Difference between revisions of "Slope of parallel and perpendicular lines"

From Karnataka Open Educational Resources
Jump to navigation Jump to search
 
(6 intermediate revisions by one other user not shown)
Line 16: Line 16:
 
==Process (How to do the activity)==
 
==Process (How to do the activity)==
 
Play with the following Geogebra applet <br>
 
Play with the following Geogebra applet <br>
From the following geogebra applet we can visualise that slope of two parallel lines are same and slope of two perpendicular lise are negetive resiprocals of each other
+
 
<ggb_applet width="1366" height="558" version="4.2" ggbBase64="UEsDBBQACAgIAGi+DEUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwEcEOPviVBORw0KGgoAAAANSUhEUgAAAMgAAABSCAYAAAARpZu7AAAP40lEQVR42u1dbVMUVxb2t+VDqvZHJB82qd2K+bJVqVTlS7Qq6ybZTaxUaW1ljagQEhRGQEcF5GUGBB15kRFQFAERRgRFgzK8GcCz/VxyJpee7tvdMw3zdqbqwty+Z27f7r6nz3nOc18Oke3z+vVr8vpMTU3Rq1evjDIbGxue9eynTCKRoOXl5VDPhToXFxcLel37IVNq7T1ImUP2A6urq56VPnr0yFPm7du3BZNZWFigVCoV6rlmZmZUnYW8rv2SKcdrCksmS0G8LINfBVlbWyuIzNbWFj148CDUc+Etk0wmC3pd+ylTjtcUlkyWgjx//jwUBUmn0wWRiUQiSknCPFc8Hi/4de2nTDleU1gyh4A54FbBckA55ufnVR7HkedyxiYDAwN07969Pb/RZTiPMj3PSc+/ePHCtZzre/r0aVb9qFvPw6VCvre3VymvXo7vnPS8U33cHr28paWFHj9+rPJIaA+XI7E8t5Hbo+ft5Xob9PNxHkm/v5y3lyPhXHqef8Pt7+7upmvXrtHT1ByNjY3R3Nycesa//fYbvXz5Usk/efJE4Ur85uHDhyq/srKiZCCP63/27FmmrcjjXqEcx/gZ2e81t0fPc3vt/U7P68/crY/h/E59Ss+zjKmPOT1zPV82GGRpacnRtcoXy7BrVao+9PDwMHV0dNDa6go1Nzerjt7Y2Eg3btygy5cvK2tbX1+vOgo+ExMT1NTUpOQgDyVCgiwHKPjY9PS0Ol5bW1s5GMRPFMuPghx0JAIgOuxzIWpV6lGYCcsijI6OUHrltWvHkChWGWOQpqZeam/vVW/C7e3schhE4LCVlbTlEuzm371jgMbn2P2unwu4I2wsIxikBDFIqVuQTz89QVVVDXs6/OgoWX72n0owPg4F2bB8Z7LwE9Hvv++WWS65+n77Nll+95/ngqsGlw0fu9JBBkrG9xUvYsvb0KIiuzL4DxrGLUgiPEiJWpBSwiCLi8v05Zf/Ncqsr2fXs7OTLQdFgExt7VUL7Cf2dHhd6SCDY1AqVGlhWIrFiDY3/1S61dW3SilBxaC82P1s4UHK0IKgkzc0DNKZM/FQz3X48Cnq6urNUhBdhpXO3h6nczm5fWJBBIPsu48YjQ7SrVsbSkHCOlckcp3q6jorzs8WDFJmFuT+/ZTlBqVpaIhCsyDJ5APq7n5B9fXxvOoBsMdN1288jiGBXxALUmIWBAK7fvUazc7