Line 91:
Line 91:
# When you say shape, what do you mean ?
# When you say shape, what do you mean ?
−
===Activity No # 2. ===
+
===Activity No # 2. Geogebra animation to explain PI ===
{| style="height:10px; float:right; align:center;"
{| style="height:10px; float:right; align:center;"
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
Line 101:
Line 101:
*Multimedia resources
*Multimedia resources
*Website interactives/ links/ / Geogebra Applets
*Website interactives/ links/ / Geogebra Applets
+
#[http://geogebratube.org/material/show/id/144079 Geogebra file] for explaining how 'circumference / diameter' is a constant, denoted as pi (Greek letter), using a number line
+
#An animation of the same concept.
+
[[File:Pi 121.gif|400px]]
+
*Process/ Developmental Questions
*Process/ Developmental Questions
+
Open the Geogebra file. Move the slider to 'unravel' the circumference' over the number line. Since the diameter is 1 unit (measuring from -0.5 to 0.5 on number line), the circumference ends at 3.14, showing the ratio between circumference
*Evaluation
*Evaluation
+
*Question Corner
*Question Corner
+
#if the diameter is increased from 1 to 2, what will the circumference be?
===Activity No # 3. Circle of varying radius using Geogebra ===
===Activity No # 3. Circle of varying radius using Geogebra ===