XceaLuO+JghYVMRkF6vkzTE9R5b6aKgwm0RF7BR05Z4sC3pfFPq6Qr8fQE3UoF3LEJd5JZ81f/uy8v3dFlive3biXjQfrqJNVzOj6X3C87L9Pq66wZDgVfvh6j9ASPCSu/uvloUEUrSoOg4JwjgksOKQgMQhwec8JHhdPySQHnNIEDRpTM6HBI/JDw2bBHRJRJC8CK/mkqVHQ4PVKBoqhAP97LeDCNqjoYI0iYr8HGF3vr6nhVBnHZDPm+/Oxg7G5n39180HR80Ni3frfZUt4+OzqjieFs27X//giV+u8qfSWP+jMSv6mhRtftkYVMqCykWXN7RR1Iv4wUBe/kZ1VwGPGrMKWCozdmobJ8KrsBg93vmswOK4LovjxrBY4kMnjzPaPI9bbYQYxSPEeMFS78EqZnPfA7aS102awVz8o0dmMB8WcSuoLSb6TkaK/NtPh4PCpgNJRzPQZb/MrqZOVJ1riJcfrJ5hEhbPMJU4P+WiuG/7ZnGDmlgOKTp5OTxfJYem56YAPn9g+7KWebDHxL2Elnp+gNC1wEdmdCPE4Ux85RrHcyw4uvIdTg3jQKJvX6NBnH0Q5xrQCbienNUJuCxFxQ1kmlHOqwEaKOxroHIJ+mKjRr/T1B7Z5hoC8CIeXtgkYNFXuKgnAxePXQa66wpByXxFThCUhHnlNlTHrwXmyH7Nyf68wPJevRFnr0EjjkYx25SjXYJrMt+ex3W/Hq77DcT1fp5blAD5qkxAD+oBedAgIOP5mUVWfsMC+rqA62E9XA8bhKua4KpsLKTej92lvQVuu103ILMbHJCp2acaYk542xuRlewNFhN7sIDYN3WJfdMYYktW6GTef+8pmackUnu5XejhHqZ1lu+GuoDjt/X83Lfv/dwSP1dRe2JaoMScj9vVcvImzl1eIZdwCw94sZofxHsT5+n36ym43xD1Lmxm0bKv06i0D04pafH+Lwd7y9kr2wfnYC8/IST3RFlUZUHVNYz7oq7UnPhZvQ0O1FlpG5yD1DY4e9W2waFFby9/9y1qwUMK7/1tgXOwhfZKtsDRcLQyYMWudIutRrSLc3H75rf1rMbbhliN4q6hrf7KjRKzUcparC+D/fXMxmB/82YD6qxkNgYps7FfzWzQoiuYjcGqL7puq9kYbKH9MrPBX2NftYtgvT2UvXpS593xTsmLX68WM+KFe0fezEfg8o4BaYqwbZFgC0p1kG+Pz6Ej9LXIAFEMyNuZ4YA0GWPXc4Lq72CLDypPI/uaWHlpyr1pTUOjvqzMf6Xoy56yL1pnph9WQy1loBZ76CCCDg1tah4RMcxz5IXn0A+Krx3bTWSEGfSrQy01HmqhJ+maOP/lc48Qvep9Yf6r1kNaziAtFZEGjGNJtuxL24JRKtpKgKLuITvwApPQZAh46oIuNx50gFeU1ORX6UfirWI1dXn9bQSexNuosqi7+IWo7/6z3BTm3lD/z/tvv6i6W4aSkXy5hwaxXJuGi4ZUvAPTt4eEmhdkIJNNnKDqwq08qHAX7bQk5R6wMu+2L6RtSqkkL8ZQzWCoUAwjmBZjWHcPErVJECo9PWMKYgRlLWV+da3UAIMOuwE0n3n39POYeGMy9I2P/w9QSwcIq4HxLGkQAACgmQAAUEsBAhQAFAAIAAgATGmUQ7F+oBZVGQAAUBkAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACABMaZRD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAACZGQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAExplEOrgfEsaRAAAKCZAAAMAAAAAAAAAAAAAAAAAPYZAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAmSoAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
