Difference between revisions of "Slope of parallel and perpendicular lines"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
__FORCETOC__ | __FORCETOC__ | ||
=Activity - Name of Activity= | =Activity - Name of Activity= | ||
− | ''Parallel lines have the same slope and slope of perpendicular lines are the negative reciprocals of each other'' | + | '''Parallel lines have the same slope and slope of perpendicular lines are the negative reciprocals of each other''' |
==Estimated Time== | ==Estimated Time== | ||
− | + | 1 Hour | |
==Materials/ Resources needed== | ==Materials/ Resources needed== | ||
+ | Geogebra applet | ||
==Prerequisites/Instructions, if any== | ==Prerequisites/Instructions, if any== | ||
+ | #Students should know that every line is a representation of an equation /relation between variables | ||
+ | #Graphing an equation/producing equation by visualising graph | ||
+ | #Students should know what is Slope? | ||
+ | #Similarity of two triangles | ||
==Multimedia resources== | ==Multimedia resources== | ||
==Website interactives/ links/ simulations/ Geogebra Applets== | ==Website interactives/ links/ simulations/ Geogebra Applets== | ||
==Process (How to do the activity)== | ==Process (How to do the activity)== | ||
+ | Play with the following Geogebra applet <br> | ||
+ | From the following geogebra applet we can visualise that slope of two parallel lines are same and slope of two perpendicular lise are negetive resiprocals of each other | ||
+ | <ggb_applet width="1366" height="558" version="4.2" ggbBase64="UEsDBBQACAgIAGi+DEUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwEcEOPviVBORw0KGgoAAAANSUhEUgAAAMgAAABSCAYAAAARpZu7AAAP40lEQVR42u1dbVMUVxb2t+VDqvZHJB82qd2K+bJVqVTlS7Qq6ybZTaxUaW1ljagQEhRGQEcF5GUGBB15kRFQFAERRgRFgzK8GcCz/VxyJpee7tvdMw3zdqbqwty+Z27f7r6nz3nOc18Oke3z+vVr8vpMTU3Rq1evjDIbGxue9eynTCKRoOXl5VDPhToXFxcLel37IVNq7T1ImUP2A6urq56VPnr0yFPm7du3BZNZWFigVCoV6rlmZmZUnYW8rv2SKcdrCksmS0G8LINfBVlbWyuIzNbWFj148CDUc+Etk0wmC3pd+ylTjtcUlkyWgjx//jwUBUmn0wWRiUQiSknCPFc8Hi/4de2nTDleU1gyh4A54FbBckA55