Changes

Jump to navigation Jump to search
5,515 bytes removed ,  17:50, 14 February 2014
Line 112: Line 112:     
*Website interactives/ links/ / Geogebra Applets
 
*Website interactives/ links/ / Geogebra Applets
<ggb_applet width="1366" height="568" version="4.0" ggbBase64="UEsDBBQACAAIAMJhJEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwHrBRT6iVBORw0KGgoAAAANSUhEUgAAAMgAAABRCAYAAACXMekVAAAFsklEQVR42u2dX2gcRRyAo6j4KEXFZwsWhYJwSdNCgwEbrQqmithGE2uopGkaTR7O0iSFO6PVRpSIf2hiKDWKWqzFYJ80SBIfCvXPm+Qp5CU+BgJKaLRpft7cZZq5uZ293dx5ubv9Pvhxe7Mzc7CZj52ZzOzWCAA4qeESACAIAIIAIAiUT+OpqUEQAJvm5uYcQdRxXV0dggDQxQJYZ2JiQpLJZFbU19dLLBbLSTdDlUMQiCRzc3PS39/PHQRgswP3ahnAIwgUlcnJSc8B/Pz8PIIA0MUCBuqOaGhoyBm8V/pgHUGgaCwsLEhvb2907yAJGZVWOfW/hKoboKIFSaYa8XvyhWcc/emkdE0P3Px+ZuW89M2978xvRxJBoJoF6b6SkJ5fB9PHby6NyjvL5+T12SEEAQQpRiAIIAiCAIIgCCAIggCCRE2Q0UseFyiW/Wnn8yvjOm9zzz7/OrzOA4KUnPse2zh+4JlMIzVje3NuPlcZr7xmXXYZLyF1HeZ5qEJB9smx1A/FpFPe9hVkdXU1HVstyIPPidxSm9tg73/aLYhdxiuvLYhZxusOouuAKhakRQbkoJxMC2KGnS9xY0QWFxdlYGBA1tbW0r+3srKS3nuwlV2sfPnylQlaJ9DFCtTFisfj6c+lpSVZXl6W2dlZ/kqAIMxiAYKUsSCrNzLhGg80dXkPlr1muQBBqk6Qh1sy4TW7ZA6uGzs2Btb2TFdtWybU8d2PIg6CVJEgH17IhDm75BJEfeo8u18WubUuVxDuLAjCGAQQBEEAQRAEAEHyXoz12arbdvnnqT8crC6vYzuP+Z92QJCyF8QcYHutx1K0v5FdTufTM1dqDZUtiLmuSsfQuMjhBI0QQSpMEHsmy56VirVulLHzKdQaKlsQva7KrG/nQZGvf6ARVoQgpztE+g75x8jOHhk7tDdcvPiIdMmZvBGXD/hrQPkKogQYTfjH+La+zOq7EDEVa+YqA4IgCCBIlQtS6h2Feixi5jFnyex0M82cATPT7P/+B6k7TL2RFEQ9kTuMINfPfiOftnbKpc4TMvx8e5YQfw6NVawgpd5RqD91HnuWzEzXodPMGTD7N8LWbX7PV28kBZmZmQl9B7l8vE/G2o7Jxy2vpL8vDX8uyx99JRePxmVt5NuKFqRUOwrtxmnPknk1UJ1mzoAFEcSv7jD10sWiixUqXyE7Cr26QfnK+qXl62L51RO0XgRhkA6AIAChBDmR6kN37/eP8W2nEGQzF3m9i/LvdZEdz7q7Q17dmce7RZ54la7OlgsShKnGFgQJIYQ9YB7+0v0MLLus5vZ6kTt2M1guH0GmUvFdKv620q8iSKGC3NWYme0KIohOU6uL1V0EQcpFkCup+NH4/lcqrqXidwQpVBhXWtCuE10sulgACAIQGUHOvXQ8vbxELTlZ+eRC1rlf+oZkcPsurjJEVxC15OS3/nfl9IEXZPXsxZtLTtS5n+NvIYiBOc1rTt8CXaxIDsrt2SlzmteevgUEibQgCnOa156+BQQBQBAEAQRBEECQaAly7Z/MjkD16RpX2BTy8k17/4W5HVaXy7dHQ29o8ssPCFIUzn+faXSfXd5ogK4HwSk28/JNr62zZj69Hda1G9BMM7fGeuUHBCkq+rUFdW3ZjVlhPwhusy/fdAmiz5kPpHM1eK+tsX75AUEqkiDdoaBbbsPUCQgCgCAACFIlPNUj8uRruenm2ixXHkCQ6ruo1lKTq3+I3Lkn+7zCXJtl5wEEiYwg6iWfRwZz85lrs1x5oIIEma49IFM7mkLF9EP7ucoQDUEAEAQAEKTUsJsQQcAxSGc3IYKAjyAKdhMiCACCACAIACCIa+wQllK//FNTyI5GQJCCBNnTLnJvU/bOwsaOzEYpfU5T6pd/mmW8hHTtaAQEKZoge4/kNkwliDo2z5mNuVQv/9zsjkZAkC2h1C//BAQBKAv+A12Ux/VenfrEAAAAAElFTkSuQmCCUEsHCBiprTrwBQAA6wUAAFBLAwQUAAgACADCYSRDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgAwmEkQwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzlXHtz2kgS/3v3U0xxVVv2BmzN6EkWsuUXBleySZV9W7nL5lIjaQDFQmIlgXF270vlI+STXc+MJMTTgE0Kc6nYekxP98yvfz3dEoNrv456PhqyKPbCoF7CR0oJscAJXS/o1EuDpF2xSr+++rHWYWGH2RFF7TDq0aRe0rik50IXUq26bcOpuFVqVjTTVCqUuqRiEafaVnRLp4yVEBrF3ssg/I32WNynDrt2uqxHX4cOTYThbpL0Xx4f393dHWWmjsKoc9zp2Eej2C0hGGYQ10vpyUtQN9HpThXiRFHw8fs3r6X6ihfECQ0csM+nMPBe/fhD7c4L3PAO3Xlu0oXRq4ZRQl3mdbowKZPApI65VB8Q6TMn8YYshr6FSzHppNcvCTEa8PYf5Bny8/mUkOsNPZdF9ZJyhA2iY0tVsIEVXcOmWkJh5LEgSYVxavQ4U1cbeuxO6uVnwqRWQkkY+jblKtHffyOiEAWV+QHLA4GDYcgmRd5TVHkg8qDJgy5lNNldk6KalNGkjAZjHHqxZ/usXmpTPwYMvaAdgf/y6zi595kYT3pjPH1chjnF3hcQVhXAVIIO9xWlzH8M+NGUFOzCJHHBahIN1jSamQSnaqvbJI+aqZoZJYTM2iT6gnkaS4zKia80Ub2ALZgS/8XPjEV12TSnLcrrxxnkLvgOU6wdZ7FSS8MDxV0um9InYb2YB4xaRXqV8x4jHYLDMIHmOsJVOJgEQTggrCNNh0tsIYMfTaSa0KAhFVmIy2EViejQLfilmUKZgXRQxu+aEJQIgyEN6SrCIqg0BKGERGBCkBIVJHQd6dCJm8eEq1ANpBlwpVpIgzHymDQxCKrQEa7BPEEqRirvjE1EDGRwfVjjsW5YfOigkiBDQQbmCiGsIaRlOIO8hVQ+GyOFywv6g2QCIqfnZqdJ2M99AdKwII3XPblATSyLP9R8ajMfUsU19yRCQ+rziBCG2mGQoMyJRN7rRLTf9Zz4miUJ9IrRZzqkr2nCRg2QjjPbQtYJg/hdFCZnoT/oBTFCTugr+ZhDHxfOST5quFALDVqxQS80GIVzc67dEFrQIGZgP4ziTJy6botLjJcGQPJt4N+fRoze9kNvchq1Y5F1amzg+J7r0eB3ICu3wnFBhSSkjZOQrhvZSMLIvb6PgcJo9G8WhfWShY+IirFhEqJammKCV+9lC9HMo6qmEc0yFBOWHQj32KE89gg+0lXFMAwLa4TolqVDpwVtuilNs2HuIjpi49l2Ih7ahYtWfBr641sCgDPaTwaRKCBgdYz4rE6Cjs8ESURoQ3Z2bu1wdJ0u11LXzX0frhQ5ArsjgEewOBAdRtxJj7Y8Chk+tFxKETKKkFAyunlu3o6rREiIoy2PQgr4K4eWThVn08RKZsaLxZKmlNLAyZYrzn6e6weBl7zOLhLPuR1PlXf4bdCzWc6hSZ346XTyUUPZESfv00KOn/+rcH7TZQnlBYlOVL1qmaYOv0nVsiRVp0hau2VRwPw0JoAMg3AQyxAvhIvLHK8Hl7IhhZRyd/8TJiDvuqwTsWzivijuJOCiVSmyfea2UNWIwl4rGN4Al6YGUDvORlmLncjrc84iG/LILRuzEuZOIQ25xX48iAE6h6cbgDfh0P7OIq/tyRSEwjZquVCjeck9OqCH/yGogg5sOMIiMEi6