Difference between revisions of "Activity on Ratio proportion"

From Karnataka Open Educational Resources
Jump to navigation Jump to search
Line 22: Line 22:
 
         x = 15 cms
 
         x = 15 cms
 
visualise and understand  with geogebra applet
 
visualise and understand  with geogebra applet
 +
<ggb_applet width="1366" height="568" version="4.0"
 +
<iframe scrolling="no" src="//www.geogebratube.org/material/iframe/id/86014/width/1366/height/550/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5" width="1366px" height="550px" style="border:0px;"> </iframe>

Revision as of 17:48, 14 February 2014

=Ratio and Proportionality

Exercise 2.4.2

In the adjacent figure, two triangles are similar. Find the length of the missing side This problem can be solved with the following steps.

  1. Prerequisites: students should know the concept of similarity and proportionality

Proportionality : two ratios are equal then four quantities are in proportional

                Similar Triangles : If two triangles are said to be similar 1. if they are equiangular 2. the corresponding side are proportional
  1. Understanding/ analysing the given problem
    1. Identifying/ Naming the triangles
    2. Identifying the sides whose lemgth is not given
    3. comparing two sides of triangles (visualising that 1st triangle is smaller than 2 nd triagle and viceversa
    4. should identify the corresponding sides (sides having same allignment)
  2. Procedure
    1. find the ratio between the corresponding sides whose length is known
    2. express proportional corresponding sides (using the property of similarity)
   AC/DF = AB/DE

13/39 = 5/x 13 : 39 = 5 : x (use the property of proportionality i.e Product of extremes is equal to product of means) 13 * x = 39 * 5

       x = 39* 5 /13
       x = 15 cms

visualise and understand with geogebra applet <ggb_applet width="1366" height="568" version="4.0" <iframe scrolling="no" src="//www.geogebratube.org/material/iframe/id/86014/width/1366/height/550/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5" width="1366px" height="550px" style="border:0px;"> </iframe>