|
|
Line 125: |
Line 125: |
| # Understanding/ analysing the given problem | | # Understanding/ analysing the given problem |
| ## Identifying/ Naming the triangles | | ## Identifying/ Naming the triangles |
− | ## Identifying the sides whose lemgth is not given | + | ## Identifying the sides whose length is not given |
| ## comparing two sides of triangles (visualising that 1st triangle is smaller than 2 nd triagle and viceversa | | ## comparing two sides of triangles (visualising that 1st triangle is smaller than 2 nd triagle and viceversa |
| ## should identify the corresponding sides (sides having same allignment) | | ## should identify the corresponding sides (sides having same allignment) |
Line 137: |
Line 137: |
| x = 39* 5 /13 | | x = 39* 5 /13 |
| | | |
− | <ggb_applet width="1280" height="554" version="4.0" ggbBase64="UEsDBBQACAAIAJV0VkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwFfBqD5iVBORw0KGgoAAAANSUhEUgAAAMgAAABcCAYAAAArr/rLAAAGJklEQVR42u2dTUgcVxzAp4XWHhS/cmgOgghCSCwtqLHiRYo1i7RsQEgVJBVaiDTYNsYWPVWEhLQFqVFMQiTBXMSbByl4EAUPORRvCopF82E+jJKIxu/Vf/OenXV3nVWzzsaZ9feDx87Me/Pmzdv32/l4b2cMAYCwGFQBAIIAOEsQwzBkaWlp13iAIyfI1NSUX4DExERJS0sTr9er50+dOiVzc3M7BJmZmdHzKkxMTPCtAKdYgRQUFPBNQOwK0t3dLQ0NDTtCRkaGeDweyzgzqHUBjuQRpLq6WhYWFqhlQBAABAFAEACISJDNzU1pamrSnwAIEsLt27d1X0V7e3tEG+vp6dEBIOYEmZyclPj4eC1IQkKCnt8145Ce8unpad1xmJSUJGtra0Hx++1VD5cucPnLly9ldXX1rda3SmdHPgddB1wkSHl5uQ6lpaX+L3x9fV1/Jicn+3vCrUJfX5/ExcXJyZMndW+6ub4KWVlZ/sYzPj6up1+/fq3n1Wd/f79eZsYpMjMz9bbN6cB11HZGRkb85Tpx4kRQusAyWW3TnFf5vE05zLoIzUctDyyjuX2IMUEePXoUdARR82+LOkVra2uj1iE2r0FaWlq0IK2trRFt7Pnz5/L48WNqHWJTEJ/PJzU1NbKxsUHNAYIAIAgAIAgAggAgCACCABwNQVS/x4MHDxwb6JeBQxVENUIn4/TywRERJPvNlso/3VpWXyaS897OtCpN1Rfb09kWpVPrmsvDpbFa3vidSO77wWmKP0YQcJAgv327tSw/7s2p17/BjdkMeR/sbOShaawEsUoTGNQ2R/7ZLlfH71vlQRBwzhHks61ldee2jyChDdnqCBIY/0upyA9f7i3I5x8Gz1d7RH7+ajvtN5+I9HYiCBzBa5D8j0T+/JFrEEAQLtIBQRAEYlaQhw8fOrofRJUP4NAEAUAQAAQBQBAAQBAABAFAEAAEAUAQAAQBQBAABAFAEAAEAYBYF0S9WsEM6g1WADEhiF0vWxocHJT5+Xk93dnZGRQ3MDAgi4uLMjw8zDcO7hLk9Gl78unt7ZUnT57o6evXr8urV69kYWFBz6s3W83NzelXs0WDwsJCWhKC2Etj41/+9/u5DfX+wWfPnsnVq1dduw/gcEGOH8+W4uJiaWhocF2ora3Vn+oFoVeuXKEVIYj9qAbmdmJhHwBB2AdAEPYBEARB4KgIUlJSIsvLy66uvIqKCpmcnKQVIYj9FBUV6VukcXHurTyPx6P7Ws6fP09LQhB7SUnJc+1tXiVEVVWVZGRkSGNjI60IQTh/D8TsHOQaBEFcIcjKyoo0NzdLV1eXPH36NCgumuOwEARBXHMEUac6ajzW0tKSnjfHYqlxWGp079DQEIIAp1jsA7hOkBfzLywbl9sH+l27dk0fqQBBDkTKTymS9muaeFu9Ynxv6OmzZ8+6vvIqKyv1qF6Gu8ewIDMzM3L//n0ZHR21DJHG7RV/8Y+LcuvvW7bnG63yWsXl5+dLXV2do8pEvvblOzY2tnUEmZ2dDWtQpHF7xV9uviy+DZ/t+UarvFZxXq/X/6esg5SpoKDA8fvqhHzD1VM0y7uvUyzDMCQ3NzdsnApW1xNmnGHxv9qcnJxdr0F2W9eMD7d+uLKa9PT06I6+zc3NHXGpqalh11NH20DKysqChpqoMk1MTFium5mZue9891MHgXF7xYfW037q1gyh9bTfbe6Vb2g9HTTfSNvSbu33UO9idXR0HNpF+pkzZyLadugvmPrvu9vHk72LeuIi3