Changes

Jump to navigation Jump to search
Line 128: Line 128:  
# Laptop, geogebra file, projector and a pointer.
 
# Laptop, geogebra file, projector and a pointer.
 
*Prerequisites/Instructions, if any
 
*Prerequisites/Instructions, if any
# The students should have prior knowledge of lines and measurements.
   
*Multimedia resources: Laptop
 
*Multimedia resources: Laptop
*Website interactives/ links/ / Geogebra Applets :  
+
*Website interactives/ links/ / Geogebra Applets : This geogebra file was created by ITfC-Edu-Team
 
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAIhjkUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwExCs71iVBORw0KGgoAAAANSUhEUgAAAMgAAABgCAYAAABYFz0dAAAJ+ElEQVR42u2dW2gVRxjHjyI+Roko+BAERTEE8UFT47UUWoIaGwN9KVIwhAQNGGKMVnwqfetjoS+pUC9FNKZYtfHFPvS5WCnGeiTeGjE5JNiSxNiguU3zzfE7TubM7Dlnc3azl//Cspf/7sx+e2bOfN9vZ2cTwjK9ePHCJonh4WFoMdPianfCdsLQ0JA1sbGxMWgx0+Jqt7WCPHr0yJrY4OAgtJhpcbXbWkGePn1qTezly5e+av+kZluzuitCvJ3K/7zmW0J8cDYwNoRdi6vdoXCx3nT1CLGlQ4hfetM7aJ2m+uti5uML6XWqQDR9cS090zF8HGuNN9P7ai+/19Tj+FglffHJRbgacLGC3YJMfn41XWip4KsVpOFGev2zTiG2dmRVEJmmqtGxNZeE+FSpIB+df7/Ox+rp4580vi0I0SpqLahCUNxB67Tvzp07wqbdu3cvo9F+0lm7e/euXNc1WtJ5+WgPHjyYkzdrtI/OU/Pu6enJS6M01byp4Ou2cd7JZNJoN63no+n3hNLkY3W7aTuXptvmpHEavE+3mzXdbict33ui212Me6KXBb/vCSgWNLhYblwsVBBosBuYFxowb/gxLzQE6cC80OBiAfNCQwsSshaEOmlR7aEDyA+jddpHaNWmUXzCGu0nnbWHDx/KdV2j5f79+8Xu3bvlvGPHDrFz5065TkvS+Lz+/v45eVN+nD6lqeZ97NgxcebMGXH69GnR3t4ul7RN67W1tRmtra1NruvaqVOn5DZrdNzBgwezNE6/paXFeE9o/dmzZ8Z7Qvb09fUZ7wltt7a2Zq6L8lTzJk23zUnjNFjT7WZNvX71uug6dY2un20rxO753BPW9LLAml4WnDTVNs47H7tp3VcXi34kN5oXaXqheXFfvHAn3OQHFysgFSSRSMyZUUFQQQJZQehpo22iJsqNRs29G61YaVKFm5ycnNe1uL1Otza4TbPY+XlxHWHQrBXEixemyCd2oxWSptr6FJpfZWVlltbd3S2OHDkiZmZm5nWdbu+LFy8HuckPL0whBjFq1dXVmVYHLhZcLE8xLxEUN5oXaearjYyMFOU63drgBdJ0kx8wrw+Yt6GhIQs5MrYkzQ3mrampsWLebdu2WTEvaybMW1VVZcW8Bw4c8ATzOuHOYiNNYN6AYl6/3QVQLLhYnrlYYRnVxG3g74WGID1GQbqXvXlNzzrcpkluT1A0L2zwoueqm/zQmzciLciKFSsc/yk5GDPhYfKXTdr69esj24Iwxq6oqJD3AC3IAmLeIMQg1O8LMYgdYyMGCYCLxf/YPI2Pj8PFWiAXS8fYcLHyxLz379+3Yt7Hjx9bMW9vb28WQmtqapJLqhQDAwOy564eh5w7d06eU15enmnqOW/Kz4Z5CbvaMC/jWhPmNaHc+WJeE7ZkrEguqw1pUp42jc6zIU2TxmmwZkKalJ8N89J5JszLthVi93zuCWsmzOvFPTHZDcwLFwuYN46Yl+MMYF5g3lBiXq/9dyZVuqa6dPnGGeo5FMwC8wLzhr4FKUQzPZNBC4IWJLaYFzEIYpBQYF4/3AVgXrhYocC8Oq7NpeloD5gXmBeYFy4WXCxgXvTmRZAekSDdi0EbvB6AQKdRNo065+Vznr5fT9MLG/y+Z/meh0EbYuJicee8Qs7jB49wseBiRb6CcOc8xCCoIMC8wLzAvHHHvI2NjVbMu3fvXivmZc2Eefft22fFvNQzudiYl2Ii29i8dD22sXlNGqfBmmlsXsoPmDcmmBeaPxpcLG3C5w+CrdGrsocPH868Kut1fviATkhjkEI10yAR9EZj2OwjGueELfEJtiLFIFF2sShe4EpB9Iq+CWLqvbts2TJx+/ZtuW77Rw6afWQPXCxgXk819fkGCgMqSEEVJCxP0qOqcSuma69evRJ1dXVidHTU/vR39lyTxq6km+uM7ZN0G8pNJpNWzEvjR9kwrxPK5XFac2k62mPNhO8YI+bSdLRnwpacNyNGE9LMRzMhzVQqZbS7vr5ealSoKe4j/EwabdOxpHV2dorly5fLfaQdOnTIqkk0ObvOafJMWklJiejq6pLaxo0bM/vV6yLN7T0xYV4394Rts2Fe0myY16Spttkwr8luYN6QaOrYVdSCUCxFS12zpam7knCxgHkjpeljV/HHfEwaMC8wb/y0LX+83/FmOr09Ow/9nRKi/YkQr6eyNGBeYN7oad88Ty+pkI/NFvq2J2lNrSAf/pne/n1UvB4cFeLrPrsGiuWdixWWF6birI2k/pWVSPw35Xl+eGEKLlY4tRl/8kNvXheYN9GREJs6N2VhXtpvQ7lOGuO1Pdf2iCVnl8QC86pI06b5hTSBeYuMeamwb/5ps9h+fbtYdXFVpvDTkualZ5eK1T+ulsfSMSsvrMxo6jmc5tZrW+XMx9C04cqGdKW5uUfuW3d5XUZTj+NjeZvzQ8yDGGTBMC8Xxl03dmUKqxzF/d26WoD5mKqfq8Ti7xfPOYfTVCsITeWd5WJRx6JMmmsurRFrL6/N6KXnS7OO1fMDOgbmjR3mVQs+4hPEIMC8AdUqKyvlknsAw8UC5gV2jakGzAvMCw0uVnExb1R78x4/ftw6aAMPguCkqYMv8MAJJ06cAOZFb95oaFEY+woxiMcxSJxdrCiMfQUXy2OKFefu7uQehSFNPAfxXoOLBRcLLhYwb2FaFD5xAMzrMeaN86ANUfjEQbE1DNqg4TsK0m0aIVIb5qXYxYZyW1tbs8aJZWRKmg3zOqFcxoi5NB3tmbAl581I1oQ0GT86aSakefLkSSvSJHfWSbMhTZPGabBmQpqk2TCvSVORbCF257onuey2YV4/74mvMYjfnxVADIIYJFSY1+/PCgQR8+r9t4B5Y4h51fGY1ILghDqDhEGBeYF5FwTzwsWCixUZF8uLB4VoQdCCRKYFQQwS/DQRg/gQg/iJeelzBDbMy582A+YF5o0t5kVXE8QgwLzozQsXC5jXfSBkQ8DozYsgPfaYFy4WXCxgXrwPghYEmBcxCGIQYN6iY17Gtbm0hca8R48etQ7MQAg4l2YatKG5uRmYN0qYF+NiQYPdcLGgwcVyh3mL2YIwypWfTEgksvZH6V/IZp+6jhYkAi1ILsxr+8F1TX3u4TQHGfmp9jhp+doKzBtRzDsxMSG/qqr/2LSvrKwsSytkpgCpu7tblJaWZhWihUB+Nlvpvui20kQvQvGDUH4pyrSu202fcOZvlgPzAvM6arZvfiMmQAwCzDurDQwMBALz2pBmoqPJEXeSbkOaz1MDUqcZmBeYNzLaxPSUGHk7nincNEu3cnZf2aUvM5r8t3m3pOm7v36T28nhlNwu+aFFbv/an5Tn0FRx9Su5D0E6MG/stOpb34rJ6Wm4WMC80EwatxJRsQ8tSIGYF1q8NGBeuFjQ4GJlTf8DpSC6NaUlN2YAAAAASUVORK5CYIJQSwcI0nMH8TYKAAAxCgAAUEsDBBQACAAIAIhjkUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACIY5FDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVdWXfbthJ+Tn8Fjh7uSysaAFf1SunJ5sRtttZZevLSQ4mQxJgiFZKy5Z7++DsASIkQZVewbIXiVWJzAYjlm5lvZkSQ7v+ynEXokqVZmMSDDjFwB7F4lARhPBl0Fvm463V+efxDf8KSCRumPhon6czPBx2L1wyDQYeZjksD0+3anuN2rYAFXR+7Xpea1tDp0bFFhnYHoWUW/hwnb/0Zy+b+