Difference between revisions of "Slope of parallel and perpendicular lines"

From Karnataka Open Educational Resources
Jump to navigation Jump to search
Line 1: Line 1:
 
__FORCETOC__
 
__FORCETOC__
 
=Activity - Name of Activity=
 
=Activity - Name of Activity=
''Parallel lines have the same slope and  slope of perpendicular lines are the negative reciprocals of each other''
+
'''Parallel lines have the same slope and  slope of perpendicular lines are the negative reciprocals of each other'''
  
 
==Estimated Time==
 
==Estimated Time==
 
+
1 Hour
 
==Materials/ Resources needed==  
 
==Materials/ Resources needed==  
 +
Geogebra applet
 
==Prerequisites/Instructions, if any==
 
==Prerequisites/Instructions, if any==
 +
#Students should know that every line is a representation of an equation /relation between variables
 +
#Graphing an equation/producing equation by visualising graph
 +
#Students should know what is Slope?
 +
#Similarity of two triangles
 
==Multimedia resources==
 
==Multimedia resources==
 
==Website interactives/ links/ simulations/ Geogebra Applets==
 
==Website interactives/ links/ simulations/ Geogebra Applets==
 
==Process (How to do the activity)==
 
==Process (How to do the activity)==
 +
Play with the following Geogebra applet <br>
 +
From the following geogebra applet we can visualise that slope of two parallel lines are same and slope of two perpendicular lise are negetive resiprocals of each other
 +
<ggb_applet width="1366" height="558" version="4.2" ggbBase64="UEsDBBQACAgIAGi+DEUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwEcEOPviVBORw0KGgoAAAANSUhEUgAAAMgAAABSCAYAAAARpZu7AAAP40lEQVR42u1dbVMUVxb2t+VDqvZHJB82qd2K+bJVqVTlS7Qq6ybZTaxUaW1ljagQEhRGQEcF5GUGBB15kRFQFAERRgRFgzK8GcCz/VxyJpee7tvdMw3zdqbqwty+Z27f7r6nz3nOc18Oke3z+vVr8vpMTU3Rq1evjDIbGxue9eynTCKRoOXl5VDPhToXFxcLel37IVNq7T1ImUP2A6urq56VPnr0yFPm7du3BZNZWFigVCoV6rlmZmZUnYW8rv2SKcdrCksmS0G8LINfBVlbWyuIzNbWFj148CDUc+Etk0wmC3pd+ylTjtcUlkyWgjx//jwUBUmn0wWRiUQiSknCPFc8Hi/4de2nTDleU1gyh4A54FbBckA55ufnVR7HkedyxiYDAwN07969Pb/RZTiPMj3PSc+/ePHCtZzre/r0aVb9qFvPw6VCvre3VymvXo7vnPS8U33cHr28paWFHj9+rPJIaA+XI7E8t5Hbo+ft5Xob9PNxHkm/v5y3lyPhXHqef8Pt7+7upmvXrtHT1ByNjY3R3Nycesa//fYbvXz5Usk/efJE4Ur85uHDhyq/srKiZCCP63/27FmmrcjjXqEcx/gZ2e81t0fPc3vt/U7P68/crY/h/E59Ss+zjKmPOT1zPV82GGRpacnRtcoXy7BrVao+9PDwMHV0dNDa6go1Nzerjt7Y2Eg3btygy5cvK2tbX1+vOgo+ExMT1NTUpOQgDyVCgiwHKPjY9PS0Ol5bW1s5GMRPFMuPghx0JAIgOuxzIWpV6lGYCcsijI6OUHrltWvHkChWGWOQpqZeam/vVW/C7e3schhE4LCVlbTlEuzm371jgMbn2P2unwu4I2wsIxikBDFIqVuQTz89QVVVDXs6/OgoWX72n0owPg4F2bB8Z7LwE9Hvv++WWS65+n77Nll+95/ngqsGlw0fu9JBBkrG9xUvYsvb0KIiuzL4DxrGLUgiPEiJWpBSwiCLi8v05Zf/Ncqsr2fXs7OTLQdFgExt7VUL7Cf2dHhd6SCDY1AqVGlhWIrFiDY3/1S61dW3SilBxaC82P1s4UHK0IKgkzc0DNKZM/FQz3X48Cnq6urNUhBdhpXO3h6nczm5fWJBBIPsu48YjQ7SrVsbSkHCOlckcp3q6jorzs8WDFJmFuT+/ZTlBqVpaIhCsyDJ5APq7n5B9fXxvOoBsMdN1288jiGBXxALUmIWBAK7fvUazc7uEifI4zgeMpdzRZOTkwrE8m/sMpwH0aTnOel5KKNbOdcHwkbPp1LPrbf8gFIOpKqqmCKs9POjXZzHdyRuD+d1+enpx9TcPEzDw+/o1187sso5j4T26Hku5zbeuXPHateQIuhqamoU3wAuBeRqVVUVvXnzJtMe/fd6fUj4Dhk9by9HwrXreX4m+vWjzXrerdz+ez2PZ+X0zPU82sv3Vy/X89xep99zXn/mbn0M7XHqU3qeZUx9jPug2zPfY0Gqq8lSkOK2IE1NgxnlCMuCXL