QG3SLu7u+XGjRty9+5dWV1dDYoL7SxU/0934j44DbvqCUEc0Lj6+/vl3r170tLSIj6f7508tIF+EASJuiBTU+6tPHMfuM2LILZTVPS1659qokYj81QTBIkKx45luXa4+6VLl3T/R3p6Ok81QZDooHqh3Y66BcpQEwSJCvX19a4/PVFHD3WqBQgStQtcN8NdLAShcSEIgtC4EAQcKohhuF8Q+kEQxHbS08/p/4S49akm6i5cXl6e3Lx5Uy5cuEBLQhAwieUBihCjgqhGq8ZhmQ9tMOHtUoAg/wty584dPf0u3y4FCAKAIACAIAAIAoAgAAgCgCAACALgRv4DTLjQ4hG2AdgAAAAASUVORK5CYIJQSwcIJemVw2QGAABfBgAAUEsDBBQACAAIAJV0VkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACVdFZDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1bbXPithb+vP0VGn+4084NIPmdvbCdDRBeJtt2Jrmdzm37QdgC3Bib2uYlue1/75Fkg4lDYrzZhd2ZENnWsY7OeZ5zdKSQ1vebuY9WLIq9MGgrpI4VxAIndL1g2laWyaRmK9+/+6Y1ZeGUjSOKJmE0p0lb0bmk57YVZrhjU1W1GnaccU23Da3WdA1aGzM8cVzbIioFSbSJvbdB+AOds3hBHXbjzNicXocOTYTiWZIs3jYa6/W6nqmqh9G0MZ2O65vYVRBMM4jbSnrxFobbe2mtCXEVY9L45cO1HL7mBXFCA4cpiJuw9N5986a19gI3XKO15yYzMFi1YXYz5k1nYJSl6gpqcKkFeGTBnMRbsRjezd0Ko5P5QhFiNOD9b+QV8rf2KMj1Vp7LoraC65pNVENBYeSxIEkFSKqokQ3RWnlsLcfiV0INzCYJQ39M+TDor7+QilWMLnhDZKNCY5qyC8tnWJONKhtdNoaU0eXruhTVpYwuZXRNQSsv9sY+aysT6sfgNy+YRIDZ9j5O7n0m5pM+2JlMLsCm2HsAYQ2DU6Wj4TnGF/xjwkfnHY19I0lOaxItj1SaqZRAltWpfpSlWqZUt+2iTtU4YKf5jFJpeClDjZydoEr8iE9Bo/acmY81yvuPU2jqn8XEViOLlVYaHiiecdmUPgmbxzxgtCYympz3BBkQHKYFNDcQaUJjqQjCARED6QbcEhuZvLWQZkGHjjRkIy5HNCSiw7Dhl26JwUxkwGD8qQVBiQgo0pGhISKCSkcQSkgEJgSpqoGEYSADXuLqicqH0Eykm3Cn2UiHOfKYtAgIavAi3IN6FWkEafxlYiHVRCYfj+g81k2bTx2GVJGJkUn4gBDWENIynEHeRhq3xkzd5QWLZbLnImfuZpdJuNhiAdKQkHa5TiaovVT4puXTMfNhebjhSCK0oj6PCKFoEgYJ2gakfDaN6GLmOfENSxJ4K0Z/0BW9pgnbXIF0nOkWsk4YxD9FYdIJ/eU8iBFyQh9v5xz6JHetbmcNN1quQ893GLkOM3dtPak3hB60jBnoD6M4E6euO+QSu9QAnvwx8O8vI0bvFqG3b0arIVaaFls6vud6NPgZyMq1cL+gpxcew25mMwkj9+Y+Bgqjzf9YFIJk06xjWEKaqmZgq2lokH7uZZeukrqq6yZuYsvSdNWAVSZ2KI8+3aw3TYMYVhOiqWkZEFz3B7pSoNhqCxHdsK3104hHdmo5vxnGl6G/eyTs79BFsoxEzQCzi7hR74OpzwRHRGTDguzcjcPNjSSHJse6vV/AHZYTGE+F3xHkBmHJNG3HshUyfGZbKSxksJDAGds8d9sPLhMSoh3LVkgBfeXUUktJZibBmRovFhkNK3txI7jPV/dl4CXX2U3iOXc7S7n8D8v5mO0YxAW6nqxFZJG1r4VkWrKc+IpqWo1HRGzdsShgfsp7AHwZLmMZxrmQcJnjzeFWdqR+oxzT/8Kc5FOXTSOWylNfFG3Sq6IX5xldeCyGuorC+TBY3QJhHk2g1chm2YqdyFtwXqIxrBV3bEc914spLDVu/j0eqOANhy8p4JCEewtCeJnMwkiUZZB5oOXx6bM51GMoERwUNN56/r2o7riLUTj+A5LfIwKIG2EHdD/iI8EZIxH1FzPKK8DUaJ/es2jPDWK8HyeTmCVo01ZqehPiFFo11/0hdNlemqUBQCMMhDyxkGxYMCaJJM2BiwVoExG5l+gAjJhr4nPimkT7kCOlcASP0j2V8ukOxTQcHYh7Pg/x7CahUZJSTvq24OVgOWeR52z9mLFVuBsGWabDm3VLKqgGQREAUhYAYj0HQDpM7PPSHs09WbXM6YYXLaBuHMPKlcDuBuIi2O1u5MSzzI+Fz/krhKQo6GI7NfE2OXYDYb0HCFC6Z+wudSWwqt7B3iEW5WySZlJxMfBclwXb6T7mC3dHgTH4KcYcRnI/Xi4/Il7wNsOXjZcdHvj1A4JUCwhccNdmEQE4fFKpEzqwtd7A7L7NWA8V3XfKvj8bLzi6U8nRvC6fymYsm6qe3vmLh+hr+ssJ53MauCgQm4WfwbQwUnbVK8WcZYgSnpylgcsk61jKwdIhCi5cycEyHy1f8GGOHmVSS2UPZoyrZS7cjVUhyHPrbCyLBAfSMYth3U+TFk/PP3EYJA0vqyPQKSCwOgqB1ZkgkHEYnwcAzwV+9+vJsLVPl2J7xRRbOzrH9s4ux76ax0qEePdQkl0fFeLrMwnxx8v65w3xbnUAegUAHo4C4OFMADhtji0AUMwZV8WcgY9NGVdnlzIq7uuqZIyeJOxVgbD0KMLSMyHsaTNGrwIAnUMAjI8CYHxmAJyoLu48j8DekUWJythN5S87z4Px+Ggk996hw5HSBx/PJ8Bbtkkus83pv/5chsl/fgtXLOLe/r+8R/9G3/K/3f56+ft32+uOuJYCf6PfLlCb/9q+kDPgifyZgFLl0QxOST8vvqa37Bf5bJeuxV80YgBmsjv9FyfYWMnohJ+m0QfPFcn118sL1Pn96cMmzRREtysx7mCdkDm+26vGuG7vczCu2yvHuG6Ocb1yjONDl2Bc96VC/0tlXPcC9Q4xTkuPN61jNp/9r2fzqX6yveegWEeqx9aRg7OrI1/NX89YPfx66FX7dPwaPXG2cTTBRmdHsFfzWIlCeSiXzG5hyXSOKpSdMyuUT1MnD6sDMCrWLEcB4J4JAKc926gCwOhQ0ciOAoCdCQCnjYBRBQD6EoDLAgCTowCYnBkAJ9qr96sjMCggMD0KgemZIHDaHFQFgMGho5LZUQDMzgSAE4fA4OXKke98yd5u+7LT7vba/UF7OGpvt89ZXbndYsvfL+6l5fCVwOBfS3ydIv7gtpl/7frgvlnsiXHd0k2smwbRiW3aTUMGlF5vmqamqU2smcQyNCtfpR59WnMw62SHFv1BtdOa/uBznNb0B+VOa/q505pBudMaPnSJ05r+S3vjL/W0pn+BBodOa/R0i2RU4tzhajuVH46qcW44+hycG47KcW6Y49yoHOf40CU4N3xpu/ylcm54gUaHOCdXs+L54JPLiroH0fuNF84ReXs7E18jX8OqN0M0Yoj9uaQ+SkJYCGFdA6D4ihhMRR9YEO4EwgCeBCHIRfV0/Smx/KgnxakEIOTppUetW6Ztq6qpmaph23ZTLj1mHRadptY0sG6ZmMCSdGjtaeS/7yz+9yD977l3/wBQSwcIlGPo8VsJAADaNwAAUEsBAhQAFAAIAAgAlXRWQyXplcNkBgAAXwYAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACACVdFZDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAACoBgAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAJV0VkOUY+jxWwkAANo3AAAMAAAAAAAAAAAAAAAAAAYHAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAmxAAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
| + | Use the following Geogebra applet to understand proportion |
− | x = 15 cms
| |
| | | |
− | <math>\frac{3}{4}</math>
| + | <ggb_applet width="800" height="400" version="4.4" ggbBase64="UEsDBBQACAgIALuGTkQAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwHgDx/wiVBORw0KGgoAAAANSUhEUgAAAMgAAABRCAYAAACXMekVAAAPp0lEQVR42u1d6VMU1xb3v0nyPVXvQ8yXvMS8D+8lVUnULFVJxaSymFVTJhp9wR1RFqMRVJ4rggoiiOAAjkKUCCIluAAKIgRFI0bALT4ry3nzu3mnc+ba0zMjID0zZ6p65p655/b53dt9+57f3XrSwMAA3blzh0ZGRqinp4fa29tNGMfly5fpxo0bTryUcbCMOPxeu3bNHIgbHBx0/oOMMMuszzJ02SbLbBPy1atXo2KQMtuEPtLaGCRmiYlxRMPAMsLxYGB9yLFgsLF6YYAMu4xB5jsSBinDbiwY+GCbXhig5ybHgoFx2BikzDYR5uslMTBmLwxSljY5fhK+5Kerq8sJ379/PyzOS45HdzRp/WhHMSVv3iehpkSqIPfu3QuL85Lj0R1NWj/aiUW3v7/ftM6//vor3b171/ymWjn56XrEmnYSmhdcrJs3b5qL2NzcbGoRFNHU4JcPyLi4Mp7loaEhun37tpERxzIOxKMpQxzLiGcZcfhPymxTxkfDgMNNjoZBYo4FA+Tr168/gAHhSBgaGxuprKyMdu3aRfn5+bRnzx5zHi8MkBmHbRM6UuZ4iYHziQNxLEOHZdaXMjDwOW0MsMvxEgMOGwNk4OB46EvZCwNfr2gYpBwNA2N2w+SGAYe2IIpJ8+7VgmgFiU+3t7eX6urqqKamxvzaYS952rRpFAgEtIJoBdEL4iZv27bNaf61giQgBwkGg8pBxomDRPL/lYP4nIPAcKQWBInlx0uOR3c0af1oJxUw/fwzETsbqZR3HQdRTDGlbWoC/9JxEOUgiumBuDlzcpSDgIO0tLQoB1EOEubfH6sopil/n68cRDmIYuLP9SuX6UB+Fu3N/jedqTtAe9csSdnroRxEMTlyW12A9q1bRpV5GTR8qYfuDg6Yo2ztspS9HqYFYRerr68vzMXiZowPbv5lPMuoaNLFYpmb9Vu3boW5N4hnGXHSxYIs3RuOj4ZBuk1SjoZBYo4FA2RwNxsDN9NeGKCDtNyMe2GAzDhsm9CRMsdLDNLFYps2hpGhG7R//UravXI+NQdKaejSRbre121+B3u7zG/J6kVh7gww2hjYnZEYeCqNdGekLMvBTUbe3cpBYpByNAyM2Q2TGwbjYsH/itSCQFF+vOR4dEeT1o92EhFT29EgVaxbTvtz001rgcrALYYM49izenHKXg/lIKmE6Y8/6Gjpdtq3dik1hH5lJfj5xwuuYRwpzUG0mzf5Mf3Ud8Hc5OVrFlN/W7O56eE6yUogZTvOriAp1c0rOUhbW5tykCTiIMGi/9DeEH84uO07+qnnnHGdRgb6TAVgGWH8J2XlIMpBkhbT7eEbFMjPppLMBU5r4cYrvGTlIKIF0QqSHJjaj9VTSc4iqs7PfIB0awUZRQXRcZDExXT71k0Kbs+lfd8to5M1ZcZV4ptahuOV7biUHgfBLg7MQTo6OsI4iJxuwbL0/6XM/iL70iyz7w3fTvr/kg+wHytl6f9LX9sLg5xOIuVoGCTmWDDYfi3blFMkImGQ03CkTTcMzFdsm5e6Ow1xLslKoyvnTzt84Up3h8MpBrraHc6BA3GSg7DM+lK+dvF8OAfJWRjm7zMfsP15xij9f56iw9dXyrIc3GTJB2Q5SAxSjoaBMbthcsOgU00SDFNw5yYz0l23I8+1O9arqzYeWbt5lYMkDKbezrO0Py+DykM3aWdj3UPzCOUgykGSioOc+r6WKtalU7Bg3ZjwCOUgD8lBdC6Wf8ZBbo4M077clbQnJ82ZFyX5AMYqmEPADZIyx9ucgjmIjoM85DiIcpCJx9R1spEq8lZQZW66ubHHglcoB1EOkvA+79G9BVSSHWotKnePOa9QDjJGHER281ZXV2s37zh3817qPkfF2QupOHMBdZ84alwoPLFxsEuFMLs37DZxN650saSs3bzj1M2rJP3R6B4t22FId13Rhocm00rSJ4ikKwcZH907I0MU2JRj3Cg5L+pR8ArlIMpBfOvzthwOUEXuipjmRY0Xr1AOMsYc5MyZM8YXUw7ycBxkeOgGBTavMdPLj5QWmKcw+/+SD9j+v3IQn3MQXTA1Ot1rP14MuSBLqSrUYly/2Bl1MVK0xUkToasLpnTz6ph08Tq67u5u+v3336Pq1u3eYtZ01xWuH9ObUSuIzyqIcpC/Pjt37qRDhw45TbOty6Qba7rlvKix9PeVg/iUgxw7dkw5SAQOcry6nIqz06gqL8OZkiH9f/j7zCHY/1cOouMgST0OgsVI1ZtWm8VI2F3wUY056DiIz8ZBlIOEyzwvqjxEvOXugo/K31cO4jMOwptXc1OUqptXN1btoaL0uWa/KLgWcFFwo7CrAVm6M5fOnXHkHztOhblYLLN7A1m6N0jL7gtcG+lisczxjMO2CR0pc7zEIF0stumGQcYzBuli7c5K082rU3EkfaDvopkwWLVhJQ10tvli1FpH0n02kp6KHKS9sZ4OFW4MW4zkF39fOYhykAnxL+//9x7VFqynhr07qPOHoG/9feUgPuUg4B7JyEFONTVQYMta2hd6Cva2tzr+PXdtRvL/lYMoB0laDoLWoqG8iA7tyAu1GAUJ5e8rB1EOMm7+5fDgTyHSXUjFGfMM6U5Ef185iM84SDJUkJaD+80rw+zFSFpBtIKMuoIwB8EkvUTiIBjpPrB5De3Pz6G2w5Vh/n4k/5+ngCgHUQ6StBzk+7Ii88qwoyVbzUh3svn7ykGUg8Sd1syL2rLGdNGes3YXTDZ3Rl0sn7lYcuM428Wa6I3jzredoNLQ06siN8PZpJldEDkrVbozbjK7FnKmLGRskCbdG5YRzzNa2dWAbG/SZmOQM2MjYbA3bfPCoBvH6Qt0XOPq9xYa0t1aWzGu6xz8uPZC14P4bD2IXyrI4KU+qtyw6s/p5UdqUvZm1Ariswoy0Ryk6UAplYd83PqiDervKwfxHwfhFYXYuPpRrSgE6Q5szaXSkG975kit40uz782+tJvvLVfr2XK01Xw4j+QgXqv5vDDoikJ9gc64dK11tx43XbRVoaPnZJN2qWo3r/+7ecebg2BeVH3xFvOCyRNVxervKwdRDoLP5Z4uqkRr8f/FSOrvKwdJ6HGQK1eujMk4SF3xVtMk12xZY55E0cYg5BhDLGMQOg6i4yAJ9wIdzKKt2JBldi/vP9Ws/r5ykOThIKOpIM0HK40bFdy2zvPNSHozagVJ2AoS75LbOzeHzXpu7F7eGqzw9bLTRFzeqktufbbkNta5WJgXVZKzONRiZLrOi4LfCp9V+tLKQZSDJCUHwRoRbm5+KC+i/XkrqLG8MOHcDHWxxs7FQu/nb7+l8DgI9ublCrK7sIB2ZC76881Ip5oTdixAx0HGbhzkwgWiX35JwXGQ9vZ2UylwLFmyhP4x+W+0asY/afPCWZQ7b6b55cNLjkd3NGn9aCfZMU3/1xznHsFx4sQJ13C8sh90vdJeCD0VJvX39zu1BX7esmV/DQrZ7peXHI/uaNL60U6yY9q6tTwl846way8Wu1v4gLzzB4OJ8oMJjvIjdbHGPaxLOET+vZo5aROvg7PPy/EISzsIS1yQGZebrsQFmXEhLDFJmyxLXLDJ8Qjb5SQxIcyY3HQlJsiyrCAzLmmTZYkJNjgeYWkHssQEmTG56UpMkBkTwrKcpE2WJaZHce3s6xft2uE8HI+wfd9KTJ5zsfQVbIop1fPuTHfHa8f4SeGXJbfcjcfx0TDI3VLsKdVeGCTmWDDYL/Vhm3LKdCQMPHWbuxK9MNjdm9Km7GKV8fa0bbtL1Q2D3b0pu1C9ulhTopvXa7