iJ2Ppmzmv05Gfi46nub5/OeTk6urK6PsykjSyclkMjSWWdBBMMw4G3SKnZ+hOeWiK1NUpxiTkz/fvJbNd8M4y/14xDqIT2ERPv7hUf8qjIPkCl2FQT6FCVMP5jFl4WQKk3Jt2kEnvNYcEJmzUR5esgyurRyKSeezeUdU82Ne/kjuoWg1nw4KwsswYOmggw3iUIAgSUMW50U5Kfo5KVvoX4bsSjbF90QvVgflSRINfd4K+ucfRDHF6Ce+IXJDYeM4sgjLc9iUGyo3ltzYso4lL7dkVUvWsWQdy+ygyzALhxEbdMZ+lAFsYTxOQWSr4yy/jpgYT3FiPWPyE8wpC/+GyiYGTCXOcB7jn/iPAz8WLzhRJ0kqvebpQrPTsktCXW/3PuleMzXLTine0ie1b5inc0uncuI7TdSuYAtdif/ip9ajeds0N3uUx/t16FgHmWL/pLSVfmEeKJvyuoX65GyWcYMxe8jucb0nyAbjcFxQcxuRHmxcisAcELGRZcMh8ZDDty4yXSiwkIk8xOsREwnrsD34ZbmiMQfZ0Bg/64JRIgIdWcg2ERFGZSEwJSQME4yUmlDDtpENF/HuCeVNmA6yHDgyPWTBGLlNugQqmnAhHEP3FJkEmfxi4iLqIIe3Ryxu647Hhw5NUuRg5BDeIJg1mLQ0Z6jvIZPPxingCuP5Ii8gKlAfzYISrjyZr05DdWCkNddJhlKo8FE/8ocsAvdwzkWJ0KUfcZMQPY2TOEcri5TnJqk/n4aj7JzlOVyVoa/+pf/az9nyFGpnZd+i7iiJs/dpkj9LosUszhAaJREuBwr7pLJP15NJIrNSYFUL7EqBU9l3t/abQAlaZAz6T9KsrO4HwRmvseYGgPJdHF0/TZl/MU9CdRr9E+Fp+mwxisIg9ONPoK28F44LWjseTlil43GIW44kSYPz6wx0GC2/sDQBL2CZhl35wGXXsoRSYpiVjwVF2cjn1kepQasfMK7rG4qsQnjsciUif8nWs52k4UpZ+P5Z9jSJglWxmP8zf54vUhEzADumfFJP4knEhI4I0waHPLoYJstzqRymbOvD9RyOsBzAcCJwR0AO1AaHOSm2Q7kVdfjIVrWwqINFDVxqWxisykmPihpiO5RbUQvUVw6tmCkpZ0lw2U2YCUrDHdVwhPJz976Iw/x1eZCHo4v1VPkFbxezIVupkNomua82+ycbOta/YGnMokKlQZaLZJFJC61oe8BG4QwOZUEBic/F9REGIM8GbJKycuCRiMckYKIUV5W1dlo0dZoms7P48gPowsYA+iflKPvZKA3nXOXQEPzABVtrVRBmPriRoHodt0GY+oi7C4An59CAdS7yaZKKiAtIBbbc9CI2g1gL5UK9hIauYH4iAjeOJ0qGX4HXNuWwlhiUb9U1oZV+NJ/6PLorZh351yxVcBDtvUmCTXQAfDEFMPK5FO6cMakXcsCwM4fmhDkpLAVwZ2g56HQJ5eH3NRAH3/4tA3cZuPLJciNTiFme3ZAUqI/E6V8Qe9oKxPA9IzZKZjM/DlAsoptzNuHnO2t/62Oua8gnHEAJziIvC3zZWtFGDf+saK0E2K9LoIjXZHllyjdJAN8d/zWKJYa0wFDq4Qal5uDtLyCpyUScnRcML3ZehUHARKgnPc63WF6SSZ4LZ/MoHIX5Cq6IS/QszoH1mDD7OpldMDbnXuRd/CH144ynp7JOhSR30vJnrdJy6wC88LwViNF7RmwXXngmeeF5jReGerwwbBgvdEti8I6KFvai8pGeyEYNE9mxUrmGmdVlFujJLGiIzLolV+FSaBS3TmjPpdCe1ITG9ITGmis066iEdlsI8KINIYBzwFzqtAWA3XfuuQsrvJCscFpjhbEeK4wbwgql+/VKUrCOK2S6TcdftkjHVxHtIZT85U1KPtFT8klDlLzrbbg+4rRGyV+1QMlXnu+gWl5Q+aualk/1tHzaEC3fVPIjY/JdRPZKiuxlTWShnsjChohs0/u2iJfOWsBL3gED8l9bhNdBafxMcsKvNU74qscJXxvCCZs03nXak6b/1gIlJ/cerNyG2Os2IXbIRP03SQuva7RwoUcLFw2hhXoOQ9sX353dJLRIT2hRQ4R27N+u7CKzX6XMfqvJbKYns1lDZXZkMbkqsvfCmagCG9ck9eZ2Sake6c3dPBKhciWd2DbBK3WtB/VK25APa8i/1UH+bduQP2ie8Eby1NuaDGI9noobwlOb8YB5zPfNd7OWdzrW8q4t1nLvtwBuQ+19C