2aIPCBSPlakFKUEQvi4WJdvNhKH398pegxyPXrSYU77AqSz7muXYtbb/0tpRywIF4K4udcOuMMRtr+WxyHJRYMUiIYZGNji378sbWoMcjY2Ay1tKT2KEe+FmRycoZisVTGeoRlQeBewURjqMaJEyfUUAy4Xbdu3cocP378uCMRWUgLgjFQrNAvdXJHoljFDdKhwO3t2cqRj4Ksr29QNJrcoxyV5GLNaQQNl/f19dHJkyfVdyj03pfJZEaJTNMCREEKoCAXLyYclSMfBWlsjGcpR6UoyNdff00XLlzIuBgMynmkMBKCCVwOS9fW1qZkoEQ//PBD5SpIsWGQ+vp26uxcMipI0HN1dSWot3c5SznCwiClyoPAqrBlgaUQDFLkFuThwxR1dCy4KoduQeAz7+zsqAfsNOydzzU9PUPxeMrRelR6FGtkZCTjWsFSCAYpYgXB0I22thmjcugKAuAL3xjzE44cOZI1xoZj4K2tSVflkDCvyGQpiJ2Q8SIK4ZseBFHY1zfrqRxBicLGxg7lRiHpbhXnwyAKsZIK7iFGA+MY8rhnkAPQZXm0B3UJUVhCRGGxYJBE4kEW35EvBmlri1tKt2y0HmFgELw84KogpIvELh+Uo7q62lLAX5Ubg+mvKN9xGlpcIAwiMiXgYo2Pz9D580lfyuE3igXcEYvNGpVDXCxxsXwpSCHng/AQdr/KwQpiOpcf3BFEQfxcFy+dxEw6rASTgrAoyGM+NwcW3N5mMh+k8DJFZUHa28eov38rsIKYzhWNxunuXQqkINxx0Yl5MYMg12Vn0m/evKkUgxc5AC5BlAjl7HKhzO5yiQURHiTzHUPYu7qWAimHFwa5e/cB3bixlMEXXsrBGIQjYrFYjH755RfjW76ceBCRKVILMje3YL0904GVw2RB5ucXrI7u37USDCIWpCgxCFYYiUbHclIOEwa5dCkRWDnCwiClvDYvu5QITesLdQsGKZAF6eoKjju8LAhwx9DQ1r4oSLm9JaEEejlWzkSnqaur27NoHmRYYaBEPFar7C2InZDBGBwTUYhpo36IQhBCXkRhX99dC9Au56wcTBSClOPz376dpJ6eF1lEoE4G5kMUAqOZiELkmSR0K0eeyU0TUcikmokoxLm8iEK02U4UInCAwACCBbzUJsqwLCmWFkU/QAL5B8WADFZoRIABQQgM4bf3AbTXiyjk9pqIQpzLiyhkMtHUx1jGRBTayVpPovCgVnd/+nSBGhqG81IOtiB4kNvb2+rhRSK7rlVf32urE7xRnb6z85kanMiKEIstqv8o5+SXKKyE1d2hEHYLIau7HzAGaWhI5K0crCCDg4PqTffddz/S1auPMp2/trbPchk2LaVJUk1Nj/qOstOnr6vv587FrRSzwPw9wSDaB2Hnn3/+WXiQQmCQzs5Oq7NG88Idevr88+OKjMPyo/39G5mOjqiYHV/cubPtiDt0vCJRLJE5UB4Efqk+tfSjjz6iw4f/QZcvx+nixXb135S8ZD744K/0zTf/scB+ypPj8MuDVFqsX3iQAAoSNgbBMjg8z1nfqcmP/4eAAGTw3z4sgz/AHY2N/b46fxgKIjtMCQbZNwyi79Tkx//D6FcoAP5jzwonBTl9OpJTOFd4EMEXRYVB7LvOhuEjxuMJ6u5eOlAFEQwiGCRUDIIP7xAbpo/Y3z9IV66MBXKfBIMIvgiMQeyEDLYdMxGFwBN+iEKezQViqL+/35HU0WeXuS09qpNuXA4ljkR6PIm//SAK0R4volCfEedGFPIMPRNRyLPdTEQhE10molAnUk3lphmFTGyaZhSivV5EIbfXRBTqz9ytjzERbSICvchqnYz1TRSGjUHsuCNXH1GPhDU1dYTqVpUrBgE/1NraSneTwyrQwUv44Dd8P/F/dnY2UxfywHr8nTsN3GP+DSsQY0LO6/ULBvHh2znhjlx9xPv37yu2PBbrtdJCwRSklHxoWG4VqVlNu27giTy7vxh2guOYu8Lf8awx5B9uMob/Y6owb/Cpr8KIND4+vmdTz7LEIGGFeSHjhDvyCcM9ejRpgfJUzvjCLwbBYDx9qwL95TH/x95u6+vre65v/Y9ddXAMnclpMN9BhynH79+jt5uW67P8yvjW5Dr0424yFR/mDUtBTK5VLhcA8/3TT5G8Or9fBcEgPt7hFm9Nvl50+oaGBqUMsGgYjsHtQ35zc1O9PS9duqS2OxAeRHgQV+Xw07ggPuJ7771HX3xxTC0Zak+RSJfj8Vxk3n//LxSNRl0jHvY2bzvssab7+MKDCAbZ8+EdYsP0EbFkjknWVMauEvxj0xI7lRzrFx7kgFwshIh5KElYJhAdWx+eErQesPAoRzTH621RqW6EU7k+5J3DreJi5akg7LeH1Ti4KfDnxT8+eAXBpChEr/BBtKpiFcROyOjLVAZZehSzzZjEQh5YxmtGIS+t6UbiIGSIiJKdJLKTOky6mZYe5fY47VHIeW6PiSjkWXMmopBJUhNRiPZ4EYWQ8SIKmUw0EYX60qxO5XjheRGFvKci8lAY/Lanp0dxKPoz9yIK9eVm3YhCJvhMRCEvbWvqY17L3/p55qFgEMYdYfp/cKvgsol/vH8ymH+O2Zi8krtO9CEKh4RRC4jqccdB+alTp5TMxMSEqqOiMEjQsVggAp0wQj7jYKBsXKeME9p/GadyzCpklxlKIPNBcsQgbnxHPv5fb2+vYAcSHqQoQXoQHsQ0lCTXGPT58+f3mD2J0e+/jNybAAriF4OcbTtLUzNTofp/COnWx+spvZkW7EDCg5QsBmm72UZ1rXV0pu9MaP4fcEdNaw1NPp+kkdSIYAeS+SAli0E++/dnNL88T7cf36apF1Oh+H/H/3echp4MqXoT0+HyKSIjGORAMEg6vUUf/u0Tqr5WrToyUnQkmpf/h7DhP/91klqSLZk6m4ebxT8WDFJwGRiLQ/gDTMEJsW89r6ejR0/Qh58cpW9rv6Vz7edUOnv9rKMsuBG3enSZY8eO0Yd//z5TH1LV9arA9YhM7jJyb5zLpqamsi0IBvQ5zWXAm57Dr/gxNnsxfbzmQ+CDQYhg4E0fp3kZuZ7L66OTXvn4tV73Bh9MPPK6Jj/32OvaUc4Tm0wyXvfZ77m87jNkvO4zb3oaxv3xus+4