<ggb_applet width="1282" height="601" version="4.0" ggbBase64="UEsDBBQACAAIAExplEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwFQGa/miVBORw0KGgoAAAANSUhEUgAAAMgAAABgCAYAAABYFz0dAAAZF0lEQVR42u1dC3QVRZpmd2cPnh0ERR1YFATds6yrq6sSAgFBGRwUZ0QYdWRUljd5EpKQSEIiCISAQcHHepBlFYjxgYDISyYBgQAJiAgJj0AevEN4iLx1xhj+vV+Fulu3b3V139ybpPve7nPq3Lpd1X/9VV1/1/+o/69mpLiOHz9ORtf58+f9Km8sGHbCNdT6a2Vcm6kqnz592hDg5cuX/SpvLBh2wjXU+mtlXJUEUlZWZgjw1KlTfpU3Fgw74Rpq/bUyrs3ARmGlqKysZASBPO4hv3v3bt0y/lxxcTErl5Uhv3fvXnfZvn37WJ6X8edQh8PXluEXbfAywJDhfODAAY+2ZTijjha+iHNFRYVXmRZn3h8RvggTMLRlWpx5f7TjxZ8DDNlYingBhl4Zx1nbHy1e4rvTw1nbHy1e4rvTw9lMf3bt2qX7/vmY6JXx5wDDzPv3ZT47LJakvNn7o+nBpVN9goFnxF+96/HVs+lX/xPpsFjBwGKFqpCOSf7Akinuyd5lWSZL+N8pN5Xd6758Bv1mUZIHYfDEy3qtyJbC4Pf+9dMM9svr3f3JRPYLPMR6vC7/D/i3LUx0hPSmFtKxzBpdJ06c8Ku8sWD40o52NRAnd4ecFHav55eve0zibl/MoL+fN4b9F8vuvE5QIgy0c89nk+jv3h/jbgf17vokzV3eekGCGzavy/9z+KH4bhobhsNi+VCOSdnQuJppw2GxLMJiOQTi9NchEEfN66hOHVz11byqylB3GV1nz571q7yxYNgJ11Drr5VxdVgsh21xcFWxWFBr4SYoB8sL8riH/P79+3XL+HPl5eWsXFaGPFYhXgYNAfK8jD+HOhy+tgy/aIOXAYYM5yNHjni0LcMZdbTwRZyh1taWaXHm/RHhizABQ1umxZn3Rzte/DnAkI2liBdg6JVxnLX90eIlvjs9nMX+HDp0yAsv8d3p4WymPwcPHtR9/3xM9Mr4c4Bh5v37Mp8dGcTmMJo1836FuPfjjz+yOsjz/zIYsudFuJhU/D9SbW2tO48k4iprQ9WOiBdvR2xbhCeDoa3X6DKIlVksDAp/SbjOnDnjNXjigCIPOKoJgXLtS9bWd1vbr9/XtiOW602Y+o5ZWFiYuy18LXk7AwYMYF93EadWrVrRxYsXKT8/3/3/hx9+oHvvvZfat2/P6t1xxx2s7MKFC+w/4OA/h4X7LVu2ZETB4XD4/D+vjwtt5OXluXHiMPi4I/G2RTwBH+0AN9Tnz/EyPMOfl+HI6wWFmlf8+sgmGQaJ3+ODwAdCHGAMCn9R/EVyGHwQtfCxb0iEoR3sqqoq92DzMsDHhTb4pOBluMR7skkKWA5f76h5HRbL6a+j5rWjKnHZy2GOmtfB1VHzhqqat1kz5900GYtlxRVEr24g2xkyZIjfMFQTN5Bj1rUr2QbXxmonoCuISm+8Z88eQ70x5BSVHUTU+evZQVBHZQe5q/0t1L9nJ5oe242mRIbRG/G9acvsZNqYnUAbXh/H8nmZMSxf8EaSVxnuIY86+I88ypHPju9FU6O60qTRYdSp/W2UmZmptIPw/ujZQf7ttt70WO/+NH78eEpLS2MpMTGRJkyYwPIpKSkUFxfH8riHemIZ/o8bN86rDHmUs3xqIrW5M4Kys7OVdhBuG9KzG9z6j72oT5unKKNHBk3sPpHSuqVRet90D5yBC8dLhvPYsWM9yno/35sino2gHs/1oG6DutEDTz1AzW+8n+Gan39O1w5SWlqqtIPIbFja/gCGaj5DieLrfLYFixX+H21p9Oj/ooMHd9DDk/+TUj9OoKtnqjzSmcNlXvfM1ElcFE0lJVuobc821P3+tn73J+KhblSW8ildq6ltkDG7+vNlemf7BAoL7+o3rg/dGkYpv0mhmmk1RFVUlzL8wzV7bTaVniylqvNVVHigkNr2aku33dXGb1yd3byKKysugoqK8ikmZiRt253PCOTK6RMBIZC4eaMoMnIYbdq+mjJjwunatWt+4Yov6c/VF6kqfbkukdR3zDhx4Bft+DuuWDmqd1VT+r+nU80TLiJZ5br5CdX93uBKtb7huqp4FTWPak5D5w+lzfs2M+IAkWBFCUoZxCoOU5nR3WjsgjE08q2XKezph2hibpLXRK8s2WlIINo6p10E0+0PXShq7nAGf2pkmN+