/KN7ve4MfhO0sv7mtLO9ehl3hB6qeUb3f+DQOh3HYL5vSUE87ALkndj9j90gP+jZcAfNAz6XfLUHzURfNPjqW8N4akaTR3zSrRtxjKtSepcx1jOW2Isq3vED7M+ehvykxryH3SQ/9AS5L/HwvRzyVIfahJI9VgqbQhL1b4IbF22VqepjzrG8rElxrKiqYfx6bvR1Ccd5D+1BHn6oMBvp6mPkqY+1SSQ6dFU1lSaal3OV6epzzrG8rklxrKiKfwdaeqLDvJfWoL85lMYh6Cpz5KmvtQkkOvRVN5UmjqunI8t5ykMjOtRCSxb5qA5UDDo/OfbIsn/S+RGXKoKhdftqBd+T6mMwyUL1LnCYHI/zQUJIME2tkEIXn8ILRIK/j6MtQ38O0ZUwYjujhFtPkamQWkVI1Ji5NjV03qAmQpg5u6Amc0HDBs9t4oMLhHzTHx3xCwFMWt3xKzGI4YN2+5VPtguAXNtPZBsBSR7d5DsxoPEucquWFzBVdRwiWKHjh5ijoKYsztiTvMRMw1StbiCuajh4T2Yy1UAc3cHzG0+YMSgnq0gsz9enoKXtzteXuPxwkBQVpW33NIknSrR89M6iPUUxHq7I9ZrPGJAYrgaNhQmCR5TQYxo0j7BaoyKNYJU3HzQTANbdR4D0PZifrIR2OtE9kcQ2hPDUsJWbBWouR7eBzU11CcasT5pfrCPDQdvYbS9VU0N94lGvE+OIOC3QdXqkRloIHaqYHqaoKkRP9EI+UnzY34gNVNJvUkJGsG9PUBTMwCikQKQI8gBIEBTPEFBalzViIKa5vcXRE0DiEYeQJqfCEB+SRRWs28wUF3U1FwAIQuNZhrINT8jIBDiKhDZ5cIgT9E3V9chqFmBJm7NzwyIY9hmFbcyM3Cq3wxh7he1YFNTA6KF2hFkB4QYdm8jzgDYIP5198hAKb47avQI0oOe4ShfDEmfYBvU1EyjqJoRPEmZPyDZNy3jpMeQGgB99SqIURl7ECA1XcToFsQcpItZ8xODrmVQRcmkZUIUZ+E9Ylxq1vBDA2SNZmgpfg/QHdBsfsbgGm7VfXqeBNMy8KbTuAHMW+5HP/lriwUe36MSq9fOFq/sfehXeLcENXzvqO307ldAT75J9K/i3nX1Vd7ynMbLvLfJohHvgD2yt4nepvDPWqfwh3gK7XlLUKP3jtpOrxsuaeL5FpoY6tLEsHE0sXpe5tjeYKvF8duEN9IV3qgxwttc99ZC0T27zT0HuqILGiO6o3/d922u5kUrXM2KGr0DeOfTdkFGDvlg04uSI063cATT5QjWGI7YXE/eHoJ42Qptd+5d2299KXG7MLsvUt3p3dslQbzaQhBjXYIYN4Ygak+cmMf8aNG/kPs22U10ZTdpjOw23xDRwrfYnZaie7lFdFNd0U0bKzrvuNKuG25nbCzZ0btvcQSLdoi4R1a5c1b4bnPjzoXuHVp7H9yOYd2OafSqS9FpudoJILKrwGkuCKDquh1TD7jmr9yhhu1V4PHs4k6Za1jKKjFLEzZ3H9iav2zHMYhijr3VPSHH3TivBZu6auc9S8MZA0odkB/Fv4GlhWPzl/F0iWsQuoXvbEN5YEkXx94NOJo/in8DQvU08giW9mCDKkt4LMdeY6lQoOaDhLi+giAZIx9l3xZ+yjQeLLzjSp/yL7HbRP4Jddu8ZyTHCQw6Ax0Zr1LVTP6NeCD/It7B20GHcFhZA28VTyfTXhVwzbV7JtmuvXeEfa+AVKD9ANq7B+agz171ERdacIZjeHS3xR3bUa+vNEIDGBTMZik2GpDfcbnRhqZTvvj4ITnDM2yn7sRsw/T20V7zBu0dIAv9KQHV4V5zr9VGpf4S7lkOuATas0v2dQzb2oV9IcWMM2heJE/8eMKSCRum/uP/AVBLBwjy8tZ2wAwAACKLAABQSwECFAAUAAgACACIY5FD0nMH8TYKAAAxCgAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIAIhjkUNFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAHoKAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAiGORQ/Ly1nbADAAAIosAAAwAAAAAAAAAAAAAAAAA2AoAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAMIAAADSFwAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