KiPrEUU8q3IF4j6fqedMWU6nkfMw7yzjvv0PLly2np0qX03nvv0fDwMDU0NJg4dCWjRwAuHNKAIHHaOXPm0PHjx+nVV1+l8+fPm/+RVpKs3t5ecy7ozJo1yzSJ27dvp48++ihMt7Ozk86ePeuct7W1NQwHN6P19fUmfPjwYScdMOItt+jVg3z69Gmj09PT4+DF/yBxCOMc/AEm2OI8wCbnk+2C+AEHcF29etUVP3QYE9JAH7/vvvsurVixIqzMYO/kyZMmDdwE4LTzynpcLpDt/HCZAxOILOKnTp0ahp/LHx/Ec95lOfE1+eCDD5w4lJXMH8q+trY2LG+sh/SbNm0yZSLvGVwP+1rhJu7o6HDSmgmzIu/Az/niMpX5aWtrM+lgA2UHXVkuXG74nYSCYQ4Cow+75Pa1116jTz/9lD7//HN64403DEhc1G+++YbefPNNys7OpurqanrllVfo+eefp6ysLJP22WefpaqqKpo2bZoBNHfuXHr55ZeNzurVq01hQH7//ffNOV966SVzpKWlmYuB8JQpU+jbb78158jLyzPnfe655+jgwYPGHnAsWrTI+JfQwdts8Yv/cR6cFzf5W2+9RU8++aRJg/Pg/Ph96qmnqLCw0KTBRUQ8cMMmyuGZZ54xecN5vvrqK5MPhJEH6KCckIbz8OKLL9KCBQvM+fE/8Ofk5Jg4VAbgh61Vq1YZPZwnEAg4vjPyBnvQmTdvHr399tu0efNmcy6kQV5hExhRBlwuiF+/fj1NnjyZCgoKjPzll1/S/PnzH8AELMCFa4Dyx0MP1yI3N9eUR3FxsdGZPXu2SQ8dpAd+lAlsbty40VwfLgf8B7v4zczMNOlgC2WK9MgL7CD9jBkzjE5NTQ1Nnz6d0tPTaeHChUYflQx6sA8bKC+EoY/7DTbz8/OdvOBcsAkcKGfEo7xwXwJXRUWFKZ+nn37a4EO5wQbOOWYcBJUCNRE1E4YB7pNPPjFPFdTgxx9/3Oh99tlntHbtWueJ8PXXX5vKg6fvkSNHzBPk448/Njr8RNi1a5fJ3AsvvGBAf/jhh+bcti7OwZhwXvwvcSAOYVRO/D9z5kzzP9KhkuJCPfbYY0ZGS4jC5sqDgsP/nAdgZny4yWCL84Bzcz75SVlaWurkARfXDT90cPPjqYk46AATbjomjjJvuKhffPGFwYwnpZ1X1uNywa+dHy5zpHv99ddNGDoSP5c/cCEOuvgP6YPBoEnD14RbEC4rmT/EZ2RkODiRN9ZDelwPbkFaWlqcewb/8bVCGOWBc3BafGTe5cOZyxSVhHEgHh/cg0888YQpG1kustyUg7jIqByp5ofjAYFK0dTU5Iu8o4VCazfhHIQ3r4aLBd9Muli8CTAfkKWLJWXuHuPuSpbdNqu2dzlh10HKsotVdtN5YeDNh205GgaJORYM9k4ZbFNugBwJA7umcreOSBhkV7vX7hwy3t6E2e198TYGe6NouYOIjYG7dt12CLEx8EbSsktVyl4Y7B1GImGQcjQMbhtus+yGIeqKwlR+T7pi0rxH7ebVfnfFlPLjIF4kXfvdFVOq5/1//xxMzO204b8AAAAASUVORK5CYIJQSwcIOzSajOUPAADgDwAAUEsDBBQACAgIALuGTkQAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAC7hk5EAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVa62/bOBL/3P0rCH04dA+xTUqkJPecLpIUiyvQ7haX3uFwXwpKom1uZEkV6VfRP/6GpCTLdurmtY8AdUaihjOc+c3Lcic/bRY5WolaybI498gQe0gUaZnJYnbuLfV0EHs/vf5hMhPlTCQ1R9OyXnB97tEh9Xb74G5IsNkss3PPJ2MiQkEH04SLAaViPIh9kQ3GPIvTBAeYBYmH0EbJV0X5C18IVfFUXKdzseDvypRrK3OudfVqNFqv18NW+7CsZ6PZLBluVOYhOHmhzr3m4hWI29u0Diy7jzEZ/ff9Oyd+IAuleZEKDxmrlvL1Dy8ma1lk5RqtZabn4IMgDD00F3I2BzsjH4waGa4KjK1EquVKKNjbu7VG60XlWTZemOcv3BXKO3s8lMmVzER97uEhiWNCMWNhEMbjEFPQWNZSFLphJo3SUStuspJi7eSaK6sSENBlmSfciERfvyIf+xidGUIc8YGEoXuE3RoOHPEdoY4wx0PddupYqeOhjocGALhUMsnFuTfluQIfymJaA37dvdLbXNjzNAs788kZ2KTkF2AOMPjUOR3WMT4znxA+FDfO7hlJelp1vTyp1D3v6Ww1Aqb07ir9RxkatEp9Fh3r9NntOuMelsRg9RURA5IlATLwEAuTIbS5Dd1tZAnBjpDmYWz+jM0NREAY24vHIdh5k/XwA3vsP/s5Ru+USgfXE2sMTqF3qPHbAXN3hSay/lgTKR5HT24kDYIzEtBvKo3wrdXGUdLQP8T3k1FbCyfNgZCaG96mPGixUOaIwRgxG/8EMUioMIIyxhAZA4lMYvmIMEQZ3JIYhYZGKDC5RFGAYmT4SIBs9WMx/KGRFRYiBsLMauQyDgUUsQARWzQpAj8gW3jBK34AHIwhBpuMeuIbEUGIaAh3QYwonNHU3MgkfAAb4R7U+yggKDCbSYR8SF8jj9A2k5EPIn0UYhRaz0PZhpLtyjXwxygw1kDqVaWSnXfnIq9aJ1k/yqJa6j3fpYusvdRl1WFoubMyvbnsfN08EVzpPhs0rF1fdA1sr22+mOQ8ETlMF9cmEBBa8dyUTKthWhYatUHgu7VZzau5TNW10Bp2KfQbX/F3XIvNz8CtWt1WtW3nE7FMc5lJXvwHosSIMAJRr7vTXXdnjDk1aVnW2fVWQeygzf9EXUL5joc0CsMxGUeUBFE49tDWPaGMDf3Yj8OARRGLQ0hGlfLclvyhzxilfhAzzCLzZHv7o4jGTrNYdabxjVCt+2e1zPrXb9VlmWedq6tSFvqKV3pZ20kNmk5tTLooZrmwrrWQw8yT3iTl5rrpgk7Wx20Fd9jpT2ZXZV7WqDZHZMDQ0MRRy2MO1nFhy4MtB25Bkln3nIx9y2Fp4qjlAtTd0RpDSWslwa0aqWytAeH9qLQhYwaoZSH1u/ZGy/RmZ6nh/2W5SCDauggGhjfSjXtutN3XQn4/LZPRQRRObkRdiNyFWgFwL8ulcsHfBfCLyVKJD1zPL4rsX2IGafuBm9KpQZtjtRpdMopULmCjW28czA34/4bTu9VMzGrR8PPcDtDO/fYp7gf+0bIV9XNdLt4Wq48QWQdHnYxaeyYqrWVl4hclUMtvxC5GM6k4dIKsvw+MV2BFaooSuE4bv74vV8DNl3pe1nZMhuwGaifzsr5RcyH0R7HRiCfA6fiRngukcjNOK4gykRscrQaRiwXM0UjbIC+WC1HLtEPX6rLjNM+XjclBGxkGXVQmv0G1OgiKnePh8TcyAfG8mnM73Dfxzrei3vOqlfa+zPZ97cxAC+nK9IJvbD43BYuab1Ubk0bDEIZwFtIogHIUmeFyawasIYXWjUk89scMvlp5aCo3PRTAqfILhNx+/OxyUUN1vYHvGMrOvbopDfbinzLLhD1UExMQchY4KJOVZYfKLlwmdRsrMNuWpFYZ5IKDxICzqWpQZWQ0njU9ZAPCXr6EnvZ3ZPD5saWuo5wG9AhNHwotvidWp4+YdUck4fghZ8wOz0iYT574kNPmkOpzrV9maIDudrTpUTKEjzpYWi4WvMhQYUe+t4WpXZBO3m7c4Pjc21xADQYx5Nzb2kuncKlbhgsnt5F2ZIXtfp0NF95DkteMATNHEkc6q/D98teWUGVy1L4BgaQc2IsvvaZjT2y68N7A41YPiu9pnC/bYJyeoZddxvzo7XvmGPh9l10+yGXEd/OBpc188AResyFnaxn73dx21XMbvq+3rv6S3nqqGNtP2WsxM+sHCXvhkvXyKFH56URVjbTWU/xBnvxW9Tntw1+nUyW0cdkgCFxa+uxWH/uHPh64SNy23v7S1/aAzik+F26LcpOkXFS5TKXu3JmbltlVS4jb49nwRojKDO6/Fh9rXijzHnZ/KDydAG+epG68+UtmwpPVjbukwpVLhTdHqZDcLxWS77iyB/3jc+FOsd4WFEafV7Dfo4BdHaGW3g+19M9B7Sj2B/h5F6h9zD6U+XZWFgeYXTrMDHT+bdBVsIs4nvQTcVyJvQig03wi35shnc4WOSftoQ68d0QQFtiYYORxXx/3qv7p0P1EHha8J456z/jly43MJa+3R8Gzi+yuHA260B48r9j+Tt1/HjA89wLznTn0mYDw7Hvz8SCqxUaTZhj92+dlqf9x8D4P6RJB0a543azCokLlFCG9LpGupX03qZBpH7VIwVdoWy5rgFGJemVfUCkn+Jb3gUa7t3+UP7Oh21884NhyuvsBFqbW9wCkAbz7KaTFq+02mtf6g5lmkR2Eh3FIaBSO/RBjwqIgbr7uDJnvj3FEYBlHfuTH/Sm5D9Oo/17W/pTS/I+L1/8HUEsHCJPwqXEwCAAAISIAAFBLAQIUABQACAgIALuGTkQ7NJqM5Q8AAOAPAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAICAgAu4ZOREXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAKRAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAC7hk5Ek/CpcTAIAAAhIgAADAAAAAAAAAAAAAAAAACHEAAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAAPEYAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> |
− | | |
− | visualise and understand with geogebra applet
| |
− | <ggb_applet width="800" height="600" version="4.4" ggbBase64="UEsDBBQACAgIAB2FTkQAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwHgDx/wiVBORw0KGgoAAAANSUhEUgAAAMgAAABRCAYAAACXMekVAAAPp0lEQVR42u1d6VMU1xb3v0nyPVXvQ8yXvMS8D+8lVUnULFVJxaSymFVTJhp9wR1RFqMRVJ4rggoiiOAAjkKUCCIluAAKIgRFI0bALT4ry3nzu3mnc+ba0zMjID0zZ6p65p655/b53dt9+57f3XrSwMAA3blzh0ZGRqinp4fa29tNGMfly5fpxo0bTryUcbCMOPxeu3bNHIgbHBx0/oOMMMuszzJ02SbLbBPy1atXo2KQMtuEPtLaGCRmiYlxRMPAMsLxYGB9yLFgsLF6YYAMu4xB5jsSBinDbiwY+GCbXhig5ybHgoFx2BikzDYR5uslMTBmLwxSljY5fhK+5Kerq8sJ379/PyzOS45HdzRp/WhHMSVv3iehpkSqIPfu3QuL85Lj0R1NWj/aiUW3v7/ftM6//vor3b171/ymWjn56XrEmnYSmhdcrJs3b5qL2NzcbGoRFNHU4JcPyLi4Mp7loaEhun37tpERxzIOxKMpQxzLiGcZcfhPymxTxkfDgMNNjoZBYo4FA+Tr168/gAHhSBgaGxuprKyMdu3aRfn5+bRnzx5zHi8MkBmHbRM6UuZ4iYHziQNxLEOHZdaXMjDwOW0MsMvxEgMOGwNk4OB46EvZCwNfr2gYpBwNA2N2w+SGAYe2IIpJ8+7VgmgFiU+3t7eX6urqqKamxvzaYS952rRpFAgEtIJoBdEL4iZv27bNaf61giQgBwkGg8pBxomDRPL/lYP4nIPAcKQWBInlx0uOR3c0af1oJxUw/fwzETsbqZR3HQdRTDGlbWoC/9JxEOUgiumBuDlzcpSDgIO0tLQoB1EOEubfH6sopil/n68cRDmIYuLP9SuX6UB+Fu3N/jedqTtAe9csSdnroRxEMTlyW12A9q1bRpV5GTR8qYfuDg6Yo2ztspS9HqYFYRerr68vzMXiZowPbv5lPMuoaNLFYpmb9Vu3boW5N4hnGXHSxYIs3RuOj4ZBuk1SjoZBYo4FA2RwNxsDN9NeGKCDtNyMe2GAzDhsm9CRMsdLDNLFYps2hpGhG7R//UravXI+NQdKaejSRbre121+B3u7zG/J6kVh7gww2hjYnZEYeCqNdGekLMvBTUbe3cpBYpByNAyM2Q2TGwbjYsH/itSCQFF+vOR4dEeT1o92EhFT29EgVaxbTvtz001rgcrALYYM49izenHKXg/lIKmE6Y8/6Gjpdtq3dik1hH5lJfj5xwuuYRwpzUG0mzf5Mf3Ud8Hc5OVrFlN/W7O56eE6yUogZTvOriAp1c0rOUhbW5tykCTiIMGi/9DeEH84uO07+qnnnHGdRgb6TAVgGWH8J2XlIMpBkhbT7eEbFMjPppLMBU5r4cYrvGTlIKIF0QqSHJjaj9VTSc4iqs7PfIB0awUZRQXRcZDExXT71k0Kbs+lfd8to5M1ZcZV4ptahuOV7biUHgfBLg7MQTo6OsI4iJxuwbL0/6XM/iL70iyz7w3fTvr/kg+wHytl6f9LX9sLg5xOIuVoGCTmWDDYfi3blFMkImGQ03CkTTcMzFdsm5e6Ow1xLslKoyvnTzt84Up3h8MpBrraHc6BA3GSg7DM+lK+dvF8OAfJWRjm7zMfsP15xij9f56iw9dXyrIc3GTJB2Q5SAxSjoaBMbthcsOgU00SDFNw5yYz0l23I8+1O9arqzYeWbt5lYMkDKbezrO0Py+DykM3aWdj3UPzCOUgykGSioOc+r6WKtalU7Bg3ZjwCOUgD8lBdC6Wf8ZBbo4M077clbQnJ82ZFyX5AMYqmEPADZIyx9ucgjmIjoM85DiIcpCJx9R1spEq8lZQZW66ubHHglcoB1EOkvA+79G9BVSSHWotKnePOa9QDjJGHER281ZXV2s37zh3817qPkfF2QupOHMBdZ84alwoPLFxsEuFMLs37DZxN650saSs3bzj1M2rJP3R6B4t22FId13Rhocm00rSJ4ikKwcZH907I0MU2JRj3Cg5L+pR8ArlIMpBfOvzthwOUEXuipjmRY0Xr1AOMsYc5MyZM8YXUw7ycBxkeOgGBTavMdPLj5QWmKcw+/+SD9j+v3IQn3MQXTA1Ot1rP14MuSBLqSrUYly/2Bl1MVK0xUkToasLpnTz6ph08Tq67u5u+v3336Pq1u3eYtZ01xWuH9ObUSuIzyqIcpC/Pjt37qRDhw45TbOty6Qba7rlvKix9PeVg/iUgxw7dkw5SAQOcry6nIqz06gqL8OZkiH9f/j7zCHY/1cOouMgST0OgsVI1ZtWm8VI2F3wUY056DiIz8ZBlIOEyzwvqjxEvOXugo/K31cO4jMOwptXc1OUqptXN1btoaL0uWa/KLgWcFFwo7CrAVm6M5fOnXHkHztOhblYLLN7A1m6N0jL7gtcG+lisczxjMO2CR0pc7zEIF0stumGQcYzBuli7c5K082rU3EkfaDvopkwWLVhJQ10tvli1FpH0n02kp6KHKS9sZ4OFW4MW4zkF39fOYhykAnxL+//9x7VFqynhr07qPOHoG/9feUgPuUg4B7JyEFONTVQYMta2hd6Cva2tzr+PXdtRvL/lYMoB0laDoLWoqG8iA7tyAu1GAUJ5e8rB1EOMm7+5fDgTyHSXUjFGfMM6U5Ef185iM84SDJUkJaD+80rw+zFSFpBtIKMuoIwB8EkvUTiIBjpPrB5De3Pz6G2w5Vh/n4k/5+ngCgHUQ6StBzk+7Ii88qwoyVbzUh3svn7ykGUg8Sd1syL2rLGdNGes3YXTDZ3Rl0sn7lYcuM428Wa6I3jzredoNLQ06siN8PZpJldEDkrVbozbjK7FnKmLGRskCbdG5YRzzNa2dWAbG/SZmOQM2MjYbA3bfPCoBvH6Qt0XOPq9xYa0t1aWzGu6xz8uPZC14P4bD2IXyrI4KU+qtyw6s/p5UdqUvZm1Ariswoy0Ryk6UAplYd83PqiDervKwfxHwfhFYXYuPpRrSgE6Q5szaXSkG975kit40uz782+tJvvLVfr2XK01Xw4j+QgXqv5vDDoikJ9gc64dK11