uEifI4zgeMpdzRZOTkwrE8m/sMpwH0aTnOel5KKNbOdcHwkbPp1LPrbf8gFIOpKqqmCKs9POjXZzHdyRuD+d1+enpx9TcPEzDw+/o1187sso5j4T26Hku5zbeuXPHateQIuhqamoU3wAuBeRqVVUVvXnzJtMe/fd6fUj4Dhk9by9HwrXreX4m+vWjzXrerdz+ez2PZ+X0zPU82sv3Vy/X89xep99zXn/mbn0M7XHqU3qeZUx9jPug2zPfY0Gqq8lSkOK2IE1NgxnlCMuCXL2aIPCBSPlakFKUEQvi4WJdvNhKH398pegxyPXrSYU77AqSz7muXYtbb/0tpRywIF4K4udcOuMMRtr+WxyHJRYMUiIYZGNji378sbWoMcjY2Ay1tKT2KEe+FmRycoZisVTGeoRlQeBewURjqMaJEyfUUAy4Xbdu3cocP378uCMRWUgLgjFQrNAvdXJHoljFDdKhwO3t2cqRj4Ksr29QNJrcoxyV5GLNaQQNl/f19dHJkyfVdyj03pfJZEaJTNMCREEKoCAXLyYclSMfBWlsjGcpR6UoyNdff00XLlzIuBgMynmkMBKCCVwOS9fW1qZkoEQ//PBD5SpIsWGQ+vp26uxcMipI0HN1dSWot3c5SznCwiClyoPAqrBlgaUQDFLkFuThwxR1dCy4KoduQeAz7+zsqAfsNOydzzU9PUPxeMrRelR6FGtkZCTjWsFSCAYpYgXB0I22thmjcugKAuAL3xjzE44cOZI1xoZj4K2tSVflkDCvyGQpiJ2Q8SIK4ZseBFHY1zfrqRxBicLGxg7lRiHpbhXnwyAKsZIK7iFGA+MY8rhnkAPQZXm0B3UJUVhCRGGxYJBE4kEW35EvBmlri1tKt2y0HmFgELw84KogpIvELh+Uo7q62lLAX5Ubg+mvKN9xGlpcIAwiMiXgYo2Pz9D580lfyuE3igXcEYvNGpVDXCxxsXwpSCHng/AQdr/KwQpiOpcf3BFEQfxcFy+dxEw6rASTgrAoyGM+NwcW3N5mMh+k8DJFZUHa28eov38rsIKYzhWNxunuXQqkINxx0Yl5MYMg12Vn0m/evKkUgxc5AC5BlAjl7HKhzO5yiQURHiTzHUPYu7qWAimHFwa5e/cB3bixlMEXXsrBGIQjYrFYjH755RfjW76ceBCRKVILMje3YL0904GVw2RB5ucXrI7u37USDCIWpCgxCFYYiUbHclIOEwa5dCkRWDnCwiClvDYvu5QITesLdQsGKZAF6eoKjju8LAhwx9DQ1r4oSLm9JaEEejlWzkSnqaur27NoHmRYYaBEPFar7C2InZDBGBwTUYhpo36IQhBCXkRhX99dC9Au56wcTBSClOPz376dpJ6eF1lEoE4G5kMUAqOZiELkmSR0K0eeyU0TUcikmokoxLm8iEK02U4UInCAwACCBbzUJsqwLCmWFkU/QAL5B8WADFZoRIABQQgM4bf3AbTXiyjk9pqIQpzLiyhkMtHUx1jGRBTayVpPovCgVnd/+nSBGhqG81IOtiB4kNvb2+rhRSK7rlVf32urE7xRnb6z85kanMiKEIstqv8o5+SXKKyE1d2hEHYLIau7HzAGaWhI5K0crCCDg4PqTffddz/S1auPMp2/trbPchk2LaVJUk1Nj/qOstOnr6vv587FrRSzwPw9wSDaB2Hnn3/+WXiQQmCQzs5Oq7NG88Idevr88+OKjMPyo/39G5mOjqiYHV/cubPtiDt0vCJRLJE5UB4Efqk+tfSjjz6iw4f/QZcvx+nixXb135S8ZD744K/0zTf/scB+ypPj8MuDVFqsX3iQAAoSNgbBMjg8z1nfqcmP/4eAAGTw3z4sgz/AHY2N/b46fxgKIjtMCQbZNwyi79Tkx//D6FcoAP5jzwonBTl9OpJTOFd4EMEXRYVB7LvOhuEjxuMJ6u5eOlAFEQwiGCRUDIIP7xAbpo/Y3z9IV66MBXKfBIMIvgiMQeyEDLYdMxGFwBN+iEKezQViqL+/35HU0WeXuS09qpNuXA4ljkR6PIm//SAK0R4volCfEedGFPIMPRNRyLPdTEQhE10molAnUk3lphmFTGyaZhSivV5EIbfXRBTqz9ytjzERbSICvchqnYz1TRSGjUHsuCNXH1GPhDU1dYTqVpUrBgE/1NraSneTwyrQwUv44Dd8P/F/dnY2UxfywHr8nTsN3GP+DSsQY0LO6/ULBvHh2znhjlx9xPv37yu2PBbrtdJCwRSklHxoWG4VqVlNu27giTy7vxh2guOYu8Lf8awx5B9uMob/Y6owb/Cpr8KIND4+vmdTz7LEIGGFeSHjhDvyCcM9ejRpgfJUzvjCLwbBYDx9qwL95TH/x95u6+vre65v/Y9ddXAMnclpMN9BhynH79+jt5uW67P8yvjW5Dr0424yFR/mDUtBTK5VLhcA8/3TT5G8Or9fBcEgPt7hFm9Nvl50+oaGBqUMsGgYjsHtQ35zc1O9PS9duqS2OxAeRHgQV+Xw07ggPuJ7771HX3xxTC0Zak+RSJfj8Vxk3n//LxSNRl0jHvY2bzvssab7+MKDCAbZ8+EdYsP0EbFkjknWVMauEvxj0xI7lRzrFx7kgFwshIh5KElYJhAdWx+eErQesPAoRzTH621RqW6EU7k+5J3DreJi5akg7LeH1Ti4KfDnxT8+eAXBpChEr/BBtKpiFcROyOjLVAZZehSzzZjEQh5YxmtGIS+t6UbiIGSIiJKdJLKTOky6mZYe5fY47VHIeW6PiSjkWXMmopBJUhNRiPZ4EYWQ8SIKmUw0EYX60qxO5XjheRGFvKci8lAY/Lanp0dxKPoz9yIK9eVm3YhCJvhMRCEvbWvqY17L3/p55qFgEMYdYfp/cKvgsol/vH8ymH+O2Zi8krtO9CEKh4RRC4jqccdB+alTp5TMxMSEqqOiMEjQsVggAp0wQj7jYKBsXKeME9p/GadyzCpklxlKIPNBcsQgbnxHPv5fb2+vYAcSHqQoQXoQHsQ0lCTXGPT58+f3mD2J0e+/jNybAAriF4OcbTtLUzNTofp/COnWx+spvZkW7EDCg5QsBmm72UZ1rXV0pu9MaP4fcEdNaw1NPp+kkdSIYAeS+SAli0E++/dnNL88T7cf36apF1Oh+H/H/3echp4MqXoT0+HyKSIjGORAMEg6vUUf/u0Tqr5WrToyUnQkmpf/h7DhP/91klqSLZk6m4ebxT8WDFJwGRiLQ/gDTMEJsW89r6ejR0/Qh58cpW9rv6Vz7edUOnv9rKMsuBG3enSZY8eO0Yd//z5TH1LV9arA9YhM7jJyb5zLpqamsi0IBvQ5zWXAm57Dr/gxNnsxfbzmQ+CDQYhg4E0fp3kZuZ7L66OTXvn4tV73Bh9MPPK6Jj/32OvaUc4Tm0wyXvfZ77m87jNkvO4zb3oaxv3xus+4N6Z6fEexwHfwEG4oyMv0S5V23u3Q3Ks5mlicCBx94j258XGrTyIsEsUqqiiWEwaxDyWBglwYuEBNd5po7e0aDcwM0FdXvlLf/fp/sBx6QMCtPvGPBYMUUsYziqUPYdcVJJ/oAKakok6JnkgUq+SiWHYeRB/CHkRB3HxIHMdqG6UYEy9XGbk3ARRExyBYucJp6mg+q7vrY7fE9xUMUrIYBOjfbVWSXNfmheXQx26J7ysYpOQwCCwIcIdpVZJcLAiUzR4ClDeXWJCityBOexRi6RqnGYXMkeSyR2FXV1fW7C59GUq3pUf1/ercZhTqS2u6zSjk9phmFHrtV1dOexQ6lZtmFPJMU9PSoxWxRyFmi3kBl6AWROdQ5K0kFqRkMQjcoNHRUc9Kg2AQnjorfq1gkJLGILAacJ3CXJsXioE65a0kFqTkLQiD8jD3B/FaflTi78UhI/fGQ0EQfmVNCsuCAJR7Lb8pby6xIEVvQRB6xdAPPcybr4KgTj+jcOXBiIIUvYLoK4iEoSAwWQDmctNFQcouihUGBmHcIX6tYJCywCB2QgZLfbotPQqi0LRHIXAHk2Reyz7ynnZeRKG+358bUagvrelGFHJ7TEQht8dEFKI9XkShvnSmG1HIS3maiEJeFtNEFDKZaCIK9eVkTeUmopCXdzURhWivF1Go70vpVp/+zN2IQl7e1dTHWMbUx7yeeWjbH4BD0cduidkWF6ssXaxcFIT3I5QbKgoiGMRBQQD07SFd8WsFg5QFBsnXgoBDcTqJvJXEglS8iwX+ROdQ5IaKgpSbzP8B5fjSr0gDhBwAAAAASUVORK5CYIJQSwcIfd+91CEQAAAcEAAAUEsDBBQACAgIAGi+DEUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICABovgxFAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1d63LbxhX+nTzFDjuTaacmtHcAiZSM7MRXOfbEbifTy2RAckVCAgEaAHVx0/99g7xC/6Z5hPzvQ/RJenYX4A0kRIiUDEe2tQSw2N1zvnO+c3YXoA+/uhpH6EKlWZjERx3i4A5ScT8ZhPHwqDPNT7te56svPz0cqmSoemmATpN0HORHHe7Qzvw+OHIk1jeHg6POqfJ6xJNBt3fKBl0u+m7XU33ePWUuYz3q9fxg0EHoKgs/j5Nvg7HKJkFfvemP1Dg4SfpBbtoc5fnk84ODy8tLp+zdSdLhwXDYc64yaABGHmdHneLD59Dc0k2XzFSnGJOD71+e2Oa7YZzlQdxXHaSlmoZffvrJ4WUYD5JLdBkO8hHogEnZQSMVDkcgp0tBqANdawLCTlQ/Dy9UBvcuHBqh8/GkY6oFsb7+if2Eopk8HTQIL8KBSo862CFcckI9jzPGPEqY10FJGqo4LyqTotODsrnDi1Bd2nb1J9Mlx74LIIRZ2IsUqD2IMpArjE9T0CmMKJ3CYZZfR6oXpOXxfEDkAfyBCuF7pdsCOa0ijjowqAcE+w9cjB8IUShgseMOypMkMq1iJHz044+IYorRA10QW1AopLSXsD2HmS2oLbgthK3D7e3cVuW2Drd1OKuRszieC1qcWJK0lJMtyklAPv1Pwj+jgBU5vQU5iRbiR0T06E3BkB43MePXBS8OpT10TUGwLUhx0dO/jL7kjhKxW0lEFnq19rC504q9lD0SJtj2XdKdBJ2JSdeJScUGMXfU7kxSsdAp9GX+mn+VLlkjOTfrdvseJd/F+W/RoYuX/L50eluSoqxTw94GdXhQ0uFhMSCUjXTdwqZzNc70EJlv2AkRJMB7pQtkIhDxoXC1F1NEBOICDomHpC5dxLTjcsSQh3Q9wpDhIOHBL26cWiIBbemTrvVuxDgSDBHDXByBFpBhP9AJZVBDCCTgJt070d0yibiEA+YhDgPUvOdqbmFwHxxD5xQxgpi+l7iISiQpcjV3Eq4pVXp67NAoRRIjqW8F8gTitKQJd3iIaWnACyZJFs6UO1LRZIaK0WMYT6b5ku7640H5MU9Wag+S/vnDFV2rIMvLz1AJItY8MNoIthQ3PzmMgp6KIL14o80AoYsg0l5u2j9N4hyVJkDtuWEaTEZhP3uj8hzuytBZcBGcBLm6egy1s3KApmsTzw/VtB+FgzCI/ww2opvQDaJ5eNfkVYZ3IYntpp8k6eDNdQaWg67+otLkqONTxwWSmf2IDrq2V5jPHMn8+Y9mqX6gTR6yILFwD4Yr1xsuFQKqi5lowZXKSl0O03Cw+PlZ9jCJBjM8JkkY54+CST5NTaoG/aRapON4GCmjWoM4JD39815y9aYgbtvW2+sJHGHbf2/4KImSFIE/UgEyDouyZ0tTRw9sVgubOtjUwCVI4WB2nfjU1DBlz5amFqBuh1YISkopCS67CTPDNND4oo0Zk9EZ1DQO85PyIA/753NJdf1vp+MeWFtx23KTZE9NHh6s2NfhuUpjFVkjigHIaTLNrFnPTPOTw2mmXgf56DgefKeG4I+vA02JOTRtq85HPFD9cAw32vOF6gIN659gqPbsQA1TVUoYmdzYKtZcxYsmXTltmnqcJuNn8cVbsJmVoR4elPIcZv00nGjLRD3g6HM1t75BmAXA8IPF+0D4DKToa7YBReZaiW+iZKJQcoq0uFGkIhTEA/RapRMVD8L+NAIy0VaRdVAwzUcJWE8cpBe6B/BwTQLoeDqcZjlwKuEmv75M0vNspFT+Vl3lKOglF836AaS1FWx/h5VtPNbXYxPGXmvf68zpM8BHnatjMDSr4GSal2ePrUaL2zU3RWoMWT7KjQcaJ57Z4rFpUhsdSnpnwJgrtrpgTaDrgaF1Y6OvytpF/72zuS9S69GmLDwaBdFkFOhZSGERUXCt0iUbMT2+TAarlgOGaXvN1cS6yEQp61xWIvgwgeYMJS2NF0wxQ1cwAIdiRjjmvvCk60of+NEOBb2380872dKa0aS1FB/s2RWLBoe0St0Bp0dNcHq0M07of//6N3r/EaDVhZmq62LKXR/mqTBbtVFwf4DV6fnrqp7LTN1WmHPmohIXw9MHVyBzmNEXd1x+BxZ+Agy1YuCPQGCilbdq4716G9dkN9Nsb1cTf29MfA0hLScPt8ZmwUStaq+1rvmirVK9OPLe2LDHfOy7gmIpCRGeWE1Hckgwz4HrMzNbzYvsyHx4Gg4GymTPNll7F9tbMpslhONJFPbDvIldf3ODcj8Cs+4Sh7pczP+ImZmzxdN3YfOvUkgUhkkcRGus/xtr/b2K9fcbWH9/Z+u/D7tfZ+7XM3/QavccrJeefIY918fMu3uzv5GdjjfhEzTAJ7iDROn+eYlgh3PqecIXmBNGqbxvfLbPjx43yY8e3xS3F/BpdfbjOXpd/s7SUzNVX1H/Y+sfOojTdUH8v/+pR8JM7maKhtpm6yCIpuWQHJ8BF0ifMCyBwr3CgLaJRg19ieCqN5FaEF+dnmYqN85DrefQtRBXlhO2cJRyHp32F2ArbSWCKeF36jRSVwaT5Rl5M/8JKpA9bOI7D2+X87bOdYTDBXCbBHLj8COlKPIDmEIQCSkYs7/u162OrVs9rLrVz43c6ueP1a0snVG31W61DsCeBbBfRe6XRsj9sooccYSLXV8yKl2fe76UuyK3MfnbjRAtdF0qWo1dbXL+tQVxfYoxaJAADm6ZYew/yTMPTCxkCHq+34IsrppfP2sShZ5tPUO9xwWuuTMQm1cTshYkss/VG5/6FOKVL32PuD61s1zhCF8vXbqcexDNiH9Pa5fV3OJ5E1Sf74rqneEpbXJw13BKh3BGgeVhsiUYQFegyVzCBCcC5micC3LfaxbP6mjxtAEtnraYFiuOdM8sWYvA8zoERg0QGLUWgarttwmAWhcIGwAQthaAj9kFzhogcNZaBD64CzyL9X4/qGTbyc2TJuH9yV0lbdIz0OiiZ4vGEb7LipRt/cyzgp3wHMk5wz6hWBLm29UDz3OoJwT1OIY5m107YNwRwmWYcMI85nrlEyt7CdubAOtbwMIKYE+bAPZ0R8D2CVUNFgSwgMTIk1ICdTHpl0s5jHuQN7ke5T5hxZ6DWfS+p7zpySYUzhvQ1Xlb6AoXbNVdY9Fas6vG36bg8dQicVZBImqARNQ6JGY7aVVbb0nkCK3izyuKf9GEiF60LnJUpn8LdMSE43qMUEolJYLjDxQb3qihPr+ek15UAJnUA5IVrZUqn+z8jMBtXIFucgXqUEiaMGgSMifGudVvF5DAFBRMXdeTMPff4cEKUFWkp+4zSwcjqz5Fea7URD+8+ip+mwZxpl9G2nZlcj1ezzbh9a4ZXu/uyoVuB+k886J2baV2I21xwQvrDRpKuKDcdeHvUgbdJcTxhZSQPVPhUy5vs+z8YQF/YQF/WgE8J80Qh/p7T992Bps3AZs4EkIZ9ZkrmO8DUdJlsKXDGfMIlxD2sBCszWDfkKlXV05PmgTIk/2vnO5jUkWKPMVbi3c1kSfUgfmUT7DrMoGlsHhz38HCdX0Ipr4QxCf3EDxrs8mTTdlk3CCbjFuXTW7I69eovyXJ5ZnFIa7g8LKJ77xske/UpJUUnINCbPMJ8SGzhBzygznH+sBVLNC9rKCR/dAwcukbWuIcDNIJAmmGfrvK98RKtkG5Q13pculTlwgixQ6u8YHSjZONqDXEbPvngu7tkcea2YLnex6mxKWSUZgz21k0zKeJhhFTz4ecQuiVpI8Nz41emDbDM90/K+6aPBL7Kg7bDuvfkOd+HRZfCbEM9TsLdU4qWCf1WMfTsUrD/gzLpPrMkaTgGi4FJ4FpM2XuN10itkeUrMqjriYpqFIbSdHnuIPgJAiBDtDEvphbP8hxdZAMnBfm+kJQ4ktapv97GuC0GGAKA8y2GeD0xgF6ex1grq4AejvIz95Nk/yLMTn622ka9P9hD9Ef0e9Pgrfq+7+++/sf4MCe/Wfl6mTx6tHq1fHCVft7nTL0YDrLI6vnj7sN4GFmBr/65qp5fTsD1E7n33gAudDL4ntl7HvduFNmp0Vj4Hxpbh53QYaGqMO8xdek+doXqG4Gjy6DRzeAl9aCl9WCN70deLTt4BXf03Ab7ASvYscchpd+2EYklxTXS5JIBfFML+9XKWBBUfezVDqPll6x7kzd+tl3MDGx25ybvXM82fCa8daayFc1MRfy3hVRrEJseKi4Vg+zd6/Xq6Di1qpw6ZxsG9ZU9UltlzHBfQGBw8WElcPeY9Tgy8TDNhBPTnYIG+p2zMN/w8wD04mFt6zs49LEodi8cTV797NZDGGrCcCYos9+R/AXqC6O7ytOsA+K1oqGXcfHQhLfY9wl2OXlC58+WzzZUL9iRb+//gRxuktWVDyeKe/Xn7qzs2qub7hje62KdmnVc+mCWmURMD1C6fxrEjZqdfWZ4eh6mMTrt7ie2Hdf1uxMwl2k2Ef+gdhaofnAjjrDm5b6bI+zbUvT1saZHq+f6W23INVwA43qJGRYlCuPKJNm6G2Oz6vT+/NbL7HVDXenhba1G3vd9Ru72BHMk/rVVEl97Mvajd0bQL2D6Xu97sO26X6Pm+ht0/WwXZru3rB/3WT7+v5VvQ2ZPym3r2vInJZkTm2tYUnmo5t2CtbROb0LOr/F3nj53WTlt4pRPYucmcxsKXnvRL5msr6dideO9/ZPY67ftN/ALZ7DPcJd7rn6UVq37onn1lHL7Wn8bjTfveF5iSaPS7RN2aO2KXu2a77esNsdM7ch8mJj8Lml6Op+kqZeZuuMy6w8Kon87DZEzjYT+Q07MPv9ppX62H9XRD5uW1bYXbuDtmHr1AN7l/qlFS45py7e4d2he+eWqG2a/6i3Lut1fdY2XS/w+FrDbvkjAQeLX2qqj8v/ieDL/wNQSwcIZTRrC1YOAAA5YQAAUEsBAhQAFAAICAgAaL4MRX3fvdQhEAAAHBAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgICABovgxFRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAABlEAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAGi+DEVlNGsLVg4AADlhAAAMAAAAAAAAAAAAAAAAAMMQAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAUx8AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
+
[[http://tube.geogebra.org/material/show/id/143280 From this geogebra applet we can visualise that slope of two parallel lines are same and slope of two perpendicular lise are negetive resiprocals of each other]]
  