<ggb_applet width="1280" height="600" version="4.0" ggbBase64="UEsDBBQACAAIAIhjkUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwExCs71iVBORw0KGgoAAAANSUhEUgAAAMgAAABgCAYAAABYFz0dAAAJ+ElEQVR42u2dW2gVRxjHjyI+Roko+BAERTEE8UFT47UUWoIaGwN9KVIwhAQNGGKMVnwqfetjoS+pUC9FNKZYtfHFPvS5WCnGeiTeGjE5JNiSxNiguU3zzfE7TubM7Dlnc3azl//Cspf/7sx+e2bOfN9vZ2cTwjK9ePHCJonh4WFoMdPianfCdsLQ0JA1sbGxMWgx0+Jqt7WCPHr0yJrY4OAgtJhpcbXbWkGePn1qTezly5e+av+kZluzuitCvJ3K/7zmW0J8cDYwNoRdi6vdoXCx3nT1CLGlQ4hfetM7aJ2m+uti5uML6XWqQDR9cS090zF8HGuNN9P7ai+/19Tj+FglffHJRbgacLGC3YJMfn41XWip4KsVpOFGev2zTiG2dmRVEJmmqtGxNZeE+FSpIB+df7/Ox+rp4580vi0I0SpqLahCUNxB67Tvzp07wqbdu3cvo9F+0lm7e/euXNc1WtJ5+WgPHjyYkzdrtI/OU/Pu6enJS6M01byp4Ou2cd7JZNJoN63no+n3hNLkY3W7aTuXptvmpHEavE+3mzXdbict33ui212Me6KXBb/vCSgWNLhYblwsVBBosBuYFxowb/gxLzQE6cC80OBiAfNCQwsSshaEOmlR7aEDyA+jddpHaNWmUXzCGu0nnbWHDx/KdV2j5f79+8Xu3bvlvGPHDrFz5065TkvS+Lz+/v45eVN+nD6lqeZ97NgxcebMGXH69GnR3t4ul7RN67W1tRmtra1NruvaqVOn5DZrdNzBgwezNE6/paXFeE9o/dmzZ8Z7Qvb09fUZ7wltt7a2Zq6L8lTzJk23zUnjNFjT7WZNvX71uug6dY2un20rxO753BPW9LLAml4WnDTVNs47H7tp3VcXi34kN5oXaXqheXFfvHAn3OQHFysgFSSRSMyZUUFQQQJZQehpo22iJsqNRs29G61YaVKFm5ycnNe1uL1Otza4TbPY+XlxHWHQrBXEixemyCd2oxWSptr6FJpfZWVlltbd3S2OHDkiZmZm5nWdbu+LFy8HuckPL0whBjFq1dXVmVYHLhZcLE8xLxEUN5oXaearjYyMFOU63drgBdJ0kx8wrw+Yt6GhIQs5MrYkzQ3mrampsWLebdu2WTEvaybMW1VVZcW8Bw4c8ATzOuHOYiNNYN6AYl6/3QVQLLhYnrlYYRnVxG3g74WGID1GQbqXvXlNzzrcpkluT1A0L2zwoueqm/zQmzciLciKFSsc/yk5GDPhYfKXTdr69esj24Iwxq6oqJD3AC3IAmLeIMQg1O8LMYgdYyMGCYCLxf/YPI2Pj8PFWiAXS8fYcLHyxLz379+3Yt7Hjx9bMW9vb28WQmtqapJLqhQDAwOy564eh5w7d06eU15enmnqOW/Kz4Z5CbvaMC/jWhPmNaHc+WJeE7ZkrEguqw1pUp42jc6zIU2TxmmwZkKalJ8N89J5JszLthVi93zuCWsmzOvFPTHZDcwLFwuYN46Yl+MMYF5g3lBiXq/9dyZVuqa6dPnGGeo5FMwC8wLzhr4FKUQzPZNBC4IWJLaYFzEIYpBQYF4/3AVgXrhYocC8Oq7NpeloD5gXmBeYFy4WXCxgXvTmRZAekSDdi0EbvB6AQKdRNo065+Vznr5fT9MLG/y+Z/meh0EbYuJicee8Qs7jB49wseBiRb6CcOc8xCCoIMC8wLzAvHHHvI2NjVbMu3fvXivmZc2Eefft22fFvNQzudiYl2Ii29i8dD22sXlNGqfBmmlsXsoPmDcmmBeaPxpcLG3C5w+CrdGrsocPH868Kut1fviATkhjkEI10yAR9EZj2OwjGueELfEJtiLFIFF2sShe4EpB9Iq+CWLqvbts2TJx+/ZtuW77Rw6afWQPXCxgXk819fkGCgMqSEEVJCxP0qOqcSuma69evRJ1dXVidHTU/vR39lyTxq6km+uM7ZN0G8pNJpNWzEvjR9kwrxPK5XFac2k62mPNhO8YI+bSdLRnwpacNyNGE9LMRzMhzVQqZbS7vr5ealSoKe4j/EwabdOxpHV2dorly