YSSKPFi74CjqyjC6jbuMJTdslCBqh8M1NIKbOQfEyJjPeiCFEhEOwaAHOpycGFQYAxAGKU4V9SiFitMChfZnWJ/zFC47jTkCzQsiBlG/3xXswGlc0HsWTfhCaHsTuqnlVC72eZ2Leh6k7QqGEO3REc/boNGOYfFOoNgH9wfjYl+OLVv8FIXzE7pUSZWf3cMSKJ4u2t6o4ERA3PsCPKQT8xkHbwKJ5RbK51hUdEm6loiTpucC7vmAaQCMFR6BpbUvI6rPmAzGvGMf5i/WsALXUtc86CR72knm3vhItVIfWdWd99GoH4EtriTF+AQebkeg7YCiF8guI+UwUyYSlyx6Jl2bNuQKZpw4uW7P9yImMoOJY5rBxr5UVvRlcaGMuTO01BXCOV/kQi+fXvmgeXKdqMjk3akVdjlgp1OAUViy7HVBO90MtCL1nxiwCt4eZGcZZMqGcJ3tFMeUJ4fMCXs9GrgoEE+CrSCBMgZmWRo/nVCo80cnUCHBBKDMvxencsKDJBM4l3pTbQ9ger4Zprws78iDLQ9PCOh28LxmHX5/Cs0zieT5DIrOchTjVFsGkzOL40QSKxSGq2SxjUFM2VhY+8bKNsg27M9Adollje31+r7neEkOl8/TTE5ViPbZQviWsT5/gnkb3EQ0iPl7UimTUWtdn51Ln53M+Mxdz2furvgsc5m2ty47kS47nXEZW89lbEdcNhNlFW3/nHYqnXY247T2ek5r74jT8gSjPVOnzdZUF3kZukHNfrFT9ZR4XN9u0d4ooEXXRauxM8V6jpQ82QpUl8VifV2oLncGKmX7SDUzpDZ5bG7uVAiaW4/AVgGstZ//WjtDqwwoc2tAXRXib22grnYGKOWJgZosW96F/n0nDOY/HkBcUiIYR1UOyXQR04fOWIq6n7AU7kphDw5avfT5oQdpaT0DVSrctJjY7P1n9smPjgve0vR13LX45e3M89In/JhKbu5YH//QlFHrmZVyS5Hu7hDO00lBq+4R0N7uAJ2XKuY+Av15d4CeJnTlea0ca6TAC5nVGjKrXc5NgSRLgUQKM5ELQbwtTiANdtZPg2QLaXABQzgnFlQtW0uDZDMyLxnq49Ng/oTzvNj8wOu+TSuObUA9/X5in5bn9i4BnVFa3UOgO7sD88wLt+e1cqyRB09kajuViW32fTZPWWqWB1UpTLM8aGd50PmE18+E6vfLhNluQGXOE+G2MqG6GZ2XDPX/9VO05UjTTdfnbSD97D/8Wo61vUtYP//PrJZvm9glrPdr78S5l37FazIlLvwk3k3lT06XZ7npLZ2FflxjYW8nzuFbeePm8pfifAPxSbbz7qc/B2Hyyx/hkEXcO3/Ja/QCHfDv0n04+XiYn5+KcynwX/RHGdX5r7xDYQZzXq0nYLQ0NYJHvMt49OfZXvya3rD3kzRIv1US813V429giC8RKKWMgNlO24RGyTv+pl0C+cZzxXv3DydldPqxYPptux2zRESGbspVqPoYzs1ussqRf2DP2kLOnU9zTtsG5c7Xp9z5ipQ7X41yc7bp7QvlzhdQTsWCckTdiHKXknKNhZS7bGxGucvGNOXULVDusrEa5S4LlGusRjmuegXKXc7Z77BOYuYp+bHPqtvj3WUZNRbwDggnvmmxEe0a2YvXRbRrXGxGu8bF96Bd42I12jUKtLtYjXZc9Qq0a8zZlLQXK12jjC4WJVct3Ug+46WVONeUnGst5FyztRnnmq2F39Z5Qs41W6txrlngXGs1znHVK3CuOWdjyV5wrllGrfmc01PGbZZcW5Jxs3sqMuBbV5sxrnX1PRjXulqNca0C465WYxxXvQLjWnN26OwF41pldLWonpOrHHnYRxwuPOGiA/rCPkQHtAK/64h++8q/PvTt60//wMovQzr+JulLcafVRrSeu4bmfkOc2Pa4xc5bRLdJIx8O5mg4fHEwp/fhxwXSFTRfXJhDM//A6JiB4ntlY86BCVRsrEw0LlRY6JNp/Dnrfjg5/RMAJ0cW+h6gOVP69vUQzZ8VtCwcRXHgPyM6Ngy6xm02tNlTg1pBGx/wnJ5NBuFYRouYIwQfjFXJxEeE6lNUwQvDkv+tlIVxKV7UmkfYMDSjalR1zVB1K/1YrVrFuq4T1SRwT9GLO/OKkXlc/Co4v87+ANGr/wFQSwcIbZzyOSsLAAAdSQAAUEsBAhQAFAAIAAgAwmEkQxiprTrwBQAA6wUAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACADCYSRDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAA0BgAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAMJhJENtnPI5KwsAAB1JAAAMAAAAAAAAAAAAAAAAAJIGAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAA9xEAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" />
+
<ggb_applet width="400" height="300" version="4.0"  
*Process/ Developmental Questions
+
ggbBase64="UEsDBBQACAAIAMJhJEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwHrBRT6iVBORw0KGgoAAAANSUhEUgAAAMgAAABRCAYAAACXMekVAAAFsklEQVR42u2dX2gcRRyAo6j4KEXFZwsWhYJwSdNCgwEbrQqmithGE2uopGkaTR7O0iSFO6PVRpSIf2hiKDWKWqzFYJ80SBIfCvXPm+Qp5CU+BgJKaLRpft7cZZq5uZ293dx5ubv9Pvhxe7Mzc7CZj52ZzOzWCAA4qeESACAIAIIAIAiUT+OpqUEQAJvm5uYcQdRxXV0dggDQxQJYZ2JiQpLJZFbU19dLLBbLSTdDlUMQiCRzc3PS39/PHQRgswP3ahnAIwgUlcnJSc8B/Pz8PIIA0MUCBuqOaGhoyBm8V/pgHUGgaCwsLEhvb2907yAJGZVWOfW/hKoboKIFSaYa8XvyhWcc/emkdE0P3Px+ZuW89M2978xvRxJBoJoF6b6SkJ5fB9PHby6NyjvL5+T12SEEAQQpRiAIIAiCAIIgCCAIggCCRE2Q0UseFyiW/Wnn8yvjOm9zzz7/OrzOA4KUnPse2zh+4JlMIzVje3NuPlcZr7xmXXYZLyF1HeZ5qEJB9smx1A/FpFPe9hVkdXU1HVstyIPPidxSm9tg73/aLYhdxiuvLYhZxusOouuAKhakRQbkoJxMC2K<ggb_applet width="1366" height="568" version="4.0" GnS9xY0QWFxdlYGBA1tbW0r+3srKS3nuwlV2sfPnylQlaJ9DFCtTFisfj6c+lpSVZXl6W2dlZ/kqAIMxiAYKUsSCrNzLhGg80dXkPlr1muQBBqk6Qh1sy4TW7ZA6uGzs2Btb2TFdtWybU8d2PIg6CVJEgH17IhDm75BJEfeo8u18WubUuVxDuLAjCGAQQBEEAQRAEAEHyXoz12arbdvnnqT8crC6vYzuP+Z92QJCyF8QcYHutx1K0v5FdTufTM1dqDZUtiLmuSsfQuMjhBI0QQSpMEHsmy56VirVulLHzKdQaKlsQva7KrG/nQZGvf6ARVoQgpztE+g75x8jOHhk7tDdcvPiIdMmZvBGXD/hrQPkKogQYTfjH+La+zOq7EDEVa+YqA4IgCCBIlQtS6h2Feixi5jFnyex0M82cATPT7P/+B6k7TL2RFEQ9kTuMINfPfiOftnbKpc4TMvx8e5YQfw6NVawgpd5RqD91HnuWzEzXodPMGTD7N8LWbX7PV28kBZmZmQl9B7l8vE
What is Identity?
  −
Does the Identity holds good for all the values of variables?
  −
*Evaluation
  −
What Identity to be used to multiply (3x+2)(3x-2)
  −
*Question Corner
      
===Activity No # ===
 
===Activity No # ===
499

edits

Navigation menu