 
==Developmental Questions (What discussion questions)==
 
==Developmental Questions (What discussion questions)==
Line 24: Line 24:
 
#Compare the values
 
#Compare the values
 
==Evaluation (Questions for assessment of the child)==
 
==Evaluation (Questions for assessment of the child)==
[[Image:evaluation.png]]
+
Can we prove that the given triangle is Right angled triangle?<br>
 +
[[Image:evaluation .png|400px]]
 +
 
 
==Question Corner==
 
==Question Corner==
 
==Activity Keywords==
 
==Activity Keywords==
  
'''To link back to the concept page'''
+
 
[[Topic Page Link]]
+
[[http://karnatakaeducation.org.in/KOER/en/index.php/Co-ordinate_geometry Back to Co-ordinate geometry Page Link]]
 +
 
 +
[[Category:Co-ordinate Geometry]]

Latest revision as of 11:56, 7 November 2019

Activity - Name of Activity

Parallel lines have the same slope and slope of perpendicular lines are the negative reciprocals of each other

Estimated Time

1 Hour

Materials/ Resources needed

Geogebra applet

Prerequisites/Instructions, if any

  1. Students should know that every line is a representation of an equation /relation between variables
  2. Graphing an equation/producing equation by visualising graph
  3. Students should know what is Slope?
  4. Similarity of two triangles

Multimedia resources

Website interactives/ links/ simulations/ Geogebra Applets

Process (How to do the activity)

Play with the following Geogebra applet

[From this geogebra applet we can visualise that slope of two parallel lines are same and slope of two perpendicular lise are negetive resiprocals of each other]

Developmental Questions (What discussion questions)

  1. Move the Blue points observe the changes
  2. record the Slopes of two lines
  3. Compare the values

Evaluation (Questions for assessment of the child)

Can we prove that the given triangle is Right angled triangle?
Evaluation .png

Question Corner

Activity Keywords

[Back to Co-ordinate geometry Page Link]