5fLfaQdOnTIqkk0ObvOafJMWklJiejq6pLaxo0bM/vV6yLN7T0xYV4394Rts2Fe0myY16Spttkwr8luYN6QaOrYVdSCUCxFS12zpam7knCxgHkjpeljV/HHfEwaMC8wb/y0LX+83/FmOr09Ow/9nRKi/YkQr6eyNGBeYN7oad88Ty+pkI/NFvq2J2lNrSAf/pne/n1UvB4cFeLrPrsGiuWdixWWF6birI2k/pWVSPw35Xl+eGEKLlY4tRl/8kNvXheYN9GREJs6N2VhXtpvQ7lOGuO1Pdf2iCVnl8QC86pI06b5hTSBeYuMeamwb/5ps9h+fbtYdXFVpvDTkualZ5eK1T+ulsfSMSsvrMxo6jmc5tZrW+XMx9C04cqGdKW5uUfuW3d5XUZTj+NjeZvzQ8yDGGTBMC8Xxl03dmUKqxzF/d26WoD5mKqfq8Ti7xfPOYfTVCsITeWd5WJRx6JMmmsurRFrL6/N6KXnS7OO1fMDOgbmjR3mVQs+4hPEIMC8AdUqKyvlknsAw8UC5gV2jakGzAvMCw0uVnExb1R78x4/ftw6aAMPguCkqYMv8MAJJ06cAOZFb95oaFEY+woxiMcxSJxdrCiMfQUXy2OKFefu7uQehSFNPAfxXoOLBRcLLhYwb2FaFD5xAMzrMeaN86ANUfjEQbE1DNqg4TsK0m0aIVIb5qXYxYZyW1tbs8aJZWRKmg3zOqFcxoi5NB3tmbAl581I1oQ0GT86aSakefLkSSvSJHfWSbMhTZPGabBmQpqk2TCvSVORbCF257onuey2YV4/74mvMYjfnxVADIIYJFSY1+/PCgQR8+r9t4B5Y4h51fGY1ILghDqDhEGBeYF5FwTzwsWCixUZF8uLB4VoQdCCRKYFQQwS/DQRg/gQg/iJeelzBDbMy582A+YF5o0t5kVXE8QgwLzozQsXC5jXfSBkQ8DozYsgPfaYFy4WXCxgXrwPghYEmBcxCGIQYN6iY17Gtbm0hca8R48etQ7MQAg4l2YatKG5uRmYN0qYF+NiQYPdcLGgwcVyh3mL2YIwypWfTEgksvZH6V/IZp+6jhYkAi1ILsxr+8F1TX3u4TQHGfmp9jhp+doKzBtRzDsxMSG/qqr/2LSvrKwsSytkpgCpu7tblJaWZhWihUB+Nlvpvui20kQvQvGDUH4pyrSu202fcOZvlgPzAvM6arZvfiMmQAwCzDurDQwMBALz2pBmoqPJEXeSbkOaz1MDUqcZmBeYNzLaxPSUGHk7nincNEu3cnZf2aUvM5r8t3m3pOm7v36T28nhlNwu+aFFbv/an5Tn0FRx9Su5D0E6MG/stOpb34rJ6Wm4WMC80EwatxJRsQ8tSIGYF1q8NGBeuFjQ4GJlTf8DpSC6NaUlN2YAAAAASUVORK5CYIJQSwcI0nMH8TYKAAAxCgAAUEsDBBQACAAIAIhjkUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACIY5FDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVdWXfbthJ+Tn8Fjh7uSysaAFf1SunJ5sRtttZZevLSQ4mQxJgiFZKy5Z7++DsASIkQZVewbIXiVWJzAYjlm5lvZkSQ7v+ynEXokqVZmMSDDjFwB7F4lARhPBl0Fvm463V+efxDf8KSCRumPhon6czPBx2L1wyDQYeZjksD0+3anuN2rYAFXR+7Xpea1tDp0bFFhnYHoWUW/hwnb/0Zy+b+iJ2Ppmzmv05Gfi46nub5/OeTk6urK6PsykjSyclkMjSWWdBBMMw4G3SKnZ+hOeWiK1NUpxiTkz/fvJbNd8M4y/14xDqIT2ERPv7hUf8qjIPkCl2FQT6FCVMP5jFl4WQKk3Jt2kEnvNYcEJmzUR5esgyurRyKSeezeUdU82Ne/kjuoWg1nw4KwsswYOmggw3iUIAgSUMW50U5Kfo5KVvoX4bsSjbF90QvVgflSRINfd4K+ucfRDHF6Ce+IXJDYeM4sgjLc9iUGyo3ltzYso4lL7dkVUvWsWQdy+ygyzALhxEbdMZ+lAFsYTxOQWSr4yy/jpgYT3FiPWPyE8wpC/+GyiYGTCXOcB7jn/iPAz8WLzhRJ0kqvebpQrPTsktCXW/3PuleMzXLTine0ie1b5inc0uncuI7TdSuYAtdif/ip9ajeds0N3uUx/t16FgHmWL/pLSVfmEeKJvyuoX65GyWcYMxe8jucb0nyAbjcFxQcxuRHmxcisAcELGRZcMh8ZDDty4yXSiwkIk8xOsREwnrsD34ZbmiMQfZ0Bg/64JRIgIdWcg2ERFGZSEwJSQME4yUmlDDtpENF/HuCeVNmA6yHDgyPWTBGLlNugQqmnAhHEP3FJkEmfxi4iLqIIe3Ryxu647Hhw5NUuRg5BDeIJg1mLQ0Z6jvIZPPxingCuP5Ii8gKlAfzYISrjyZr05DdWCkNddJhlKo8FE/8ocsAvdwzkWJ0KUfcZMQPY2TOEcri5TnJqk/n4aj7JzlOVyVoa/+pf/az9nyFGpnZd+i7iiJs/dpkj9LosUszhAaJREuBwr7pLJP15NJIrNSYFUL7EqBU9l3t/abQAlaZAz6T9KsrO4HwRmvseYGgPJdHF0/TZl/MU9CdRr9E+Fp+mwxisIg9ONPoK28F44LWjseTlil43GIW44kSYPz6wx0GC2/sDQBL2CZhl35wGXXsoRSYpiVjwVF2cjn1kepQasfMK7rG4qsQnjsciUif8nWs52k4UpZ+P5Z9jSJglWxmP8zf54vUhEzADumfFJP4knEhI4I0waHPLoYJstzqRymbOvD9RyOsBzAcCJwR0AO1AaHOSm2Q7kVdfjIVrWwqINFDVxqWxisykmPihpiO5RbUQvUVw6tmCkpZ0lw2U2YCUrDHdVwhPJz976Iw/x1eZCHo4v1VPkFbxezIVupkNomua82+ycbOta/YGnMokKlQZaLZJFJC61oe8BG4QwOZUEBic/F9REGIM8GbJKycuCRiMckYKIUV5W1dlo0dZoms7P48gPowsYA+iflKPvZKA3nXOXQEPzABVtrVRBmPriRoHodt0GY+oi7C4An59CAdS7yaZKKiAtIBbbc9CI2g1gL5UK9hIauYH4iAjeOJ0qGX4HXNuWwlhiUb9U1oZV+NJ/6PLorZh351yxVcBDtvUmCTXQAfDEFMPK5FO6cMakXcsCwM4fmhDkpLAVwZ2g56HQJ5eH3NRAH3/4tA3cZuPLJciNTiFme3ZAUqI/E6V8Qe9oKxPA9IzZKZjM/DlAsoptzNuHnO2t/62Oua8gnHEAJziIvC3zZWtFGDf+saK0E2K9LoIjXZHllyjdJAN8d/zWKJYa0wFDq4Qal5uDtLyCpyUScnRcML3ZehUHARKgnPc63WF6SSZ4LZ/MoHIX5Cq6IS/QszoH1mDD7OpldMDbnXuRd/CH144ynp7JOhSR30vJnrdJy6wC88LwViNF7RmwXXngmeeF5jReGerwwbBgvdEti8I6KFvai8pGeyEYNE9mxUrmGmdVlFujJLGiIzLolV+FSaBS3TmjPpdCe1ITG9ITGmis066iEdlsI8KINIYBzwFzqtAWA3XfuuQsrvJCscFpjhbEeK4wbwgql+/VKUrCOK2S6TcdftkjHVxHtIZT85U1KPtFT8klDlLzrbbg+4rRGyV+1QMlXnu+gWl5Q+aualk/1tHzaEC3fVPIjY/JdRPZKiuxlTWShnsjChohs0/u2iJfOWsBL3gED8l9bhNdBafxMcsKvNU74qscJXxvCCZs03nXak6b/1gIlJ/cerNyG2Os2IXbIRP03SQuva7RwoUcLFw2hhXoOQ9sX353dJLRIT2hRQ4R27N+u7CKzX6XMfqvJbKYns1lDZXZkMbkqsvfCmagCG9ck9eZ2Sake6c3dPBKhciWd2DbBK3WtB/VK25APa8i/1UH+bduQP2ie8Eby1NuaDGI9noobwlOb8YB5zPfNd7OWdzrW8q4t1nLvtwBuQ+19C/KN7ve4MfhO0sv7mtLO9ehl3hB6qeUb3f+DQOh3HYL5vSUE87ALkndj9j90gP+jZcAfNAz6XfLUHzURfNPjqW8N4akaTR3zSrRtxjKtSepcx1jOW2Isq3vED7M+ehvykxryH3SQ/9AS5L/HwvRzyVIfahJI9VgqbQhL1b4IbF22VqepjzrG8rElxrKiqYfx6bvR1Ccd5D+1BHn6oMBvp6mPkqY+1SSQ6dFU1lSaal3OV6epzzrG8rklxrKiKfwdaeqLDvJfWoL85lMYh6Cpz5KmvtQkkOvRVN5UmjqunI8t5ykMjOtRCSxb5qA5UDDo/OfbIsn/S+RGXKoKhdftqBd+T6mMwyUL1LnCYHI/zQUJIME2tkEIXn8ILRIK/j6MtQ38O0ZUwYjujhFtPkamQWkVI1Ji5NjV03qAmQpg5u6Amc0HDBs9t4oMLhHzTHx3xCwFMWt3xKzGI4YN2+5VPtguAXNtPZBsBSR7d5DsxoPEucquWFzBVdRwiWKHjh5ijoKYsztiTvMRMw1StbiCuajh4T2Yy1UAc3cHzG0+YMSgnq0gsz9enoKXtzteXuPxwkBQVpW33NIknSrR89M6iPUUxHq7I9ZrPGJAYrgaNhQmCR5TQYxo0j7BaoyKNYJU3HzQTANbdR4D0PZifrIR2OtE9kcQ2hPDUsJWbBWouR7eBzU11CcasT5pfrCPDQdvYbS9VU0N94lGvE+OIOC3QdXqkRloIHaqYHqaoKkRP9EI+UnzY34gNVNJvUkJGsG9PUBTMwCikQKQI8gBIEBTPEFBalzViIKa5vcXRE0DiEYeQJqfCEB+SRRWs28wUF3U1FwAIQuNZhrINT8jIBDiKhDZ5cIgT9E3V9chqFmBJm7NzwyIY9hmFbcyM3Cq3wxh7he1YFNTA6KF2hFkB4QYdm8jzgDYIP5198hAKb47avQI0oOe4ShfDEmfYBvU1EyjqJoRPEmZPyDZNy3jpMeQGgB99SqIURl7ECA1XcToFsQcpItZ8xODrmVQRcmkZUIUZ+E9Ylxq1vBDA2SNZmgpfg/QHdBsfsbgGm7VfXqeBNMy8KbTuAHMW+5HP/lriwUe36MSq9fOFq/sfehXeLcENXzvqO307ldAT75J9K/i3nX1Vd7ynMbLvLfJohHvgD2yt4nepvDPWqfwh3gK7XlLUKP3jtpOrxsuaeL5FpoY6tLEsHE0sXpe5tjeYKvF8duEN9IV3qgxwttc99ZC0T27zT0HuqILGiO6o3/d922u5kUrXM2KGr0DeOfTdkFGDvlg04uSI063cATT5QjWGI7YXE/eHoJ42Qptd+5d2299KXG7MLsvUt3p3dslQbzaQhBjXYIYN4Ygak+cmMf8aNG/kPs22U10ZTdpjOw23xDRwrfYnZaie7lFdFNd0U0bKzrvuNKuG25nbCzZ0btvcQSLdoi4R1a5c1b4bnPjzoXuHVp7H9yOYd2OafSqS9FpudoJILKrwGkuCKDquh1TD7jmr9yhhu1V4PHs4k6Za1jKKjFLEzZ3H9iav2zHMYhijr3VPSHH3TivBZu6auc9S8MZA0odkB/Fv4GlhWPzl/F0iWsQuoXvbEN5YEkXx94NOJo/in8DQvU08giW9mCDKkt4LMdeY6lQoOaDhLi+giAZIx9l3xZ+yjQeLLzjSp/yL7HbRP4Jddu8ZyTHCQw6Ax0Zr1LVTP6NeCD/It7B20GHcFhZA28VTyfTXhVwzbV7JtmuvXeEfa+AVKD9ANq7B+agz171ERdacIZjeHS3xR3bUa+vNEIDGBTMZik2GpDfcbnRhqZTvvj4ITnDM2yn7sRsw/T20V7zBu0dIAv9KQHV4V5zr9VGpf4S7lkOuATas0v2dQzb2oV9IcWMM2heJE/8eMKSCRum/uP/AVBLBwjy8tZ2wAwAACKLAABQSwECFAAUAAgACACIY5FD0nMH8TYKAAAxCgAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIAIhjkUNFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAHoKAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAiGORQ/Ly1nbADAAAIosAAAwAAAAAAAAAAAAAAAAA2AoAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAMIAAADSFwAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
*Process:
 
*Process:
Line 145: Line 144:  
# How do you find the area and perimeter of an irregular shape ?
 
# How do you find the area and perimeter of an irregular shape ?
 
# Explain the association of the term 'square' in the unit square cm.
 
# Explain the association of the term 'square' in the unit square cm.
  −
      
==Concept # 3. Construction of a square.==
 
==Concept # 3. Construction of a square.==
1,040

edits

Navigation menu