Difference between revisions of "Quadratic Equations"

From Karnataka Open Educational Resources
Jump to navigation Jump to search
(Created page with "{{subst:Math-Content}}")
 
 
(197 intermediate revisions by 9 users not shown)
Line 1: Line 1:
 +
<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#ffffff; vertical-align:top; text-align:center; padding:5px;">
 +
''[http://karnatakaeducation.org.in/KOER/index.php/೧೦ನೇ_ತರಗತಿಯ_ವರ್ಗ_ಸಮೀಕರಣಗಳು ಕನ್ನಡದಲ್ಲಿ ನೋಡಿ]''</div>
 +
 
<!-- This portal was created using subst:box portal skeleton  -->
 
<!-- This portal was created using subst:box portal skeleton  -->
 
<!--        BANNER ACROSS TOP OF PAGE        -->
 
<!--        BANNER ACROSS TOP OF PAGE        -->
 
{| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;"
 
{| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;"
 
|-
 
|-
|style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
+
| style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics]
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics]
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics]
+
| style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics]
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
+
| style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics]
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics]
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
+
| style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus]
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus]
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
+
| style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics]
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics]
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
+
| style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks]
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks]
|style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|
+
| style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank]
 
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank]
 
|}
 
|}
 
While creating a resource page, please click here for a resource creation [http://karnatakaeducation.org.in/KOER/en/index.php/Resource_Creation_Checklist '''checklist'''].
 
While creating a resource page, please click here for a resource creation [http://karnatakaeducation.org.in/KOER/en/index.php/Resource_Creation_Checklist '''checklist'''].
  
= Concept Map =
+
== Concept Map ==
 +
[[File:Quadratic_Equations.mm|Flash]]
 +
 
 
__FORCETOC__
 
__FORCETOC__
= Textbook =
 
To add textbook links, please follow these instructions to:
 
([{{fullurl:{{FULLPAGENAME}}/textbook|action=edit}} Click to create the subpage])
 
  
=Additional Information=
+
== Textbook ==
==Useful websites==
+
Please click here for Karnataka and other text books.
==Reference Books==
+
#[http://ktbs.kar.nic.in/New/Textbooks/class-x/english/maths/class-x-english-maths-chapter09.pdf Karnataka text book for Class 10, Chapter 09 - Quadratic Equations]
 +
#[http://nimsdxb.com/wp-content/uploads/Unit-4_Quadratic_Equations_Core.pdf/ cbse text book]
  
= Teaching Outlines =
+
==Additional Information==
 +
{{#widget:Iframe |url=http://www.slideshare.net/slideshow/embed_code/10549763|width=450 |height=360 |border=1 }}
 +
 
 +
===Useful websites===
 +
 
 +
[https://in.ixl.com/search?q=quadratic+equation/ For more information about quadratic equation]
 +
 
 +
===Reference Books===
 +
[[Text_Books| relevent references]]
 +
 
 +
=== Resources ===
 +
 
 +
==== Resource Title ====
 +
[http://www.mathopenref.com/quadraticexplorer.html Quadratic Function Explorer]
 +
 
 +
==== Description ====
 +
This interactive activity helps you realize the action of the three coefficients a, b, c in a quadratic equation.
 +
 
 +
== Teaching Outlines ==
 +
 
 +
==Concept #1 - Introduction to quadratic equations==
 +
An equation of the form  <math>ax^2+bx+c = 0</math> where a ≠ 0 and a, b, c belongs to R.
  
==Concept #==
 
 
===Learning objectives===
 
===Learning objectives===
 +
converting verbal statement into equations.
 +
 
===Notes for teachers===
 
===Notes for teachers===
''These are short notes that the teacher wants to share about the concept, any locally relevant information, specific instructions on what kind of methodology used and common misconceptions/mistakes.''
+
#Basic knowledge of equations, linear equations,general form of linear equation, finding the rooots of equation, graphical representation of linear equations.<br>
 +
#More importance to be given for signs while transforming the equations.
 +
 