N6Z6fEexwHfwEG4oyMv0S5V23u3Q3Ks5mlicCBx94j258XGrTyIsEsUqqiiWEwaxDyWBglwYuEBNd5po7e0aDcwM0FdXvlLf/fp/sBx6QMCtPvGPBYMUUsYziqUPYdcVJJ/oAKakok6JnkgUq+SiWHYeRB/CHkRB3HxIHMdqG6UYEy9XGbk3ARRExyBYucJp6mg+q7vrY7fE9xUMUrIYBOjfbVWSXNfmheXQx26J7ysYpOQwCCwIcIdpVZJcLAiUzR4ClDeXWJCityBOexRi6RqnGYXMkeSyR2FXV1fW7C59GUq3pUf1/ercZhTqS2u6zSjk9phmFHrtV1dOexQ6lZtmFPJMU9PSoxWxRyFmi3kBl6AWROdQ5K0kFqRkMQjcoNHRUc9Kg2AQnjorfq1gkJLGILAacJ3CXJsXioE65a0kFqTkLQiD8jD3B/FaflTi78UhI/fGQ0EQfmVNCsuCAJR7Lb8pby6xIEVvQRB6xdAPPcybr4KgTj+jcOXBiIIUvYLoK4iEoSAwWQDmctNFQcouihUGBmHcIX6tYJCywCB2QgZLfbotPQqi0LRHIXAHk2Reyz7ynnZeRKG+358bUagvrelGFHJ7TEQht8dEFKI9XkShvnSmG1HIS3maiEJeFtNEFDKZaCIK9eVkTeUmopCXdzURhWivF1Go70vpVp/+zN2IQl7e1dTHWMbUx7yeeWjbH4BD0cduidkWF6ssXaxcFIT3I5QbKgoiGMRBQQD07SFd8WsFg5QFBsnXgoBDcTqJvJXEglS8iwX+ROdQ5IaKgpSbzP8B5fjSr0gDhBwAAAAASUVORK5CYIJQSwcIfd+91CEQAAAcEAAAUEsDBBQACAgIAGi+DEUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICABovgxFAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1d63LbxhX+nTzFDjuTaacmtHcAiZSM7MRXOfbEbifTy2RAckVCAgEaAHVx0/99g7xC/6Z5hPzvQ/RJenYX4A0kRIiUDEe2tQSw2N1zvnO+c3YXoA+/uhpH6EKlWZjERx3i4A5ScT8ZhPHwqDPNT7te56svPz0cqmSoemmATpN0HORHHe7Qzvw+OHIk1jeHg6POqfJ6xJNBt3fKBl0u+m7XU33ePWUuYz3q9fxg0EHoKgs/j5Nvg7HKJkFfvemP1Dg4SfpBbtoc5fnk84ODy8tLp+zdSdLhwXDYc64yaABGHmdHneLD59Dc0k2XzFSnGJOD71+e2Oa7YZzlQdxXHaSlmoZffvrJ4WUYD5JLdBkO8hHogEnZQSMVDkcgp0tBqANdawLCTlQ/Dy9UBvcuHBqh8/GkY6oFsb7+if2Eopk8HTQIL8KBSo862CFcckI9jzPGPEqY10FJGqo4LyqTotODsrnDi1Bd2nb1J9Mlx74LIIRZ2IsUqD2IMpArjE9T0CmMKJ3CYZZfR6oXpOXxfEDkAfyBCuF7pdsCOa0ijjowqAcE+w9cjB8IUShgseMOypMkMq1iJHz044+IYorRA10QW1AopLSXsD2HmS2oLbgthK3D7e3cVuW2Drd1OKuRszieC1qcWJK0lJMtyklAPv1Pwj+jgBU5vQU5iRbiR0T06E3BkB43MePXBS8OpT10TUGwLUhx0dO/jL7kjhKxW0lEFnq19rC504q9lD0SJtj2XdKdBJ2JSdeJScUGMXfU7kxSsdAp9GX+mn+VLlkjOTfrdvseJd/F+W/RoYuX/L50eluSoqxTw94GdXhQ0uFhMSCUjXTdwqZzNc70EJlv2AkRJMB7pQtkIhDxoXC1F1NEBOICDomHpC5dxLTjcsSQh3Q9wpDhIOHBL26cWiIBbemTrvVuxDgSDBHDXByBFpBhP9AJZVBDCCTgJt070d0yibiEA+YhDgPUvOdqbmFwHxxD5xQxgpi+l7iISiQpcjV3Eq4pVXp67NAoRRIjqW8F8gTitKQJd3iIaWnACyZJFs6UO1LRZIaK0WMYT6b5ku7640H5MU9Wag+S/vnDFV2rIMvLz1AJItY8MNoIthQ3PzmMgp6KIL14o80AoYsg0l5u2j9N4hyVJkDtuWEaTEZhP3uj8hzuytBZcBGcBLm6egy1s3KApmsTzw/VtB+FgzCI/ww2opvQDaJ5eNfkVYZ3IYntpp8k6eDNdQaWg67+otLkqONTxwWSmf2IDrq2V5jPHMn8+Y9mqX6gTR6yILFwD4Yr1xsuFQKqi5lowZXKSl0O03Cw+PlZ9jCJBjM8JkkY54+CST5NTaoG/aRapON4GCmjWoM4JD39815y9aYgbtvW2+sJHGHbf2/4KImSFIE/UgEyDouyZ0tTRw9sVgubOtjUwCVI4WB2nfjU1DBlz5amFqBuh1YISkopCS67CTPDNND4oo0Zk9EZ1DQO85PyIA/753NJdf1vp+MeWFtx23KTZE9NHh6s2NfhuUpjFVkjigHIaTLNrFnPTPOTw2mmXgf56DgefKeG4I+vA02JOTRtq85HPFD9cAw32vOF6gIN659gqPbsQA1TVUoYmdzYKtZcxYsmXTltmnqcJuNn8cVbsJmVoR4elPIcZv00nGjLRD3g6HM1t75BmAXA8IPF+0D4DKToa7YBReZaiW+iZKJQcoq0uFGkIhTEA/RapRMVD8L+NAIy0VaRdVAwzUcJWE8cpBe6B/BwTQLoeDqcZjlwKuEmv75M0vNspFT+Vl3lKOglF836AaS1FWx/h5VtPNbXYxPGXmvf68zpM8BHnatjMDSr4GSal2ePrUaL2zU3RWoMWT7KjQcaJ57Z4rFpUhsdSnpnwJgrtrpgTaDrgaF1Y6OvytpF/72zuS9S69GmLDwaBdFkFOhZSGERUXCt0iUbMT2+TAarlgOGaXvN1cS6yEQp61xWIvgwgeYMJS2NF0wxQ1cwAIdiRjjmvvCk60of+NEOBb2380872dKa0aS1FB/s2RWLBoe0St0Bp0dNcHq0M07of//6N3r/EaDVhZmq62LKXR/mqTBbtVFwf4DV6fnrqp7LTN1WmHPmohIXw9MHVyBzmNEXd1x+BxZ+Agy1YuCPQGCilbdq4716G9dkN9Nsb1cTf29MfA0hLScPt8ZmwUStaq+1rvmirVK9OPLe2LDHfOy7gmIpCRGeWE1Hckgwz4HrMzNbzYvsyHx4Gg4GymTPNll7F9tbMpslhONJFPbDvIldf3ODcj8Cs+4Sh7pczP+ImZmzxdN3YfOvUkgUhkkcRGus/xtr/b2K9fcbWH9/Z+u/D7tfZ+7XM3/QavccrJeefIY918fMu3uzv5GdjjfhEzTAJ7iDROn+eYlgh3PqecIXmBNGqbxvfLbPjx43yY8e3xS3F/BpdfbjOXpd/s7SUzNVX1H/Y+sfOojTdUH8v/+pR8JM7maKhtpm6yCIpuWQHJ8BF0ifMCyBwr3CgLaJRg19ieCqN5FaEF+dnmYqN85DrefQtRBXlhO2cJRyHp32F2ArbSWCKeF36jRSVwaT5Rl5M/8JKpA9bOI7D2+X87bOdYTDBXCbBHLj8COlKPIDmEIQCSkYs7/u162OrVs9rLrVz43c6ueP1a0snVG31W61DsCeBbBfRe6XRsj9sooccYSLXV8yKl2fe76UuyK3MfnbjRAtdF0qWo1dbXL+tQVxfYoxaJAADm6ZYew/yTMPTCxkCHq+34IsrppfP2sShZ5tPUO9xwWuuTMQm1cTshYkss/VG5/6FOKVL32PuD61s1zhCF8vXbqcexDNiH9Pa5fV3OJ5E1Sf74rqneEpbXJw13BKh3BGgeVhsiUYQFegyVzCBCcC5micC3LfaxbP6mjxtAEtnraYFiuOdM8sWYvA8zoERg0QGLUWgarttwmAWhcIGwAQthaAj9kFzhogcNZaBD64CzyL9X4/qGTbyc2TJuH9yV0lbdIz0OiiZ4vGEb7LipRt/cyzgp3wHMk5wz6hWBLm29UDz3OoJwT1OIY5m107YNwRwmWYcMI85nrlEyt7CdubAOtbwMIKYE+bAPZ0R8D2CVUNFgSwgMTIk1ICdTHpl0s5jHuQN7ke5T5hxZ6DWfS+p7zpySYUzhvQ1Xlb6AoXbNVdY9Fas6vG36bg8dQicVZBImqARNQ6JGY7aVVbb0nkCK3izyuKf9GEiF60LnJUpn8LdMSE43qMUEolJYLjDxQb3qihPr+ek15UAJnUA5IVrZUqn+z8jMBtXIFucgXqUEiaMGgSMifGudVvF5DAFBRMXdeTMPff4cEKUFWkp+4zSwcjqz5Fea7URD+8+ip+mwZxpl9G2nZlcj1ezzbh9a4ZXu/uyoVuB+k886J2baV2I21xwQvrDRpKuKDcdeHvUgbdJcTxhZSQPVPhUy5vs+z8YQF/YQF/WgE8J80Qh/p7T992Bps3AZs4EkIZ9ZkrmO8DUdJlsKXDGfMIlxD2sBCszWDfkKlXV05PmgTIk/2vnO5jUkWKPMVbi3c1kSfUgfmUT7DrMoGlsHhz38HCdX0Ipr4QxCf3EDxrs8mTTdlk3CCbjFuXTW7I69eovyXJ5ZnFIa7g8LKJ77xske/UpJUUnINCbPMJ8SGzhBzygznH+sBVLNC9rKCR/dAwcukbWuIcDNIJAmmGfrvK98RKtkG5Q13pculTlwgixQ6u8YHSjZONqDXEbPvngu7tkcea2YLnex6mxKWSUZgz21k0zKeJhhFTz4ecQuiVpI8Nz41emDbDM90/K+6aPBL7Kg7bDuvfkOd+HRZfCbEM9TsLdU4qWCf1WMfTsUrD/gzLpPrMkaTgGi4FJ4FpM2XuN10itkeUrMqjriYpqFIbSdHnuIPgJAiBDtDEvphbP8hxdZAMnBfm+kJQ4ktapv97GuC0GGAKA8y2GeD0xgF6ex1grq4AejvIz95Nk/yLMTn622ka9P9hD9Ef0e9Pgrfq+7+++/sf4MCe/Wfl6mTx6tHq1fHCVft7nTL0YDrLI6vnj7sN4GFmBr/65qp5fTsD1E7n33gAudDL4ntl7HvduFNmp0Vj4Hxpbh53QYaGqMO8xdek+doXqG4Gjy6DRzeAl9aCl9WCN70deLTt4BXf03Ab7ASvYscchpd+2EYklxTXS5JIBfFML+9XKWBBUfezVDqPll6x7kzd+tl3MDGx25ybvXM82fCa8daayFc1MRfy3hVRrEJseKi4Vg+zd6/Xq6Di1qpw6ZxsG9ZU9UltlzHBfQGBw8WElcPeY9Tgy8TDNhBPTnYIG+p2zMN/w8wD04mFt6zs49LEodi8cTV797NZDGGrCcCYos9+R/AXqC6O7ytOsA+K1oqGXcfHQhLfY9wl2OXlC58+WzzZUL9iRb+//gRxuktWVDyeKe/Xn7qzs2qub7hje62KdmnVc+mCWmURMD1C6fxrEjZqdfWZ4eh6mMTrt7ie2Hdf1uxMwl2k2Ef+gdhaofnAjjrDm5b6bI+zbUvT1saZHq+f6W23INVwA43qJGRYlCuPKJNm6G2Oz6vT+/NbL7HVDXenhba1G3vd9Ru72BHMk/rVVEl97Mvajd0bQL2D6Xu97sO26X6Pm+ht0/WwXZru3rB/3WT7+v5VvQ2ZPym3r2vInJZkTm2tYUnmo5t2CtbROb0LOr/F3nj53WTlt4pRPYucmcxsKXnvRL5msr6dideO9/ZPY67ftN/ALZ7DPcJd7rn6UVq37onn1lHL7Wn8bjTfveF5iSaPS7RN2aO2KXu2a77esNsdM7ch8mJj8Lml6Op+kqZeZuuMy6w8Kon87DZEzjYT+Q07MPv9ppX62H9XRD5uW1bYXbuDtmHr1AN7l/qlFS45py7e4d2he+eWqG2a/6i3Lut1fdY2XS/w+FrDbvkjAQeLX2qqj8v/ieDL/wNQSwcIZTRrC1YOAAA5YQAAUEsBAhQAFAAICAgAaL4MRX3fvdQhEAAAHBAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgICABovgxFRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAABlEAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAGi+DEVlNGsLVg4AADlhAAAMAAAAAAAAAAAAAAAAAMMQAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAUx8AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 +
 