ufnVR7HkedyxiYDAwN07969Pb/RZTiPMj3PSc+/ePHCtZzre/r0aVb9qFvPw6VCvre3VymvXo7vnPS8U33cHr28paWFHj9+rPJIaA+XI7E8t5Hbo+ft5Xob9PNxHkm/v5y3lyPhXHqef8Pt7+7upmvXrtHT1ByNjY3R3Nycesa//fYbvXz5Usk/efJE4Ur85uHDhyq/srKiZCCP63/27FmmrcjjXqEcx/gZ2e81t0fPc3vt/U7P68/crY/h/E59Ss+zjKmPOT1zPV82GGRpacnRtcoXy7BrVao+9PDwMHV0dNDa6go1Nzerjt7Y2Eg3btygy5cvK2tbX1+vOgo+ExMT1NTUpOQgDyVCgiwHKPjY9PS0Ol5bW1s5GMRPFMuPghx0JAIgOuxzIWpV6lGYCcsijI6OUHrltWvHkChWGWOQpqZeam/vVW/C7e3schhE4LCVlbTlEuzm371jgMbn2P2unwu4I2wsIxikBDFIqVuQTz89QVVVDXs6/OgoWX72n0owPg4F2bB8Z7LwE9Hvv++WWS65+n77Nll+95/ngqsGlw0fu9JBBkrG9xUvYsvb0KIiuzL4DxrGLUgiPEiJWpBSwiCLi8v05Zf/Ncqsr2fXs7OTLQdFgExt7VUL7Cf2dHhd6SCDY1AqVGlhWIrFiDY3/1S61dW3SilBxaC82P1s4UHK0IKgkzc0DNKZM/FQz3X48Cnq6urNUhBdhpXO3h6nczm5fWJBBIPsu48YjQ7SrVsbSkHCOlckcp3q6jorzs8WDFJmFuT+/ZTlBqVpaIhCsyDJ5APq7n5B9fXxvOoBsMdN1288jiGBXxALUmIWBAK7fvUazc7uEifI4zgeMpdzRZOTkwrE8m/sMpwH0aTnOel5KKNbOdcHwkbPp1LPrbf8gFIOpKqqmCKs9POjXZzHdyRuD+d1+enpx9TcPEzDw+/o1187sso5j4T26Hku5zbeuXPHateQIuhqamoU3wAuBeRqVVUVvXnzJtMe/fd6fUj4Dhk9by9HwrXreX4m+vWjzXrerdz+ez2PZ+X0zPU82sv3Vy/X89xep99zXn/mbn0M7XHqU3qeZUx9jPug2zPfY0Gqq8lSkOK2IE1NgxnlCMuCXL2aIPCBSPlakFKUEQvi4WJdvNhKH398pegxyPXrSYU77AqSz7muXYtbb/0tpRywIF4K4udcOuMMRtr+WxyHJRYMUiIYZGNji378sbWoMcjY2Ay1tKT2KEe+FmRycoZisVTGeoRlQeBewURjqMaJEyfUUAy4Xbdu3cocP378uCMRWUgLgjFQrNAvdXJHoljFDdKhwO3t2cqRj4Ksr29QNJrcoxyV5GLNaQQNl/f19dHJkyfVdyj03pfJZEaJTNMCREEKoCAXLyYclSMfBWlsjGcpR6UoyNdff00XLlzIuBgMynmkMBKCCVwOS9fW1qZkoEQ//PBD5SpIsWGQ+vp26uxcMipI0HN1dSWot3c5SznCwiClyoPAqrBlgaUQDFLkFuThwxR1dCy4KoduQeAz7+zsqAfsNOydzzU9PUPxeMrRelR6FGtkZCTjWsFSCAYpYgXB0I22thmjcugKAuAL3xjzE44cOZI1xoZj4K2tSVflkDCvyGQpiJ2Q8SIK4ZseBFHY1zfrqRxBicLGxg7lRiHpbhXnwyAKsZIK7iFGA+MY8rhnkAPQZXm0B3UJUVhCRGGxYJBE4kEW35EvBmlri1tKt2y0HmFgELw84KogpIvELh+Uo7q62lLAX5Ubg+mvKN9xGlpcIAwiMiXgYo2Pz9D580lfyuE3igXcEYvNGpVDXCxxsXwpSCHng/AQdr/KwQpiOpcf3BFEQfxcFy+dxEw6rASTgrAoyGM+NwcW3N5mMh+k8DJFZUHa28eov38rsIKYzhWNxunuXQqkINxx0Yl5MYMg12Vn0m/evKkUgxc5AC5BlAjl7HKhzO5yiQURHiTzHUPYu7qWAimHFwa5e/cB3bixlMEXXsrBGIQjYrFYjH755RfjW76ceBCRKVILMje3YL0904GVw2RB5ucXrI7u37USDCIWpCgxCFYYiUbHclIOEwa5dCkRWDnCwiClvDYvu5QITesLdQsGKZAF6eoKjju8LAhwx9DQ1r4oSLm9JaEEejlWzkSnqaur27NoHmRYYaBEPFar7C2InZDBGBwTUYhpo36IQhBCXkRhX99dC9Au56wcTBSClOPz376dpJ6eF1lEoE4G5kMUAqOZiELkmSR0K0eeyU0TUcikmokoxLm8iEK02U4UInCAwACCBbzUJsqwLCmWFkU/QAL5B8WADFZoRIABQQgM4bf3AbTXiyjk9pqIQpzLiyhkMtHUx1jGRBTayVpPovCgVnd/+nSBGhqG81IOtiB4kNvb2+rhRSK7rlVf32urE7xRnb6z85kanMiKEIstqv8o5+SXKKyE1d2hEHYLIau7HzAGaWhI5K0crCCDg4PqTffddz/S1auPMp2/trbPchk2LaVJUk1Nj/qOstOnr6vv587FrRSzwPw9wSDaB2Hnn3/+WXiQQmCQzs5Oq7NG88Idevr88+OKjMPyo/39G5mOjqiYHV/cubPtiDt0vCJRLJE5UB4Efqk+tfSjjz6iw4f/QZcvx+nixXb135S8ZD744K/0zTf/scB+ypPj8MuDVFqsX3iQAAoSNgbBMjg8z1nfqcmP/4eAAGTw3z4sgz/AHY2N/b46fxgKIjtMCQbZNwyi79Tkx//D6FcoAP5jzwonBTl9OpJTOFd4EMEXRYVB7LvOhuEjxuMJ6u5eOlAFEQwiGCRUDIIP7xAbpo/Y3z9IV66MBXKfBIMIvgiMQeyEDLYdMxGFwBN+iEKezQViqL+/35HU0WeXuS09qpNuXA4ljkR6PIm//SAK0R4volCfEedGFPIMPRNRyLPdTEQhE10molAnUk3lphmFTGyaZhSivV5EIbfXRBTqz9ytjzERbSICvchqnYz1TRSGjUHsuCNXH1GPhDU1dYTqVpUrBgE/1NraSneTwyrQwUv44Dd8P/F/dnY2UxfywHr8nTsN3GP+DSsQY0LO6/ULBvHh2znhjlx9xPv37yu2PBbrtdJCwRSklHxoWG4VqVlNu27giTy7vxh2guOYu8Lf8awx5B9uMob/Y6owb/Cpr8KIND4+vmdTz7LEIGGFeSHjhDvyCcM9ejRpgfJUzvjCLwbBYDx9qwL95TH/x95u6+vre65v/Y9ddXAMnclpMN9BhynH79+jt5uW67P8yvjW5Dr0424yFR/mDUtBTK5VLhcA8/3TT5G8Or9fBcEgPt7hFm9Nvl50+oaGBqUMsGgYjsHtQ35zc1O9PS9duqS2OxAeRHgQV+Xw07ggPuJ7771HX3xxTC0Zak+RSJfj8Vxk3n//LxSNRl0jHvY2bzvssab7+MKDCAbZ8+EdYsP0EbFkjknWVMauEvxj0xI7lRzrFx7kgFwshIh5KElYJhAdWx+eErQesPAoRzTH621RqW6EU7k+5J3DreJi5akg7LeH1Ti4KfDnxT8+eAXBpChEr/BBtKpiFcROyOjLVAZZehSzzZjEQh5YxmtGIS+t6UbiIGSIiJKdJLKTOky6mZYe5fY47VHIeW6PiSjkWXMmopBJUhNRiPZ4EYWQ8SIKmUw0EYX60qxO5XjheRGFvKci8lAY/Lanp0dxKPoz9yIK9eVm3YhCJvhMRCEvbWvqY17L3/p55qFgEMYdYfp/cKvgsol/vH8ymH+O2Zi8krtO9CEKh4RRC4jqccdB+alTp5TMxMSEqqOiMEjQsVggAp0wQj7jYKBsXKeME9p/GadyzCpklxlKIPNBcsQgbnxHPv5fb2+vYAcSHqQoQXoQHsQ0lCTXGPT58+f3mD2J0e+/jNybAAriF4OcbTtLUzNTofp/COnWx+spvZkW7EDCg5QsBmm72UZ1rXV0pu9MaP4fcEdNaw1NPp+kkdSIYAeS+SAli0E++/dnNL88T7cf36apF1Oh+H/H/3echp4MqXoT0+HyKSIjGORAMEg6vUUf/u0Tqr5WrToyUnQkmpf/h7DhP/91klqSLZk6m4ebxT8WDFJwGRiLQ/gDTMEJsW89r6ejR0/Qh58cpW9rv6Vz7edUOnv9rKMsuBG3enSZY8eO0Yd//z5TH1LV9arA9YhM7jJyb5zLpqamsi0IBvQ5zWXAm57Dr/gxNnsxfbzmQ+CDQYhg4E0fp3kZuZ7L66OTXvn4tV73Bh9MPPK6Jj/32OvaUc4Tm0wyXvfZ77m87jNkvO4zb3oaxv3xus+4N6Z6fEexwHfwEG4oyMv0S5V23u3Q3Ks5mlicCBx94j258XGrTyIsEsUqqiiWEwaxDyWBglwYuEBNd5po7e0aDcwM0FdXvlLf/fp/sBx6QMCtPvGPBYMUUsYziqUPYdcVJJ/oAKakok6JnkgUq+SiWHYeRB/CHkRB3HxIHMdqG6UYEy9XGbk3ARRExyBYucJp6mg+q7vrY7fE9xUMUrIYBOjfbVWSXNfmheXQx26J7ysYpOQwCCwIcIdpVZJcLAiUzR4ClDeXWJCityBOexRi6RqnGYXMkeSyR2FXV1fW7C59GUq3pUf1/ercZhTqS2u6zSjk9phmFHrtV1dOexQ6lZtmFPJMU9PSoxWxRyFmi3kBl6AWROdQ5K0kFqRkMQjcoNHRUc9Kg2AQnjorfq1gkJLGILAacJ3CXJsXioE65a0kFqTkLQiD8jD3B/FaflTi78UhI/fGQ0EQfmVNCsuCAJR7Lb8pby6xIEVvQRB6xdAPPcybr4KgTj+jcOXBiIIUvYLoK4iEoSAwWQDmctNFQcouihUGBmHcIX6tYJCywCB2QgZLfbotPQqi0LRHIXAHk2Reyz7ynnZeRKG+358bUagvrelGFHJ7TEQht8dEFKI9XkShvnSmG1HIS3maiEJeFtNEFDKZaCIK9eVkTeUmopCXdzURhWivF1Go70vpVp/+zN2IQl7e1dTHWMbUx7yeeWjbH4BD0cduidkWF6ssXaxcFIT3I5QbKgoiGMRBQQD07SFd8WsFg5QFBsnXgoBDcTqJvJXEglS8iwX+ROdQ5IaKgpSbzP8B5fjSr0gDhBwAAAAASUVORK5CYIJQSwcIfd+91CEQAAAcEAAAUEsDBBQACAgIAGi+DEUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICABovgxFAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1d63LbxhX+nTzFDjuTaacmtHcAiZSM7MRXOfbEbifTy2RAckVCAgEaAHVx0/99g7xC/6Z5hPzvQ/RJenYX4A0kRIiUDEe2tQSw2N1zvnO+c3YXoA+/uhpH6EKlWZjERx3i4A5ScT8ZhPHwqDPNT7te56svPz0cqmSoemmATpN0HORHHe7Qzvw+OHIk1jeHg6POqfJ6xJNBt3fKBl0u+m7XU33ePWUuYz3q9fxg0EHoKgs/j5Nvg7HKJkFfvemP1Dg4SfpBbtoc5fnk84ODy8tLp+zdSdLhwXDYc64yaABGHmdHneLD59Dc0k2XzFSnGJOD71+e2Oa7YZzlQdxXHaSlmoZffvrJ4WUYD5JLdBkO8hHogEnZQSMVDkcgp0tBqANdawLCTlQ/Dy9UBvcuHBqh8/GkY6oFsb7+if2Eopk8HTQIL8KBSo862CFcckI9jzPGPEqY10FJGqo4LyqTotODsrnDi1Bd2nb1J9Mlx74LIIRZ2IsUqD2IMpArjE9T0CmMKJ3CYZZfR6oXpOXxfEDkAfyBCuF7pdsCOa0ijjowqAcE+w9cjB8IUShgseMOypMkMq1iJHz044+IYorRA10QW1AopLSXsD2HmS2oLbgthK3D7e3cVuW2Drd1OKuRszieC1qcWJK0lJMtyklAPv1Pwj+jgBU5vQU5iRbiR0T06E3BkB43MePXBS8OpT10TUGwLUhx0dO/jL7kjhKxW0lEFnq19rC504q9lD0SJtj2XdKdBJ2JSdeJScUGMXfU7kxSsdAp9GX+mn+VLlkjOTfrdvseJd/F+W/RoYuX/L50eluSoqxTw94GdXhQ0uFhMSCUjXTdwqZzNc70EJlv2AkRJMB7pQtkIhDxoXC1F1NEBOICDomHpC5dxLTjcsSQh3Q9wpDhIOHBL26cWiIBbemTrvVuxDgSDBHDXByBFpBhP9AJZVBDCCTgJt070d0yibiEA+YhDgPUvOdqbmFwHxxD5xQxgpi+l7iISiQpcjV3Eq4pVXp67NAoRRIjqW8F8gTitKQJd3iIaWnACyZJFs6UO1LRZIaK0WMYT6b5ku7640H5MU9Wag+S/vnDFV2rIMvLz1AJItY8MNoIthQ3PzmMgp6KIL14o80AoYsg0l5u2j9N4hyVJkDtuWEaTEZhP3uj8hzuytBZcBGcBLm6egy1s3KApmsTzw/VtB+FgzCI/ww2opvQDaJ5eNfkVYZ3IYntpp8k6eDNdQaWg67+otLkqONTxwWSmf2IDrq2V5jPHMn8+Y9mqX6gTR6yILFwD4Yr1xsuFQKqi5lowZXKSl0O03Cw+PlZ9jCJBjM8JkkY54+CST5NTaoG/aRapON4GCmjWoM4JD39815y9aYgbtvW2+sJHGHbf2/4KImSFIE/UgEyDouyZ0tTRw9sVgubOtjUwCVI4WB2nfjU1DBlz5amFqBuh1YISkopCS67CTPDNND4oo0Zk9EZ1DQO85PyIA/753NJdf1vp+MeWFtx23KTZE9NHh6s2NfhuUpjFVkjigHIaTLNrFnPTPOTw2mmXgf56DgefKeG4I+vA02JOTRtq85HPFD9cAw32vOF6gIN659gqPbsQA1TVUoYmdzYKtZcxYsmXTltmnqcJuNn8cVbsJmVoR4elPIcZv00nGjLRD3g6HM1t75BmAXA8IPF+0D4DKToa7YBReZaiW+iZKJQcoq0uFGkIhTEA/RapRMVD8L+NAIy0VaRdVAwzUcJWE8cpBe6B/BwTQLoeDqcZjlwKuEmv75M0vNspFT+Vl3lKOglF836AaS1FWx/h5VtPNbXYxPGXmvf68zpM8BHnatjMDSr4GSal2ePrUaL2zU3RWoMWT7KjQcaJ57Z4rFpUhsdSnpnwJgrtrpgTaDrgaF1Y6OvytpF/72zuS9S69GmLDwaBdFkFOhZSGERUXCt0iUbMT2+TAarlgOGaXvN1cS6yEQp61xWIvgwgeYMJS2NF0wxQ1cwAIdiRjjmvvCk60of+NEOBb2380872dKa0aS1FB/s2RWLBoe0St0Bp0dNcHq0M07of//6N3r/EaDVhZmq62LKXR/mqTBbtVFwf4DV6fnrqp7LTN1WmHPmohIXw9MHVyBzmNEXd1x+BxZ+Agy1YuCPQGCilbdq4716G9dkN9Nsb1cTf29MfA0hLScPt8ZmwUStaq+1rvmirVK9OPLe2LDHfOy7gmIpCRGeWE1Hckgwz4HrMzNbzYvsyHx4Gg4GymTPNll7F9tbMpslhONJFPbDvIldf3ODcj8Cs+4Sh7pczP+ImZmzxdN3YfOvUkgUhkkcRGus/xtr/b2K9fcbWH9/Z+u/D7tfZ+7XM3/QavccrJeefIY918fMu3uzv5GdjjfhEzTAJ7iDROn+eYlgh3PqecIXmBNGqbxvfLbPjx43yY8e3xS3F/BpdfbjOXpd/s7SUzNVX1H/Y+sfOojTdUH8v/+pR8JM7maKhtpm6yCIpuWQHJ8BF0ifMCyBwr3CgLaJRg19ieCqN5FaEF+dnmYqN85DrefQtRBXlhO2cJRyHp32F2ArbSWCKeF36jRSVwaT5Rl5M/8JKpA9bOI7D2+X87bOdYTDBXCbBHLj8COlKPIDmEIQCSkYs7/u162OrVs9rLrVz43c6ueP1a0snVG31W61DsCeBbBfRe6XRsj9sooccYSLXV8yKl2fe76UuyK3MfnbjRAtdF0qWo1dbXL+tQVxfYoxaJAADm6ZYew/yTMPTCxkCHq+34IsrppfP2sShZ5tPUO9xwWuuTMQm1cTshYkss/VG5/6FOKVL32PuD61s1zhCF8vXbqcexDNiH9Pa5fV3OJ5E1Sf74rqneEpbXJw13BKh3BGgeVhsiUYQFegyVzCBCcC5micC3LfaxbP6mjxtAEtnraYFiuOdM8sWYvA8zoERg0QGLUWgarttwmAWhcIGwAQthaAj9kFzhogcNZaBD64CzyL9X4/qGTbyc2TJuH9yV0lbdIz0OiiZ4vGEb7