 +
===Activities===
 +
 
 +
#Activity No 1 '''[[Quadratic_equations_introduction_to_quadratic_equation_activity_1|Introduction to quadratic equation]]'''
 +
#Activity No 2 '''[[Quadratic_equations_introduction_to_quadratic_equation_actvity 2| Making a rectangular garden]]'''
 +
#Activity No 3 '''[[Quadratic_equations_introduction_to_quadratic_equation_activity 3| Understanding<math> ax^2+bx+c=0</math> geometrically]]'''
 +
 
 +
==Concept #2 - Types of equations==
 +
===Pure Quadratic Equation & Adfected Quadratic Equation===
 +
Quadratic equation,in the form <math>ax^2+bx+c = 0</math>, is termed as quadratic expression and the equation of the form <math>ax^2+bx+c = 0</math>, a≠0 is called quadratic equation in x. This equation is also known to be pure quadratic equation if the value of b is zero i.e. b=0. Otherwise it is said to be adfected. The letters a, b, and c are called coefficients: and c is the constant coefficient.
 +
 
 +
===Learning objectives===
 +
#To distinguish between pure & adfected equations among the given equations.
 +
#Standard forms of pure & adfected quadratic equations.
  
===Activity No # ===
+
===Notes for teachers===
{| style="height:10px; float:right; align:center;"
+
#Knowledge of general form of quadratic equations<br>
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
+
#roots of equation<br>
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
+
#proper use of signs.
|}
+
 
* '''Estimated Time'''
+
===Activities===
* '''Materials/ Resources needed'''
+
'''[[Identifying pure and adfected ouadratic equations- Activity No1]]'''
* '''Prerequisites/Instructions, if any'''
+
 
* '''Multimedia resources'''
+
'''[http://mathworksheets4kids.com/equations/quadratic.html/ work sheet Activity No2]'''
* '''Website interactives/ links/ Geogebra Applets'''
+
 
* '''Process (How to do the activity)'''
+
==Concept #3 What is the solution of a quadratic equation==
* '''Developmental Questions (What discussion questions)'''
+
The roots of the Quadratic Equation which satisfy the equation
* '''Evaluation (Questions for assessment of the child)'''
+
===Learning objectives===
* '''Question Corner'''
+
#x=k is a solution of the quadratic equation if k satisfies the quadratic equation
 +
#Any quadratic equation has at most two roots.
 +
#The roots form the solution set of quadratic equation.
  
===Activity No # ===
+
===Notes for teachers===
{| style="height:10px; float:right; align:center;"
+
#different methods of solving quadratic equation
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
+
#knowledge of suitable formula to be used to solve specific problem.
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
+
#identify the type of quadratic equation.
|}
 
* '''Estimated Time'''
 
* '''Materials/ Resources needed'''
 
* '''Prerequisites/Instructions, if any'''
 
* '''Multimedia resources'''
 
* '''Website interactives/ links/ Geogebra Applets'''
 
* '''Process (How to do the activity)'''
 
* '''Developmental Questions (What discussion questions)'''
 
* '''Evaluation (Questions for assessment of the child)'''
 
* '''Question Corner'''
 
  
 +
===Activities===
 +
#Activity No #1 #Activity No 3-[http://www.projectmaths.ie/students/strand4JC/student-activity-quadratic-formula.pdf| quadratic formula]<br>
 +
#Activity No #2 '''Concept Name - Activity No'''
  
==Concept #==
+
==Concept #4Methods of solution==
 +
Different methods of finding the solution to a quadratic equation
 +
#Factorisation method
 +
#Completing the square method
 +
#Formula method
 +
#Graphical method.
 