==Developmental Questions (What discussion questions)==
 
==Developmental Questions (What discussion questions)==
 +
#Move the Blue points observe the changes
 +
#record the Slopes of two lines
 +
#Compare the values
 
==Evaluation (Questions for assessment of the child)==
 
==Evaluation (Questions for assessment of the child)==
 +
[[Image:evaluation.png]]
 
==Question Corner==
 
==Question Corner==
 
==Activity Keywords==
 
==Activity Keywords==
Line 17: Line 30:
 
'''To link back to the concept page'''
 
'''To link back to the concept page'''
 
[[Topic Page Link]]
 
[[Topic Page Link]]
Play with the following Geogebra applet <br>
 
From the following geogebra applet we can visualise that slope of two parallel lines are same and slope of two perpendicular lise are negetive resiprocals of each other
 
Slopes of Parallel and Perpendicular lines<br>
 
<ggb_applet width="1366" height="558" version="4.2" ggbBase64="UEsDBBQACAgIAGi+DEUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwEcEOPviVBORw0KGgoAAAANSUhEUgAAAMgAAABSCAYAAAARpZu7AAAP40lEQVR42u1dbVMUVxb2t+VDqvZHJB82qd2K+bJVqVTlS7Qq6ybZTaxUaW1ljagQEhRGQEcF5GUGBB15kRFQFAERRgRFgzK8GcCz/VxyJpee7tvdMw3zdqbqwty+Z27f7r6nz3nOc18Oke3z+vVr8vpMTU3Rq1evjDIbGxue9eynTCKRoOXl5VDPhToXFxcLel37IVNq7T1ImUP2A6urq56VPnr0yFPm7du3BZNZWFigVCoV6rlmZmZUnYW8rv2SKcdrCksmS0G8LINfBVlbWyuIzNbWFj148CDUc+Etk0wmC3pd+ylTjtcUlkyWgjx//jwUBUmn0wWRiUQiSknCPFc8Hi/4de2nTDleU1gyh4A54FbBckA55ufnVR7HkedyxiYDAwN07969Pb/RZTiPMj3PSc+/ePHCtZzre/r0aVb9qFvPw6VCvre3VymvXo7vnPS8U33cHr28paWFHj9+rPJIaA+XI7E8t5Hbo+ft5Xob9PNxHkm/v5y3lyPhXHqef8Pt7+7upmvXrtHT1ByNjY3R3Nycesa//fYbvXz5Usk/efJE4Ur85uHDhyq/srKiZCCP63/27FmmrcjjXqEcx/gZ2e81t0fPc3vt/U7P68/crY/h/E59Ss+zjKmPOT1zPV82GGRpacnRtcoXy7BrVao+9PDwMHV0dNDa6go1Nzerjt7Y2Eg3btygy5cvK2tbX1+vOgo+ExMT1NTUpOQgDyVCgiwHKPjY9PS0Ol5bW1s5GMRPFMuPghx0JAIgOuxzIWpV6lGYCcsijI6OUHrltWvHkChWGWOQpqZeam/vVW/C7e3schhE4LCVlbTlEuzm371jgMbn2P2unwu4I2wsIxikBDFIqVuQTz89QVVVDXs6/OgoWX72n0owPg4F2bB8Z7LwE9Hvv++WWS65+n77Nll+95/ngqsGlw0fu9JBBkrG9xUvYsvb0KIiuzL4DxrGLUgiPEiJWpBSwiCLi8v05Zf/Ncqsr2fXs7OTLQdFgExt7VUL7Cf2dHhd6SCDY1AqVGlhWIrFiDY3/1S61dW3SilBxaC82P1s4UHK0IKgkzc0DNKZM/FQz3X48Cnq6urNUhBdhpXO3h6nczm5fWJBBIPsu48YjQ7SrVsbSkHCOlckcp3q6jorzs8WDFJmFuT+/ZTlBqVpaIhCsyDJ5APq7n5B9fXxvOoBsMdN1288jiGBXxALUmIWBAK7fvUazc7uEifI4zgeMpdzRZOTkwrE8m/sMpwH0aTnOel5KKNbOdcHwkbPp1LPrbf8gFIOpKqqmCKs9POjXZzHdyRuD+d1+enpx9TcPEzDw+/o1187sso5j4T26Hku5zbeuXPHateQIuhqamoU3wAuBeRqVVUVvXnzJtMe/fd6fUj4Dhk9by9HwrXreX4m+vWjzXrerdz+ez2PZ+X0zPU82sv3Vy/X89xep99zXn/mbn0M7XHqU3qeZUx9jPug2zPfY0Gqq8lSkOK2IE1NgxnlCMuCXL2aIPCBSPlakFKUEQvi4WJdvNhKH398pegxyPXrSYU77AqSz7muXYtbb/0tpRywIF4K4udcOuMMRtr+WxyHJRYMUiIYZGNji378sbWoMcjY2Ay1tKT2KEe+FmRycoZisVTGeoRlQeBewURjqMaJEyfUUAy4Xbdu3cocP378uCMRWUgLgjFQrNAvdXJHoljFDdKhwO3t2cqRj4Ksr29QNJrcoxyV5GLNaQQNl/f19dHJkyfVdyj03pfJZEaJTNMCREEKoCAXLyYclSMfBWlsjGcpR6UoyNdff00XLlzIuBgMynmkMBKCCVwOS9fW1qZkoEQ//PBD5SpIsWGQ+vp26uxcMipI0HN1dSWot3c5SznCwiClyoPAqrBlgaUQDFLkFuThwxR1dCy4KoduQeAz7+zsqAfsNOydzzU9PUPxeMrRelR6FGtkZCTjWsFSCAYpYgXB0I22thmjcugKAuAL3xjzE44cOZI1xoZj4K2tSVflkDCvyGQpiJ2Q8SIK4ZseBFHY1zfrqRxBicLGxg7lRiHpbhXnwyAKsZIK7iFGA+MY8rhnkAPQZXm0B3UJUVhCRGGxYJBE4kEW35EvBmlri1tKt2y0HmFgELw84KogpIvELh+Uo7q62lLAX5Ubg+mvKN9xGlpcIAwiMiXgYo2Pz9D580lfyuE3igXcEYvNGpVDXCxxsXwpSCHng/AQdr/KwQpiOpcf3BFEQfxcFy+dxEw6rASTgrAoyGM+NwcW3N5mMh+k8DJFZUHa28eov38rsIKYzhWNxunuXQqkINxx0Yl5MYMg12Vn0m/evKkUgxc5AC5BlAjl7HKhzO5yiQURHiTzHUPYu7qWAimHFwa5e/cB3bixlMEXXsrBGIQjYrFYjH755RfjW76ceBCRKVILMje3YL0904GVw2RB5ucXrI7u37USDCIWpCgxCFYYiUbHclIOEwa5dCkRWDnCwiClvDYvu5QITesLdQsGKZAF6eoKjju8LAhwx9DQ1r4oSLm9JaEEejlWzkSnqaur27NoHmRYYaBEPFar7C2InZDBGBwTUYhpo36IQhBCXkRhX99dC9Au56wcTBSClOPz376dpJ6eF1lEoE4G5kMUAqOZiELkmSR0K0eeyU0TUcikmokoxLm8iEK02U4UInCAwACCBbzUJsqwLCmWFkU/QAL5B8WADFZoRIABQQgM4bf3AbTXiyjk9pqIQpzLiyhkMtHUx1jGRBTayVpPovCgVnd/+nSBGhqG81IOtiB4kNvb2+rhRSK7rlVf32urE7xRnb6z85kanMiKEIstqv8o5+SXKKyE1d2hEHYLIau7HzAGaWhI5K0crCCDg4PqTffddz/S1auPMp2/trbPchk2LaVJUk1Nj/qOstOnr6vv587FrRSzwPw9wSDaB2Hnn3/+WXiQQmCQzs5Oq7NG88Idevr88+OKjMPyo/39G5mOjqiYHV/cubPtiDt0vCJRLJE5UB4Efqk+tfSjjz6iw4f/QZcvx+nixXb135S8ZD744K/0zTf/scB+ypPj8MuDVFqsX3iQAAoSNgbBMjg8z1nfqcmP/4eAAGTw3z4sgz/AHY2N/b46fxgKIjtMCQbZNwyi79Tkx//D6FcoAP5jzwonBTl9OpJTOFd4EMEXRYVB7LvOhuEjxuMJ6u5eOlAFEQwiGCRUDIIP7xAbpo/Y3z9IV66MBXKfBIMIvgiMQeyEDLYdMxGFwBN+iEKezQViqL+/35HU0WeXuS09qpNuXA4ljkR6PIm//SAK0R4volCfEedGFPIMPRNRyLPdTEQhE10molAnUk3lphmFTGyaZhSivV5EIbfXRBTqz9ytjzERbSICvchqnYz1TRSGjUHsuCNXH1GPhDU1dYTqVpUrBgE/1NraSneTwyrQwUv44Dd8P/F/dnY2UxfywHr8nTsN3GP+DSsQY0LO6/ULBvHh2znhjlx9xPv37yu2PBbrtdJCwRSklHxoWG4VqVlNu27giTy7vxh2guOYu8Lf8awx5B9uMob/Y6owb/Cpr8KIND4+vmdTz7LEIGGFeSHjhDvyCcM9ejRpgfJUzvjCLwbBYDx9qwL95TH/x95u6+vre65v/Y9ddXAMnclpMN9BhynH79+jt5uW67P8yvjW5Dr0424yFR/mDUtBTK5VLhcA8/3TT5G8Or9fBcEgPt7hFm9Nvl50+oaGBqUMsGgYjsHtQ35zc1O9PS9duqS2OxAeRHgQV+Xw07ggPuJ7771HX3xxTC0Zak+RSJfj8Vxk3n//LxSNRl0jHvY2bzvssab7+MKDCAbZ8+EdYsP0EbFkjknWVMauEvxj0xI7lRzrFx7kgFwshIh5KElYJhAdWx+eErQesPAoRzTH621RqW6EU7k+5J3DreJi5akg7LeH1Ti4KfDnxT8+eAXBpChEr/BBtKpiFcROyOjLVAZZehSzzZjEQh5YxmtGIS+t6UbiIGSIiJKdJLKTOky6mZYe5fY47VHIeW6PiSjkWXMmopBJUhNRiPZ4EYWQ8SIKmUw0EYX60qxO5XjheRGFvKci8lAY/Lanp0dxKPoz9yIK9eVm3YhCJvhMRCEvbWvqY17L3/p55qFgEMYdYfp/cKvgsol/vH8ymH+O2Zi8krtO9CEKh4RRC4jqccdB+alTp5TMxMSEqqOiMEjQsVggAp0wQj7jYKBsXKeME9p/GadyzCpklxlKIPNBcsQgbnxHPv5fb2+vYAcSHqQoQXoQHsQ0lCTXGPT58+f3mD2J0e+/jNybAAriF4OcbTtLUzNTofp/COnWx+spvZkW7EDCg5QsBmm72UZ1rXV0pu9MaP4fcEdNaw1NPp+kkdSIYAeS+SAli0E++/dnNL88T7cf36apF1Oh+H/H/3echp4MqXoT0+HyKSIjGORAMEg6vUUf/u0Tqr5WrToyUnQkmpf/h7DhP/91klqSLZk6m4ebxT8WDFJwGRiLQ/gDTMEJsW89r6ejR0/Qh58cpW9rv6Vz7edUOnv9rKMsuBG3enSZY8eO0Yd//z5TH1LV9arA9YhM7jJyb5zLpqamsi0IBvQ5zWXAm57Dr/gxNnsxfbzmQ+CDQYhg4E0fp3kZuZ7L66OTXvn4tV73Bh9MPPK6Jj/32OvaUc4Tm0wyXvfZ77m87jNkvO4zb3oaxv3xus+4N6Z6fEexwHfwEG4oyMv0S5V23u3Q3Ks5mlicCBx94j258XGrTyIsEsUqqiiWEwaxDyWBglwYuEBNd5po7e0aDcwM0FdXvlLf/fp/sBx6QMCtPvGPBYMUUsYziqUPYdcVJJ/oAKakok6JnkgUq+SiWHYeRB/CHkRB3HxIHMdqG6UYEy9XGbk3ARRExyBYucJp6mg+q7vrY7fE9xUMUrIYBOjfbVWSXNfmheXQx26J7ysYpOQwCCwIcIdpVZJcLAiUzR4ClDeXWJCityBOexRi6RqnGYXMkeSyR2FXV1fW7C59GUq3pUf1/ercZhTqS2u6zSjk9phmFHrtV1dOexQ6lZtmFPJMU9PSoxWxRyFmi3kBl6AWROdQ5K0kFqRkMQjcoNHRUc9Kg2AQnjorfq1gkJLGILAacJ3CXJsXioE65a0kFqTkLQiD8jD3B/FaflTi78UhI/fGQ0EQfmVNCsuCAJR7Lb8pby6xIEVvQRB6xdAPPcybr4KgTj+jcOXBiIIUvYLoK4iEoSAwWQDmctNFQcouihUGBmHcIX6tYJCywCB2QgZLfbotPQqi0LRHIXAHk2Reyz7ynnZeRKG+358bUagvrelGFHJ7TEQht8dEFKI9XkShvnSmG1HIS3maiEJeFtNEFDKZaCIK9eVkTeUmopCXdzURhWivF1Go70vpVp/+zN2IQl7e1dTHWMbUx7yeeWjbH4BD0cduidkWF6ssXaxcFIT3I5QbKgoiGMRBQQD07SFd8WsFg5QFBsnXgoBDcTqJvJXEglS8iwX+ROdQ5IaKgpSbzP8B5fjSr0gDhBwAAAAASUVORK5CYIJQSwcIfd+91CEQAAAcEAAAUEsDBBQACAgIAGi+DEUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICABovgxFAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1d63LbxhX+nTzFDjuTaacmtHcAiZSM7MRXOfbEbifTy2RAckVCAgEaAHVx0/99g7xC/6Z5hPzvQ/RJenYX4A0kRIiUDEe2tQSw2N1zvnO+c3YXoA+/uhpH6EKlWZjERx3i4A5ScT8ZhPHwqDPNT7te56svPz0cqmSoemmATpN0HORHHe7Qzvw+OHIk1jeHg6POqfJ6xJNBt3fKBl0u+m7XU33ePWUuYz3q9fxg0EHoKgs/j5Nvg7HKJkFfvemP1Dg4SfpBbtoc5fnk84ODy8tLp+zdSdLhwXDYc64yaABGHmdHneLD59Dc0k2XzFSnGJOD71+e2Oa7YZzlQdxXHaSlmoZffvrJ4WUYD5JLdBkO8hHogEnZQSMVDkcgp0tBqANdawLCTlQ/Dy9UBvcuHBqh8/GkY6oFsb7+if2Eopk8HTQIL8KBSo862CFcckI9jzPGPEqY10FJGqo4LyqTotODsrnDi1Bd2nb1J9Mlx74LIIRZ2IsUqD2IMpArjE9T0CmMKJ3CYZZfR6oXpOXxfEDkAfyBCuF7pdsCOa0ijjowqAcE+w9cjB8IUShgseMOypMkMq1iJHz044+IYorRA10QW1AopLSXsD2HmS2oLbgthK3D7e3cVuW2Drd1OKuRszieC1qcWJK0lJMtyklAPv1Pwj+jgBU5vQU5iRbiR0T06E3BkB43MePXBS8OpT10TUGwLUhx0dO/jL7kjhKxW0lEFnq19rC504q9lD0SJtj2XdKdBJ2JSdeJScUGMXfU7kxSsdAp9GX+mn+VLlkjOTfrdvseJd/F+W/RoYuX/L50eluSoqxTw94GdXhQ0uFhMSCUjXTdwqZzNc70EJlv2AkRJMB7pQtkIhDxoXC1F1NEBOICDomHpC5dxLTjcsSQh3Q9wpDhIOHBL26cWiIBbemTrvVuxDgSDBHDXByBFpBhP9AJZVBDCCTgJt070d0yibiEA+YhDgPUvOdqbmFwHxxD5xQxgpi+l7iISiQpcjV3Eq4pVXp67NAoRRIjqW8F8gTitKQJd3iIaWnACyZJFs6UO1LRZIaK0WMYT6b5ku7640H5MU9Wag+S/vnDFV2rIMvLz1AJItY8MNoIthQ3PzmMgp6KIL14o80AoYsg0l5u2j9N4hyVJkDtuWEaTEZhP3uj8hzuytBZcBGcBLm6egy1s3KApmsTzw/VtB+FgzCI/ww2opvQDaJ5eNfkVYZ3IYntpp8k6eDNdQaWg67+otLkqONTxwWSmf2IDrq2V5jPHMn8+Y9mqX6gTR6yILFwD4Yr1xsuFQKqi5lowZXKSl0O03Cw+PlZ9jCJBjM8JkkY54+CST5NTaoG/aRapON4GCmjWoM4JD39815y9aYgbtvW2+sJHGHbf2/4KImSFIE/UgEyDouyZ0tTRw9sVgubOtjUwCVI4WB2nfjU1DBlz5amFqBuh1YISkopCS67CTPDNND4oo0Zk9EZ1DQO85PyIA/753NJdf1vp+MeWFtx23KTZE9NHh6s2NfhuUpjFVkjigHIaTLNrFnPTPOTw2mmXgf56DgefKeG4I+vA02JOTRtq85HPFD9cAw32vOF6gIN659gqPbsQA1TVUoYmdzYKtZcxYsmXTltmnqcJuNn8cVbsJmVoR4elPIcZv00nGjLRD3g6HM1t75BmAXA8IPF+0D4DKToa7YBReZaiW+iZKJQcoq0uFGkIhTEA/RapRMVD8L+NAIy0VaRdVAwzUcJWE8cpBe6B/BwTQLoeDqcZjlwKuEmv75M0vNspFT+Vl3lKOglF836AaS1FWx/h5VtPNbXYxPGXmvf68zpM8BHnatjMDSr4GSal2ePrUaL2zU3RWoMWT7KjQcaJ57Z4rFpUhsdSnpnwJgrtrpgTaDrgaF1Y6OvytpF/72zuS9S69GmLDwaBdFkFOhZSGERUXCt0iUbMT2+TAarlgOGaXvN1cS6yEQp61xWIvgwgeYMJS2NF0wxQ1cwAIdiRjjmvvCk60of+NEOBb2380872dKa0aS1FB/s2RWLBoe0St0Bp0dNcHq0M07of//6N3r/EaDVhZmq62LKXR/mqTBbtVFwf4DV6fnrqp7LTN1WmHPmohIXw9MHVyBzmNEXd1x+BxZ+Agy1YuCPQGCilbdq4716G9dkN9Nsb1cTf29MfA0hLScPt8ZmwUStaq+1rvmirVK9OPLe2LDHfOy7gmIpCRGeWE1Hckgwz4HrMzNbzYvsyHx4Gg4GymTPNll7F9tbMpslhONJFPbDvIldf3ODcj8Cs+4Sh7pczP+ImZmzxdN3YfOvUkgUhkkcRGus/xtr/b2K9fcbWH9/Z+u/D7tfZ+7XM3/QavccrJeefIY918fMu3uzv5GdjjfhEzTAJ7iDROn+eYlgh3PqecIXmBNGqbxvfLbPjx43yY8e3xS3F/BpdfbjOXpd/s7SUzNVX1H/Y+sfOojTdUH8v/+pR8JM7maKhtpm6yCIpuWQHJ8BF0ifMCyBwr3CgLaJRg19ieCqN5FaEF+dnmYqN85DrefQtRBXlhO2cJRyHp32F2ArbSWCKeF36jRSVwaT5Rl5M/8JKpA9bOI7D2+X87bOdYTDBXCbBHLj8COlKPIDmEIQCSkYs7/u162OrVs9rLrVz43c6ueP1a0snVG31W61DsCeBbBfRe6XRsj9sooccYSLXV8yKl2fe76UuyK3MfnbjRAtdF0qWo1dbXL+tQVxfYoxaJAADm6ZYew/yTMPTCxkCHq+34IsrppfP2sShZ5tPUO9xwWuuTMQm1cTshYkss/VG5/6FOKVL32PuD61s1zhCF8vXbqcexDNiH9Pa5fV3OJ5E1Sf74rqneEpbXJw13BKh3BGgeVhsiUYQFegyVzCBCcC5micC3LfaxbP6mjxtAEtnraYFiuOdM8sWYvA8zoERg0QGLUWgarttwmAWhcIGwAQthaAj9kFzhogcNZaBD64CzyL9X4/qGTbyc2TJuH9yV0lbdIz0OiiZ4vGEb7LipRt/cyzgp3wHMk5wz6hWBLm29UDz3OoJwT1OIY5m107YNwRwmWYcMI85nrlEyt7CdubAOtbwMIKYE+bAPZ0R8D2CVUNFgSwgMTIk1ICdTHpl0s5jHuQN7ke5T5hxZ6DWfS+p7zpySYUzhvQ1Xlb6AoXbNVdY9Fas6vG36bg8dQicVZBImqARNQ6JGY7aVVbb0nkCK3izyuKf9GEiF60LnJUpn8LdMSE43qMUEolJYLjDxQb3qihPr+ek15UAJnUA5IVrZUqn+z8jMBtXIFucgXqUEiaMGgSMifGudVvF5DAFBRMXdeTMPff4cEKUFWkp+4zSwcjqz5Fea7URD+8+ip+mwZxpl9G2nZlcj1ezzbh9a4ZXu/uyoVuB+k886J2baV2I21xwQvrDRpKuKDcdeHvUgbdJcTxhZSQPVPhUy5vs+z8YQF/YQF/WgE8J80Qh/p7T992Bps3AZs4EkIZ9ZkrmO8DUdJlsKXDGfMIlxD2sBCszWDfkKlXV05PmgTIk/2vnO5jUkWKPMVbi3c1kSfUgfmUT7DrMoGlsHhz38HCdX0Ipr4QxCf3EDxrs8mTTdlk3CCbjFuXTW7I69eovyXJ5ZnFIa7g8LKJ77xske/UpJUUnINCbPMJ8SGzhBzygznH+sBVLNC9rKCR/dAwcukbWuIcDNIJAmmGfrvK98RKtkG5Q13pculTlwgixQ6u8YHSjZONqDXEbPvngu7tkcea2YLnex6mxKWSUZgz21k0zKeJhhFTz4ecQuiVpI8Nz41emDbDM90/K+6aPBL7Kg7bDuvfkOd+HRZfCbEM9TsLdU4qWCf1WMfTsUrD/gzLpPrMkaTgGi4FJ4FpM2XuN10itkeUrMqjriYpqFIbSdHnuIPgJAiBDtDEvphbP8hxdZAMnBfm+kJQ4ktapv97GuC0GGAKA8y2GeD0xgF6ex1grq4AejvIz95Nk/yLMTn622ka9P9hD9Ef0e9Pgrfq+7+++/sf4MCe/Wfl6mTx6tHq1fHCVft7nTL0YDrLI6vnj7sN4GFmBr/65qp5fTsD1E7n33gAudDL4ntl7HvduFNmp0Vj4Hxpbh53QYaGqMO8xdek+doXqG4Gjy6DRzeAl9aCl9WCN70deLTt4BXf03Ab7ASvYscchpd+2EYklxTXS5JIBfFML+9XKWBBUfezVDqPll6x7kzd+tl3MDGx25ybvXM82fCa8daayFc1MRfy3hVRrEJseKi4Vg+zd6/Xq6Di1qpw6ZxsG9ZU9UltlzHBfQGBw8WElcPeY9Tgy8TDNhBPTnYIG+p2zMN/w8wD04mFt6zs49LEodi8cTV797NZDGGrCcCYos9+R/AXqC6O7ytOsA+K1oqGXcfHQhLfY9wl2OXlC58+WzzZUL9iRb+//gRxuktWVDyeKe/Xn7qzs2qub7hje62KdmnVc+mCWmURMD1C6fxrEjZqdfWZ4eh6mMTrt7ie2Hdf1uxMwl2k2Ef+gdhaofnAjjrDm5b6bI+zbUvT1saZHq+f6W23INVwA43qJGRYlCuPKJNm6G2Oz6vT+/NbL7HVDXenhba1G3vd9Ru72BHMk/rVVEl97Mvajd0bQL2D6Xu97sO26X6Pm+ht0/WwXZru3rB/3WT7+v5VvQ2ZPym3r2vInJZkTm2tYUnmo5t2CtbROb0LOr/F3nj53WTlt4pRPYucmcxsKXnvRL5msr6dideO9/ZPY67ftN/ALZ7DPcJd7rn6UVq37onn1lHL7Wn8bjTfveF5iSaPS7RN2aO2KXu2a77esNsdM7ch8mJj8Lml6Op+kqZeZuuMy6w8Kon87DZEzjYT+Q07MPv9ppX62H9XRD5uW1bYXbuDtmHr1AN7l/qlFS45py7e4d2he+eWqG2a/6i3Lut1fdY2XS/w+FrDbvkjAQeLX2qqj8v/ieDL/wNQSwcIZTRrC1YOAAA5YQAAUEsBAhQAFAAICAgAaL4MRX3fvdQhEAAAHBAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgICABovgxFRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAABlEAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAGi+DEVlNGsLVg4AADlhAAAMAAAAAAAAAAAAAAAAAMMQAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAUx8AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 

Revision as of 22:01, 13 August 2014

Activity - Name of Activity

Parallel lines have the same slope and slope of perpendicular lines are the negative reciprocals of each other

Estimated Time

1 Hour

Materials/ Resources needed

Geogebra applet

Prerequisites/Instructions, if any

  1. Students should know that every line is a representation of an equation /relation between variables
  2. Graphing an equation/producing equation by visualising graph
  3. Students should know what is Slope?
  4. Similarity of two triangles

Multimedia resources

Website interactives/ links/ simulations/ Geogebra Applets

Process (How to do the activity)

Play with the following Geogebra applet
From the following geogebra applet we can visualise that slope of two parallel lines are same and slope of two perpendicular lise are negetive resiprocals of each other

Developmental Questions (What discussion questions)

  1. Move the Blue points observe the changes
  2. record the Slopes of two lines
  3. Compare the values

Evaluation (Questions for assessment of the child)

Evaluation.png

Question Corner

Activity Keywords

To link back to the concept page Topic Page Link