LipRt/cyzgp3wHMk5wz6hWBLm29UDz3OoJwT1OIY5m107YNwRwmWYcMI85nrlEyt7CdubAOtbwMIKYE+bAPZ0R8D2CVUNFgSwgMTIk1ICdTHpl0s5jHuQN7ke5T5hxZ6DWfS+p7zpySYUzhvQ1Xlb6AoXbNVdY9Fas6vG36bg8dQicVZBImqARNQ6JGY7aVVbb0nkCK3izyuKf9GEiF60LnJUpn8LdMSE43qMUEolJYLjDxQb3qihPr+ek15UAJnUA5IVrZUqn+z8jMBtXIFucgXqUEiaMGgSMifGudVvF5DAFBRMXdeTMPff4cEKUFWkp+4zSwcjqz5Fea7URD+8+ip+mwZxpl9G2nZlcj1ezzbh9a4ZXu/uyoVuB+k886J2baV2I21xwQvrDRpKuKDcdeHvUgbdJcTxhZSQPVPhUy5vs+z8YQF/YQF/WgE8J80Qh/p7T992Bps3AZs4EkIZ9ZkrmO8DUdJlsKXDGfMIlxD2sBCszWDfkKlXV05PmgTIk/2vnO5jUkWKPMVbi3c1kSfUgfmUT7DrMoGlsHhz38HCdX0Ipr4QxCf3EDxrs8mTTdlk3CCbjFuXTW7I69eovyXJ5ZnFIa7g8LKJ77xske/UpJUUnINCbPMJ8SGzhBzygznH+sBVLNC9rKCR/dAwcukbWuIcDNIJAmmGfrvK98RKtkG5Q13pculTlwgixQ6u8YHSjZONqDXEbPvngu7tkcea2YLnex6mxKWSUZgz21k0zKeJhhFTz4ecQuiVpI8Nz41emDbDM90/K+6aPBL7Kg7bDuvfkOd+HRZfCbEM9TsLdU4qWCf1WMfTsUrD/gzLpPrMkaTgGi4FJ4FpM2XuN10itkeUrMqjriYpqFIbSdHnuIPgJAiBDtDEvphbP8hxdZAMnBfm+kJQ4ktapv97GuC0GGAKA8y2GeD0xgF6ex1grq4AejvIz95Nk/yLMTn622ka9P9hD9Ef0e9Pgrfq+7+++/sf4MCe/Wfl6mTx6tHq1fHCVft7nTL0YDrLI6vnj7sN4GFmBr/65qp5fTsD1E7n33gAudDL4ntl7HvduFNmp0Vj4Hxpbh53QYaGqMO8xdek+doXqG4Gjy6DRzeAl9aCl9WCN70deLTt4BXf03Ab7ASvYscchpd+2EYklxTXS5JIBfFML+9XKWBBUfezVDqPll6x7kzd+tl3MDGx25ybvXM82fCa8daayFc1MRfy3hVRrEJseKi4Vg+zd6/Xq6Di1qpw6ZxsG9ZU9UltlzHBfQGBw8WElcPeY9Tgy8TDNhBPTnYIG+p2zMN/w8wD04mFt6zs49LEodi8cTV797NZDGGrCcCYos9+R/AXqC6O7ytOsA+K1oqGXcfHQhLfY9wl2OXlC58+WzzZUL9iRb+//gRxuktWVDyeKe/Xn7qzs2qub7hje62KdmnVc+mCWmURMD1C6fxrEjZqdfWZ4eh6mMTrt7ie2Hdf1uxMwl2k2Ef+gdhaofnAjjrDm5b6bI+zbUvT1saZHq+f6W23INVwA43qJGRYlCuPKJNm6G2Oz6vT+/NbL7HVDXenhba1G3vd9Ru72BHMk/rVVEl97Mvajd0bQL2D6Xu97sO26X6Pm+ht0/WwXZru3rB/3WT7+v5VvQ2ZPym3r2vInJZkTm2tYUnmo5t2CtbROb0LOr/F3nj53WTlt4pRPYucmcxsKXnvRL5msr6dideO9/ZPY67ftN/ALZ7DPcJd7rn6UVq37onn1lHL7Wn8bjTfveF5iSaPS7RN2aO2KXu2a77esNsdM7ch8mJj8Lml6Op+kqZeZuuMy6w8Kon87DZEzjYT+Q07MPv9ppX62H9XRD5uW1bYXbuDtmHr1AN7l/qlFS45py7e4d2he+eWqG2a/6i3Lut1fdY2XS/w+FrDbvkjAQeLX2qqj8v/ieDL/wNQSwcIZTRrC1YOAAA5YQAAUEsBAhQAFAAICAgAaL4MRX3fvdQhEAAAHBAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgICABovgxFRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAABlEAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAGi+DEVlNGsLVg4AADlhAAAMAAAAAAAAAAAAAAAAAMMQAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAUx8AAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | ||