===Learning objectives===
 
===Learning objectives===
 +
#Solving quadratic equation by factorisation method
 +
#Solving quadratic equation by completing the square method
 +
#Deriving formula to find the roots of quadratic equation.
 +
#Solving quadratic equation by using formula.<br>
 +
#Solving quadratic equation graphically.<br>
 +
#To find the sum and product of the roots of the quadratic equations.
 +
 
===Notes for teachers===
 
===Notes for teachers===
''These are short notes that the teacher wants to share about the concept, any locally relevant information, specific instructions on what kind of methodology used and common misconceptions/mistakes.''
+
*Students need to know factorisation
 +
*substitution of values and simplification
 +
*Identifying suitable method
 +
 
 +
===Activities===
 +
#Activity No 1 -[https://www.geogebratube.org/material/iframe/id/8357/width/968/height/487/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5| geogebra]       
 +
#Activity No 2-[http://www.wikihow.com/Solve-Quadratic-Equations/ learn more how to solve Q.E]
 +
#Activity 3-[http://www.learnnc.org/lp/pages/2981| learn quadratics]
 +
#Activity 4- [[Quadratic Equation solution activity1|Quadratic Equation solution]]
 +
 
 +
==Concept #5'''Nature of roots'''==
 +
The roots of a quadratic equation can be real & equal, real & distinct or imaginary.
 +
Nature of roots depends on the values of b^-4ac.
 +
===Learning objectives===
 +
#To find the discriminant & interpret the nature of the roots of the given quadratic equation.
  
===Activity No # ===
+
===Notes for teachers===
{| style="height:10px; float:right; align:center;"
+
Guiding in Identifying the nature based on the value of discriminant
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
* '''Estimated Time'''
 
* '''Materials/ Resources needed'''
 
* '''Prerequisites/Instructions, if any'''
 
* '''Multimedia resources'''
 
* '''Website interactives/ links/ Geogebra Applets'''
 
* '''Process (How to do the activity)'''
 
* '''Developmental Questions (What discussion questions)'''
 
* '''Evaluation (Questions for assessment of the child)'''
 
* '''Question Corner'''
 
  
 +
===Activities===
 +
#Activity No #1 '''Concept Name - Activity No.'''[http://interpret the nature of roots/  interpret the nature of the roots]
  
===Activity No # ===
+
#Activity No #2 '''Concept Name - Activity No.'''
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
* '''Estimated Time'''
 
* '''Materials/ Resources needed'''
 
* '''Prerequisites/Instructions, if any'''
 
* '''Multimedia resources'''
 
* '''Website interactives/ links/ Geogebra Applets'''
 
* '''Process (How to do the activity)'''
 
* '''Developmental Questions (What discussion questions)'''
 
* '''Evaluation (Questions for assessment of the child)'''
 
* '''Question Corner'''
 
  
= Hints for difficult problems =
+
==Concept #6'''applications'''==
 +
Solving problems based on quadratic equations.
 +
===Learning objectives===
 +
By applying the methods of solving quadratic equations, finding the solutions to real life situations.
  
= Project Ideas =
+
===Notes for teachers===
 +
Help the students in Identifying parameters and suitable methods for solving application problems.
  
= Math Fun =
+
===Activities===
 +
#Activity No #1 [https://www.youtube.com/watch?v=IGGnn9oa4QYz| more word problems]
 +
#Activity 2:[http://www.ehow.com/info_8502727_applications-quadratic-equations.html| quadratics in real life]
 +
=Assessment activities for CCE=
 +
.[Http://Tube.geogebra.org/m/105393c|quadratic quiz]
  
'''Usage'''
+
=Hints for difficult problems =
 +
1.If P & q are the roots of the equation  <math>2a^2-4a+1=0</math> find the value of
 +
<math>p^3+q^3</math><br>
 +
[[solution]]<br>
 +
2.The altitude of a triangle is 6cm greter than its base. If its area is 108cmsq .Find its base.<br>
 +
[[solution]]<br>
 +
3.Solve <math>x^2-4x-8=0</math> By completing the square. <br>
 +
[[solution]]
  
Create a new page and type <nowiki>{{subst:Math-Content}}</nowiki> to use this template
+
[[Category:Class 10]]
 +
[[Category:Quadratic Equations]]

Latest revision as of 14:30, 19 December 2020

ಕನ್ನಡದಲ್ಲಿ ನೋಡಿ

The Story of Mathematics

Philosophy of Mathematics

Teaching of Mathematics

Curriculum and Syllabus

Topics in School Mathematics

Textbooks

Question Bank

While creating a resource page, please click here for a resource creation checklist.

Concept Map

[maximize]


Textbook

Please click here for Karnataka and other text books.