4gjXBpSISFYw15R/RR9vfok1HvqSzV6o8iCN13Qt0+W8XqfhUIQ1Lf5Zqr9X6hWtqt1S2ajAi6eUikvCauoJ+rlTj+/vtN7sf1dTWUOmxUmrzSBsq2FfAVpKuA7taYh4F3GHKKi63BW+Od0/qQ3t30SuJ8XTx5FGPyV5dUWpIIGIdEEfS2Fj2y+8VzPLfjRV8OL/0iEQFY8vR1ZRX+jkVHf8LnblaRyCnr5ygN4sSaV3lEvqx5gptP7GORk55jq7RNb9wTY9IJ4Kp6w0XkYx3EUmai0hqXJRxoX7v98KPdVZzjEHp0VJ6cf6LtLJ4JXX/Y3dLzKOgjYu1ZU6Kx0SXEYkvLJaMOJC2uAjRX1y1rI+MSHwZM5GtUrVTLxart0vgmOnK7K/7X13tIpL060RSD1w5cfB756+ep7RlacHLYllFzbtpljdLpSWS4wf2GBII6ugRB9LG18f5jWtaQjL9fOoiHY35mL7PKaJrP//iQSSX1pXS2dNn6EphJcu7+CTdNvSIAxc0S/7i6gHjutxRXeVJJGbfr5Y4uExyQ9QNlJycbDlzgWk1r6qyVbaabMhOkE54kUiO7NttSCD7dhTqEgfS1zPG+o0rVJ64jkTm0oU1e1j+l/NX6a8VZxmRnP+ymKoPHWPEcWFVCZFEKYA2VMQhthMIXLVyh7iSmHm/MuIQZZJA4GrJrSZWY7EuVB2lwy5C4EkkkpMGMgiIYmzUGF3iaCgWS8ZuXTp/0X0PE2jaqmnsl19nzp9SEkegWCwPGBc8yziRGPHtmFAy4uAySaBwtaTDFFYQI8MKjC8qQyE38KgMhdygpWcoypsey+QHpI//dx4NGfwn14pRzFgmrBx7v9lKMaNHUMFfVtPiRR/SqcoDtG1DHivDMxUlOylq5HAqKSpg/3EfzyIPwR3/8bs+K87QYUrmdCPinJSUpHSYOrXvMO2LXcCIBPcmLp5IOQU51G58O6o+XU2HT1RS1vpYOnn2hNLBKD4+3tBh6uTJk0rDGmCoHKawpR6GQhCL7P3jNyoqysMpToYzxsSMA5jKUIi+GBkKRScy2ZzlTle+zGfbsVhrv1hCz/y+v3slOFleyvI7Nq2jP/R/ghbNe4/ZSD6c+990qfqYh8xhxIYFksVSXVUlFWwl2Vn5LVs9oArdcGADjV+SSG9tS2FEYnQFnMXSuUpKSrwEd1HmMCOnBi2LZUU1r0qFqxXctQK5kSo40GpeFQywW/MHjKFD1ZWMQCrOllH8ymdp8spXTY2Z2XYCAUOr3QJxYGXhX9nGwNVR8+pc2K6uVfOqVLhumaR8v5dAbqQK1sog4lb5QMggWhgnDpZTzrNjKXXyKzT4o140bfUUJouYGbOAyyAGMDiRZGVlMe3Xo48+avr92loGsauaV6bC5XnIJN26dmFEoldHlgKh5vVV/Vq+v5jadbiJ4ibE+jRmAVfzmoCBCOutW7emqVOn0k8//dSouDpq3nqoecXE5QvOVoFItMZEq8ggHAa0VLMLkqm4cDuVJOfQ1UtX2F4wM2PWWDIIh8FlDhCJyG41Fq6OmteEmteIxdLKHFqZxFcWqyHZFq2dAywLNyZajcXS2jlEmSSkWSw7CelQ5cqMgCKRWEVIhwpXZufgdpIfzp6zjJAOda/MzsGJxAzbYmsh3Q4OU2unRbvtINiRi4mOPLeDwGg4augQZinXliFfXLSZ4iJH0d7tW5R2kPzMGEM7iJHDFLQ7KjvIseojNGXtGGYMlAWOgwp4f9xCRiQquwGcrozsIEYOU4ChsoMgwc4h2qlEnMFuRUdHu9vTs3VgTIzsILZ0mLLaCjLv7TlUvG0zLV70gWtCH/CQOWAkxP/VSz+j/Tu3SbeljIuJ8toF3JgrCGersIIoBcW9R+hYwmf0txPn2b4u2X6thl5BOFtltEUcxkSZncRR8zaBDLLs4xxas3Qx5a1YRt8fq6Sy4m/d20fmvvUmnT50kJbmLqIP577LjIRaApAJ7o0lg4gyh5kx+z5nGx360zz6Ycl3XuXYxzUxNU254dEfXEWZwwyusl3AISGDWFmLpRXIzWxWRB09f5KG1GJpBXIzY3Zh9R76Pnc7HXphHhPcseGx9vJfWTk2OU6IT1JueKwvrlqB3Oz7lRLJ9R3C45OCVItlVTuIbMu62e3uKqcrf+0gNbU/08tTn6Q