+ | |||
==Developmental Questions (What discussion questions)== | ==Developmental Questions (What discussion questions)== | ||
+ | #Move the Blue points observe the changes | ||
+ | #record the Slopes of two lines | ||
+ | #Compare the values | ||
==Evaluation (Questions for assessment of the child)== | ==Evaluation (Questions for assessment of the child)== | ||
+ | [[Image:evaluation.png]] | ||
==Question Corner== | ==Question Corner== | ||
==Activity Keywords== | ==Activity Keywords== | ||
Line 17: | Line 30: | ||
'''To link back to the concept page''' | '''To link back to the concept page''' | ||
[[Topic Page Link]] | [[Topic Page Link]] | ||
− | |||
− | |||
− | |||
− |
Revision as of 22:01, 13 August 2014
Activity - Name of Activity
Parallel lines have the same slope and slope of perpendicular lines are the negative reciprocals of each other
Estimated Time
1 Hour
Materials/ Resources needed
Geogebra applet
Prerequisites/Instructions, if any
- Students should know that every line is a representation of an equation /relation between variables
- Graphing an equation/producing equation by visualising graph
- Students should know what is Slope?
- Similarity of two triangles
Multimedia resources
Website interactives/ links/ simulations/ Geogebra Applets
Process (How to do the activity)
Play with the following Geogebra applet
From the following geogebra applet we can visualise that slope of two parallel lines are same and slope of two perpendicular lise are negetive resiprocals of each other
Developmental Questions (What discussion questions)
- Move the Blue points observe the changes
- record the Slopes of two lines
- Compare the values
Evaluation (Questions for assessment of the child)
Question Corner
Activity Keywords
To link back to the concept page Topic Page Link