  1. Karnataka text book for Class 10, Chapter 09 - Quadratic Equations
  2. cbse text book

Additional Information

Useful websites

For more information about quadratic equation

Reference Books

relevent references

Resources

Resource Title

Quadratic Function Explorer

Description

This interactive activity helps you realize the action of the three coefficients a, b, c in a quadratic equation.

Teaching Outlines

Concept #1 - Introduction to quadratic equations

An equation of the form where a ≠ 0 and a, b, c belongs to R.

Learning objectives

converting verbal statement into equations.

Notes for teachers

  1. Basic knowledge of equations, linear equations,general form of linear equation, finding the rooots of equation, graphical representation of linear equations.
  2. More importance to be given for signs while transforming the equations.

Activities

  1. Activity No 1 Introduction to quadratic equation
  2. Activity No 2 Making a rectangular garden
  3. Activity No 3 Understanding geometrically

Concept #2 - Types of equations

Pure Quadratic Equation & Adfected Quadratic Equation

Quadratic equation,in the form , is termed as quadratic expression and the equation of the form , a≠0 is called quadratic equation in x. This equation is also known to be pure quadratic equation if the value of b is zero i.e. b=0. Otherwise it is said to be adfected. The letters a, b, and c are called coefficients: and c is the constant coefficient.

Learning objectives

  1. To distinguish between pure & adfected equations among the given equations.
  2. Standard forms of pure & adfected quadratic equations.

Notes for teachers

  1. Knowledge of general form of quadratic equations
  2. roots of equation
  3. proper use of signs.

Activities

Identifying pure and adfected ouadratic equations- Activity No1

work sheet Activity No2

Concept #3 What is the solution of a quadratic equation

The roots of the Quadratic Equation which satisfy the equation

Learning objectives

  1. x=k is a solution of the quadratic equation if k satisfies the quadratic equation
  2. Any quadratic equation has at most two roots.
  3. The roots form the solution set of quadratic equation.

Notes for teachers

  1. different methods of solving quadratic equation
  2. knowledge of suitable formula to be used to solve specific problem.
  3. identify the type of quadratic equation.

Activities

  1. Activity No #1 #Activity No 3-quadratic formula
  2. Activity No #2 Concept Name - Activity No

Concept #4Methods of solution

Different methods of finding the solution to a quadratic equation

  1. Factorisation method
  2. Completing the square method
  3. Formula method
  4. Graphical method.

Learning objectives

  1. Solving quadratic equation by factorisation method
  2. Solving quadratic equation by completing the square method
  3. Deriving formula to find the roots of quadratic equation.
  4. Solving quadratic equation by using formula.
  5. Solving quadratic equation graphically.
  6. To find the sum and product of the roots of the quadratic equations.

Notes for teachers

  • Students need to know factorisation
  • substitution of values and simplification
  • Identifying suitable method

Activities

  1. Activity No 1 -geogebra
  2. Activity No 2-learn more how to solve Q.E
  3. Activity 3-learn quadratics
  4. Activity 4- Quadratic Equation solution

Concept #5Nature of roots

The roots of a quadratic equation can be real & equal, real & distinct or imaginary. Nature of roots depends on the values of b^-4ac.

Learning objectives

  1. To find the discriminant & interpret the nature of the roots of the given quadratic equation.

Notes for teachers

Guiding in Identifying the nature based on the value of discriminant

Activities

  1. Activity No #1 Concept Name - Activity No.the nature of roots/ interpret the nature of the roots
  1. Activity No #2 Concept Name - Activity No.

Concept #6applications

Solving problems based on quadratic equations.

Learning objectives

By applying the methods of solving quadratic equations, finding the solutions to real life situations.

Notes for teachers

Help the students in Identifying parameters and suitable methods for solving application problems.

Activities

  1. Activity No #1 more word problems
  2. Activity 2:quadratics in real life

Assessment activities for CCE

.quiz

Hints for difficult problems

1.If P & q are the roots of the equation find the value of
solution
2.The altitude of a triangle is 6cm greter than its base. If its area is 108cmsq .Find its base.
solution
3.Solve By completing the square.
solution