15Tm02pV+qa3xIA44OsELcNOBNe68URt6TleBsC30eaEPZa3JopzCHLYtHaFKtQK5L+/Xi0ged6UFrhWkb5ol5lHQxsUS1bx6/hy++qTLiCQQLNZLWb+jzUdW0tZjaxhRvFHoEtqv1n2VNh9dxTwCN5avZHk9j0BtGzIiCQTbgsgjW8u3UqcJnei1pa9RyispXs/4+n7dRPK9i0hewNeNKCMiw1HzNqRwlR3fm8YtjKSY90dQi66/pkkfpSjdac243HIieWRQdxr7wWhql9iWXo/rGTDBV+XPUZ8x0xJJIARfePphH9h3Fd+xcD2PZT0WEFyrD7qI5HYXkeyui5aS3j09OIV0q8gg06LDWWie++5bz6KPyKKamJVBtPfGvDPUHS0FMbdgyW7e3D8ZBESBIGl6/hz1HTORSLj8oArGZtQOfMXLTpRRlwFdKPy1cFpYuJC+2vNV/XHl0VCGuohkoYtI2rmIpKyG0sLTLDGPgnY37xMRHVhcLBBJhetrJ4uLVZ8VhMfF4iGFnuzRQamuNINrn76P0luFKUpnJ3/GjBNJ39/29RvXDvd1oNt7306RH0SylQQpY3kdO8TdZc+dO2e+DXglZrpSLtVFS1lcRySPd3jcb1wtaSg8fPiwoWEFBhyVoZA7qagMhfwkJD1D0c03dqTeD3dmcaumjOlCM2MjmLwAoRqaJ+Th7IQ8bBnaMtxDHnXwH3mUI58V052tHBOGPkitWnSmSZMmKQ2FMqcbEeeb2txDPR7po4ysCMOZKrIifLhVkRUnx71CbVo8xDYNqgyFkCFVhrV/aN6RbvmX2xmrhSiI4YPCqc/gPqyNjn07MpkEuKgiK6Jv7rKECXXRGV0sFeQOrBzjOo+jG391P8NVZSjkTld6xkD0xchQCBiq+cydrnyZz87xB0EKw992uLusc/yBDdS8zvEHDdtOYwaV1mvLUfM2MYxAtqM6b088bszoCDa9M/dkp3Jp6/M6em3I2jE6Tk4GK9DvpksXR81rCeEqUO2IR7nxTYeqI9cg1KrOBcRRbv3792f3xAnLz+HjR83h0h4DJ57zd/ToUd028BzyHFfxmDm94+fEs/7s8m6aXM1rldi8gYBhJ1xDrb9WxtVhsYIUhoNrI7BYDoE4/Q15ArGawxTOO9fqunkAO63zET/IXsxjLxB/jvPfnBfn/LZWB88PqeeOQfzM9Po4THE9up7DlNgfmcMUdw4ycjACDH8dpsR3p4eztj9avMR3p4ezmf7Y0mGqodW8q1atYpNx+PDh7nuyw+g5HhBEtWeUQ7gUBVg8zwVg8Rx1/IpEwwVVDpff53kONxTUvA6uFlXz9uvXz5Tjv8NiObiGZFws/pV2vqjOCuLExWpAGFiFli1bRvPnz6fJkyd7pQULFlBRUZGz1YS/9OssJpe39C4ur4nPiMZEkV3VM0bigvxg13G1rRYLRLFkyRLmnIO0cuVKXcMmNl0uX76cbbpD3bVr14YE24IoiJiwMTEx7nuivHXPPfd4yFsyGa+qqkop461YscIt42mJhst4LVu29JIrtTKeo+YNIAxMduyI3bFjR73aWbduHXt+w4YNXuVXr15lKVj4+kuXLjkySEMRiNVYLKwE2Fqtndj1bQeEhm3bnO+Eihj/U1NTdY+DthOLhe3dCQkJXttH7MQOWprFstJuXhAF2CMeVTxQ7fBQ/rD5oBwyCyZVsAi+c+bMqRcMjDNPZvEYMWJE8AnpdnCYuuWmVnT/nf9MW2Yn03o4Rb2RxPIbsxNoAxyfXPmvZ8azvKwM95BHHfxHHuVi2bQ/9qBbW99MTz/9tF8OU2BLjQyF4qlbMkMhYBgZ1rjxTc9QCCL/fcSDHn0VxwQpf3osSx9GD6Tpg7pTj87tXePclmY824P9z4l/jo23bCz5OD/T8yEaOXKk0lBopj+2dJiywgoCeeGO1i0pNnKUMiqiL2F/9GJs3X5zC9q4cWNQqE7BLg75bZjuWBR9nceC7k1KfYU2561h98qLd1KvHhEsj7FGlEocbYc6OMlLBmfxhKFs1XXUvE3AO2IbAwYfgeNUAd/8CdoghhGCKy6PrRsMat71mdFe/T3m+kigv/PemSMdj4nJSV5jBuLAMx+8945XfbQRsjJIU2qxoMaFQI5fHhdLRSS+xsWSxdiCjzqPLBgMWqyC1+M9+rujYD1Fjhjm7q9szLQEItb58rNcypr8qmc8Y1cbIavFakoCgXFv165dLC8GjtMjEl8JRBaAjgeOg3ZLpimzM4GApcK4GY2ZikCQ8ld+4UEkIU0gTeUwheO9xK/4+pnxumd+8Hs4FsGIQHgdveiM66b//zFoYLUaq78NAQNX/tRI93jFjhmlOx4qApHVAXsGQmEE42ojELja0mGqqVxu586dy+QP95dQcoCOlkjMxsXSIw7t8QdQDsgs7nZyMd44I471Kz46Utpf2ZhpCURvXEFwGHu0EQhcneMPfKgDe4d46R3BJhKJGRYLB+3oEYcsNq8WDzuyWDhX/rNFH5iSycywWCLLBqE9pFmsplDzAsEZM2Z4lKtOueVEcthAiwWigMrytIKQtNHdZQRiJ0Ph19NjvOQOI7W3lkBU6nN8bNBGoIyatjMUNoVHIYRzsDe+HMGGg3GiRgxj5xTKjmDD/aiRw2lnwdc+HcGWm5vLNuPZ1aNwacqLNCU91d1XcUyQcCSdtix5XJzHOB/8brvHc+J4TXt1Ii1N/nPoehQ2BYslMzqZOeVW7/QoUebw9ZRb7CQAwdqVxXr7pT5Utvtb02pvX1gspF1bN9G8EU+GLovVFEK6jEDMnHKLL5pWcM+aOtlD5qjPKbdafOwkpE8fGM76hf1UZoN5mxXSeUIbRixM0ArpTWFJlxGI7Ag2PSs5JxKwFgmx0R6b7oys7bIj2LT42MWSji/hgAc6ugmEJ6OdBTJLumrMJj31MNM68ku2yTFoLel2W0FEduvGFi1owFP9ffoaBtMKEhsbS3e1vYVNeL003rW6au9hL5ZRHTF1bncrDR482FHzWl0G4bwylzlkMomvMogMHzvJIFmDuvm09cZXGYSxsa42HDVvI6rWZASiUvOK6kitEVArkxjt+JUd4qnFx05q3sxnuvq8u9kXNS8S2ghqNW+wyCD7dhRKjYAikfgqg4DFRCAIO8oguGY935Pt3vVld7MvMsj+ndvonZf7BARXy8ogVnOYgsCHCCSirjs/K05pB4GRMGrkMEYkMjtIcdFmioscRRXF3yrtIBtmxnvghU2Ln3/+uS0dprgdZOaUSbp2EG7jUNlBju4v1rWDZGdOYW0Y2UGC1mGqKYR0IDdr1izTQjpnqyoMNitiJRkXE6V0utIK6R5nfttQzYt9UipLur9qXox7SO/FaiqHKe0WDz0WS5Q5zDhM7di0Tul0pWWxZFtN7OYwhX1Y2I8VaBarZPtWejt7Zmg7TDXVbl4EGoDLqGoF0QrkZnfzqpyuxBUEIYUQd8suXzq9FUTceRvIFQRjf+74IWc3b1Oo1oCk+PXWqnllW9Z9cZjSIxJRzQt/ENnRxXZ0mMLXXsZq1VfNuzR3kXuHcEjv5m1Kn/R3333X7RMislh6/hy++qTLiISzWPAmhIBuJ1ZAj8XifUMAhjdnZPrNYmH/lUhsIc1iNWVUE9GrkNtBVM5O9YlqoiUS2EG4L7zd9PWyC1vR0a+jpdVuIjGyC6nsIPABwfh7fFSCfbu7FVksUQ6APAIWS0Uc9Q3aoCUSsFhg7crLj9iOFVCxWDffXOshXEMmgeCuYrFeevHP7jHD2MAPXRuwQWSxEI6Xp5Bhsaxwyu2nn35Kz0fcxzYeqpydzArpKqerQWGdmS+KHYVJ2YtOHPiY7lhAhoDa+73Zs9zGRIzvk7973GuDIz5MICwZnK+mRHpsVgw6Id1qDlMyY1DrX3ekAWEPKiMr5mXGGEZWRB29yIozBj9Grf7pPsrImKSMrGgXh6nIyHh6+O5HlJEV106NouUTh9Gcl/qwSIphd7eju9q0ZpEVMweG07tD+9GKjBHKyIq97u1FAwcODU2HKSudk46VRBVntr7tQObA9hasHHb+0jm4hpCaV68cMgkEdzHiiT/tIO4WBHIOzznWzMHV1scfcO0WVMAQpkVjoi/tgCBAaHCnFW0doXLClINrEKh5jcqxFILlAqFg79Y333yjhIHVIiMjg9WHUAlCCyZ1pINrCKp5zZajU5j0svMJeYIMY8ZN1WFbHFxtpeYNRaHVEdKtA+P/AAl4bjurJoYjAAAAAElFTkSuQmCCUEsHCLF+oBZVGQAAUBkAAFBLAwQUAAgACABMaZRDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgACABMaZRDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1d63LbxhX+nTzFDn902qlIYXFnKqVD3Swlku3YjpvJZTIgsKRggQANgLqk6UM196TTPoKfqWd3ARAXggQoiQI0liwDxC728n3nnD1nsVju/P164qBL4ge25+52cE/oIOKanmW7493OLBx19c7fP/5wZ0y8MRn6Bhp5/sQIdzsyzWlbcMtI7wsS0bqCqJhd2SRS1zCNfneoDGV5NBpZggg50XVgf+R6T40JCaaGSV6a52RinHqmEbKKz8Nw+tH29tXVVS+uquf54+3xeNi7DqwOgma6wW4nOvkIisvcdCWx7KIg4O0vzk558V3bDULDNUkH0S7M7I8//GDnynYt7wpd2VZ4Dq0XdbGDzok9PodOaYrUQds01xQQmRIztC9JAPemPrJOh5Nph2UzXJr+AT9DTtKfDrLsS9si/m5H6GFFFQRVlAVR7qu4gzzfJm4Y5cRRjdtxWTuXNrnihdIzVp/cQaHnOUODloe+/x6JgCraogfMDyIcVJUnCfyaIPGDyA8yPyg8j8xvl3lWmeeReR4ZULi0A3vokN3OyHACANB2Rz6Ql3wOwhuHsPZEF+Z9x1vQp8D+DjJLAnDPEYfrgrBF/wCMLZkmbGc7iVO1hv6sZqVxlcBojTrFW/VUiisVF/VTVEr6qS6plHe8UkeVVJ1QFfvH/go1Ssu6ma+Rf75dhaq8kS7ubMe6shOpBwrOad5IfEIyCajCSH2k9KncY6SAcqgaiLmCcB8OmohAHRBWkKzAR6wjlR41JGmQICMJ6YjmwxJi2qHo8J+sscJUpEBh9KoGSokwVCQjRUKYKZWMQJUQU0xQUlGCHIqCFLiJVo9FWoSkIlmFT5KOZGgj1UkNQ0YJboTPUL2IJIwkejPWkKgilZaHZarrqk6bDkWKSBWQimmBoNag0lydIb+OJNobNYLLdqezMIIoQt2cWDFcoTdNLkN2sEhzq8ctVMYofrDjGEPiwEDxklKJ0KXhUJVgNY08N0SJRvJrY9+Ynttm8JKEIdwVoDfGpXFqhOT6CHIHcd0sr+m5wXPfC/c9ZzZxA4RMzxHihsI5Tp2L8854jpRKkNMJSipBTZ1rC+v1IAXNAgL1e34QZzcs64TmmNsGgPKZ69zs+cS4mHp2ths722zM2SEz07Et23Bfg7TSWiguKDUECfMhSMV63BLPt17eBCDD6PpL4nswCkhiTxPmP6AnNzxF0XBP76d+oGmmQZVPUXpC+gcU86Y0iVVMLhOCjGsy7+vYtxNRoecnwZ7nWEky6/2+MQ1nPvMdwDb6tEsDd+wQJiFMsWFgNi+G3vVLLhoSL+vVzRQ+CbwBwzFDHYFpEBUFMkTHIT+yPLRlSS6B5RFYDiGWNdtK0nFfZDnYcciPLBcIL29a1FMc9xILcTV2wAya0MmqDRN9OszPXDs8jT+Etnkx7yq94elsMiSJAGXLxHdV5s52TsJ2LojvEicSaOBy5s0Crp8pWbeIaU/gI0+IIDEoXZ9DA/hVi4x9EjfcYX4ZB4ylCmlRLVxmRR353uTEvXwFspBrwM523MqdwPTtKRU5NIRR4ILMpcqyAwMGESt9H9VA6LpJBwuAJ6TQgG7OwnPPZ54XmBQ4UsVzyAQ8LRQy8WISmsA8YA4cxRN5wzdg1ZKRj6fPCYPkhaLGhNJwpucGdfKiTjvGDfEzMLDyzjwrDw5gz3oAGj7l3E4J4WLB2wsnUyiOaVPGRAHaAbre7XQl6oTfgCbT43fcfefuK+0qVbGMUeZXczyB8HCUVuC11368hDuGy/QmE8O1kMvcmueeczP23M58oDUEKmbIwBQ9ZIjUj+cIzcI4fQp3YZ7H4HmGcIBRzIQDDGAQ+hgwdO3DAUatA96EqOIFjPEmxJzwwrOWLoQh+AIijYA5v2FkeNnJsW1ZhPlf28u5TqGbJhvT8AnAV3Bkiuds4zpsl4tkQMb0U9IQYy2hXNLOqlIplsmWFMlWFytJYWtgT966/JaAm357MnVs0w4T+XGonJ+4IQwEhFnCon2/IGRKB9Zn7ivfcAMaufM8qXGjIs7DxuCc2DyxJ9KAVRXkPgRaEpYOuzSwYtD3MIaIWIJ4WxUViL4VSFMeDRlmY8iIhb4bS70oPyKhtxqDcyzzQgRzv8UoZ72K/bUwptMLY34Y8sPabsXs2nZsw7/JNj8NfomhATr0DbhdB80HKDHJm8DjsP1uqLhBr/2o/XAp9+q1v4yMftZrP+Qe+VHBXSfLHfD8EEJWwF/iSGcnNNZG/7F6p1kRf/J4RHwTBvS4/XCJdwxXFYvwhFuE44JFGNWzCKOGWYS2uu5VODvinD0pcDaux9m4IZx183FAy6x4jZG3qGfn9Tg7bypnaqsoWzaSnGx0JHk2GgUkZJBiPgGElzFwF+OMtkFH/ZMHAlPcEJb4fiffFxuTE25MPikYE7ueMbEbYkwesxv/afv90kTGN+HHn7YfL+0B/PhPuUk4LZiEN/VMwpuGmYTH7MeflHF2UY+zi4ZwVvAJRfzoOPuEc/ZpgTOnHmdOUzmThBZzxhZl5Rg74Izt81UIewXi3v17OXNsuU/CC+Sm90N7ZhGkuKdogtZXJVHV+rLeV1VexXpDGBaK5FZdZFBY/VWdN8M3U+NSPBY6jnf1gowccs2AvQ0L+5n1IoMiCz/UYuGHlSzo71kosrDHWRhwFg6KLPxYi4Uf3+vCOixEa6cOOAv7RRZ+qsXCT+9ZWMXCgR29MJMlYsiJMAsMTJYT4M4mxLfNBL5JnoFkDK0yduO12m7Fi+vybXfrtd29z7Yv9qGOy55CTuv5UNP1fChRkFO9wYJ4F36UlJ/CaLUf9RxEZEKg8BxzfOFlgbY4d5JcXfxy9+YtmXjvwnhY9jAlqCeMwXrCSJdTjaPVVXfu0yfC2K6FVVnakoLzssiJCwrEnS0nLjvddLbZdUip2f4+n6GWqnGqxpxirMXTSvqdziuVjDORfpwVYLai/Icr8M5rfOq+nLaLPSxiSRQkWVKUviqL8i10n1xPfZBuOpMXVfyKXIdQKYKU3c6f3s688G9fe5fEpzrxT/4Z/RX9mb7L+9XhN39Jzs/YOc/wL/T1Ftql/yU3pPrDXi/L9j6ESju5FjywobCDU+MV+SK/8I292hYAVaP5a2DsZSahE2t+VAD01w+fU+niWJ7ZFpO1rw630Nk3i6Vd5uKurCWDZ2U2Osb+7Ml6Mnj25AFkECqtJINnKRl8Uk0GadEVZPBs1dqiFsvg2RZ6UiKDosanlOG4jhQer7KEx2tawuOHsITHFS3hcX1LeFzNEh6vaQnv0H+/PzE8XmIKZS6G/dvYwmLwlNiAozVt4dFD2MKj+rbwqKItPKpmC1ctJW6zFIIxPCqRwmitfxdL60RNp2UrEMJ6UVPYkMcghYhJbtcKhBqPG4uProxvVwTthdcTv8UN4a0Q6rZrGVq1SDeMpvq+LU69PK0T6z594HduUitKlHsPZxdNvD+NH7izifeiIrz7eTmcuYn3n4tTp5quSH0dq5LU12RZj5peF/J4e4hF61mWT73PDTzdgiIOuBo7L7+IpNPYTDGSnhZJ+qUWSb/cF0nrPh0pBiTt4+hpPPwzjk6KHP1ai6Nfm6xIXSlaiaS2jqZoscpJqSr9Voum35qrSjgK7RfPpjaZo5PMmLSAo99rcfR7k1WJB77xTlAtIulpRpGKC/be/VGLpD+aq0iRrcNawzgqTh/QSB5nZg+e+96U+KFNAuSNkIGCtzPDJzyts2IqgJd2i6AmnhS91UxAachPo/XSmD9aL6vpeP6ryNwi9nuKlt5ADadXJK+lBJFjVgz93/23lhL8t7lK0MVLXx9psqX6NOOZLRhO/leLpP81eTiJHqF243nJxtC0LAh/1v73G4rva97j+yDP24+XcMdwVdmf7Rm3A8+X7c8m8jzet5jnmrITabczZCfybsdkJ8pu5zO+T9uLVdNNxX3axMe8T5u37kToHeymtPotunatQFux1q9JSHfFXj/7s2LrtsfExLBRTOg9XceaLuO+JghYVMRkF6vkzTE9R5b6aKgwm0RF7BR05Z4sC3pfFPq6Qr8fQE3UoF3LEJd5JZ81f/uy8v3dFlive3biXjQfrqJNVzOj6X3C87L9Pq66wZDgVfvh6j9ASPCSu/uvloUEUrSoOg4JwjgksOKQgMQhwec8JHhdPySQHnNIEDRpTM6HBI/JDw2bBHRJRJC8CK/mkqVHQ4PVKBoqhAP97LeDCNqjoYI0iYr8HGF3vr6nhVBnHZDPm+/Oxg7G5n39180HR80Ni3frfZUt4+OzqjieFs27X//giV+u8qfSWP+jMSv6mhRtftkYVMqCykWXN7RR1Iv4wUBe/kZ1VwGPGrMKWCozdmobJ8KrsBg93vmswOK4LovjxrBY4kMnjzPaPI9bbYQYxSPEeMFS78EqZnPfA7aS102awVz8o0dmMB8WcSuoLSb6TkaK/NtPh4PCpgNJRzPQZb/MrqZOVJ1riJcfrJ5hEhbPMJU4P+WiuG/7ZnGDmlgOKTp5OTxfJYem56YAPn9g+7KWebDHxL2Elnp+gNC1wEdmdCPE4Ux85RrHcyw4uvIdTg3jQKJvX6NBnH0Q5xrQCbienNUJuCxFxQ1kmlHOqwEaKOxroHIJ+mKjRr/T1B7Z5hoC8CIeXtgkYNFXuKgnAxePXQa66wpByXxFThCUhHnlNlTHrwXmyH7Nyf68wPJevRFnr0EjjkYx25SjXYJrMt+ex3W/Hq77DcT1fp5blAD5qkxAD+oBedAgIOP5mUVWfsMC+rqA62E9XA8bhKua4KpsLKTej92lvQVuu103ILMbHJCp2acaYk542xuRlewNFhN7sIDYN3WJfdMYYktW6GTef+8pmackUnu5XejhHqZ1lu+GuoDjt/X83Lfv/dwSP1dRe2JaoMScj9vVcvImzl1eIZdwCw94sZofxHsT5+n36ym43xD1Lmxm0bKv06i0D04pafH+Lwd7y9kr2wfnYC8/IST3RFlUZUHVNYz7oq7UnPhZvQ0O1FlpG5yD1DY4e9W2waFFby9/9y1qwUMK7/1tgXOwhfZKtsDRcLQyYMWudIutRrSLc3H75rf1rMbbhliN4q6hrf7KjRKzUcparC+D/fXMxmB/82YD6qxkNgYps7FfzWzQoiuYjcGqL7puq9kYbKH9MrPBX2NftYtgvT2UvXpS593xTsmLX68WM+KFe0fezEfg8o4BaYqwbZFgC0p1kG+Pz6Ej9LXIAFEMyNuZ4YA0GWPXc4Lq72CLDypPI/uaWHlpyr1pTUOjvqzMf6Xoy56yL1pnph9WQy1loBZ76CCCDg1tah4RMcxz5IXn0A+Krx3bTWSEGfSrQy01HmqhJ+maOP/lc48Qvep9Yf6r1kNaziAtFZEGjGNJtuxL24JRKtpKgKLuITvwApPQZAh46oIuNx50gFeU1ORX6UfirWI1dXn9bQSexNuosqi7+IWo7/6z3BTm3lD/z/tvv6i6W4aSkXy5hwaxXJuGi4ZUvAPTt4eEmhdkIJNNnKDqwq08qHAX7bQk5R6wMu+2L6RtSqkkL8ZQzWCoUAwjmBZjWHcPErVJECo9PWMKYgRlLWV+da3UAIMOuwE0n3n39POYeGMy9I2P/w9QSwcIq4HxLGkQAACgmQAAUEsBAhQAFAAIAAgATGmUQ7F+oBZVGQAAUBkAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACABMaZRD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAACZGQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAExplEOrgfEsaRAAAKCZAAAMAAAAAAAAAAAAAAAAAPYZAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAmSoAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
*Process:
 
*Process:
Line 101: Line 101:  
# How many triangles do you see in the figure ?
 
# How many triangles do you see in the figure ?
 
# What type of triangles are they ?
 
# What type of triangles are they ?
# Identify the circum circle and incircle ?
+
# Identify the circumcircle and incircle ?
 
*Evaluation:
 
*Evaluation:
 
# Can square be considered a rectangle ?
 
# Can square be considered a rectangle ?
1,040

edits

Navigation menu