tx43XbRVoaPnZJN2qWo3r/+7ecebg2BeVH3xFvOCyRNVxervKwdRDoLP5Z4uqkRr8f/FSOrvKwdJ6HGQK1eujMk4SF3xVtMk12xZY55E0cYg5BhDLGMQOg6i4yAJ9wIdzKKt2JBldi/vP9Ws/r5ykOThIKOpIM0HK40bFdy2zvPNSHozagVJ2AoS75LbOzeHzXpu7F7eGqzw9bLTRFzeqktufbbkNta5WJgXVZKzONRiZLrOi4LfCp9V+tLKQZSDJCUHwRoRbm5+KC+i/XkrqLG8MOHcDHWxxs7FQu/nb7+l8DgI9ublCrK7sIB2ZC76881Ip5oTdixAx0HGbhzkwgWiX35JwXGQ9vZ2UylwLFmyhP4x+W+0asY/afPCWZQ7b6b55cNLjkd3NGn9aCfZMU3/1xznHsFx4sQJ13C8sh90vdJeCD0VJvX39zu1BX7esmV/DQrZ7peXHI/uaNL60U6yY9q6tTwl846way8Wu1v4gLzzB4OJ8oMJjvIjdbHGPaxLOET+vZo5aROvg7PPy/EISzsIS1yQGZebrsQFmXEhLDFJmyxLXLDJ8Qjb5SQxIcyY3HQlJsiyrCAzLmmTZYkJNjgeYWkHssQEmTG56UpMkBkTwrKcpE2WJaZHce3s6xft2uE8HI+wfd9KTJ5zsfQVbIop1fPuTHfHa8f4SeGXJbfcjcfx0TDI3VLsKdVeGCTmWDDYL/Vhm3LKdCQMPHWbuxK9MNjdm9Km7GKV8fa0bbtL1Q2D3b0pu1C9ulhTopvXa7KiPrEUU8q3IF4j6fqedMWU6nkfMw7yzjvv0PLly2np0qX03nvv0fDwMDU0NJg4dCWjRwAuHNKAIHHaOXPm0PHjx+nVV1+l8+fPm/+RVpKs3t5ecy7ozJo1yzSJ27dvp48++ihMt7Ozk86ePeuct7W1NQwHN6P19fUmfPjwYScdMOItt+jVg3z69Gmj09PT4+DF/yBxCOMc/AEm2OI8wCbnk+2C+AEHcF29etUVP3QYE9JAH7/vvvsurVixIqzMYO/kyZMmDdwE4LTzynpcLpDt/HCZAxOILOKnTp0ahp/LHx/Ec95lOfE1+eCDD5w4lJXMH8q+trY2LG+sh/SbNm0yZSLvGVwP+1rhJu7o6HDSmgmzIu/Az/niMpX5aWtrM+lgA2UHXVkuXG74nYSCYQ4Cow+75Pa1116jTz/9lD7//HN64403DEhc1G+++YbefPNNys7OpurqanrllVfo+eefp6ysLJP22WefpaqqKpo2bZoBNHfuXHr55ZeNzurVq01hQH7//ffNOV966SVzpKWlmYuB8JQpU+jbb78158jLyzPnfe655+jgwYPGHnAsWrTI+JfQwdts8Yv/cR6cFzf5W2+9RU8++aRJg/Pg/Ph96qmnqLCw0KTBRUQ8cMMmyuGZZ54xecN5vvrqK5MPhJEH6KCckIbz8OKLL9KCBQvM+fE/8Ofk5Jg4VAbgh61Vq1YZPZwnEAg4vjPyBnvQmTdvHr399tu0efNmcy6kQV5hExhRBlwuiF+/fj1NnjyZCgoKjPzll1/S/PnzH8AELMCFa4Dyx0MP1yI3N9eUR3FxsdGZPXu2SQ8dpAd+lAlsbty40VwfLgf8B7v4zczMNOlgC2WK9MgL7CD9jBkzjE5NTQ1Nnz6d0tPTaeHChUYflQx6sA8bKC+EoY/7DTbz8/OdvOBcsAkcKGfEo7xwXwJXRUWFKZ+nn37a4EO5wQbOOWYcBJUCNRE1E4YB7pNPPjFPFdTgxx9/3Oh99tlntHbtWueJ8PXXX5vKg6fvkSNHzBPk448/Njr8RNi1a5fJ3AsvvGBAf/jhh+bcti7OwZhwXvwvcSAOYVRO/D9z5kzzP9KhkuJCPfbYY0ZGS4jC5sqDgsP/nAdgZny4yWCL84Bzcz75SVlaWurkARfXDT90cPPjqYk46AATbjomjjJvuKhffPGFwYwnpZ1X1uNywa+dHy5zpHv99ddNGDoSP5c/cCEOuvgP6YPBoEnD14RbEC4rmT/EZ2RkODiRN9ZDelwPbkFaWlqcewb/8bVCGOWBc3BafGTe5cOZyxSVhHEgHh/cg0888YQpG1kustyUg7jIqByp5ofjAYFK0dTU5Iu8o4VCazfhHIQ3r4aLBd9Muli8CTAfkKWLJWXuHuPuSpbdNqu2dzlh10HKsotVdtN5YeDNh205GgaJORYM9k4ZbFNugBwJA7umcreOSBhkV7vX7hwy3t6E2e198TYGe6NouYOIjYG7dt12CLEx8EbSsktVyl4Y7B1GImGQcjQMbhtus+yGIeqKwlR+T7pi0rxH7ebVfnfFlPLjIF4kXfvdFVOq5/1//xxMzO204b8AAAAASUVORK5CYIJQSwcIOzSajOUPAADgDwAAUEsDBBQACAgIAB2FTkQAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAAdhU5EAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVa62/bOBL/3P0rCH04dA+xTUqkJPecLpIUiyvQ7haX3uFwXwpKom1uZEkV6VfRP/6GpCTLdurmtY8AdUaihjOc+c3Lcic/bRY5WolaybI498gQe0gUaZnJYnbuLfV0EHs/vf5hMhPlTCQ1R9OyXnB97tEh9Xb74G5IsNkss3PPJ2MiQkEH04SLAaViPIh9kQ3GPIvTBAeYBYmH0EbJV0X5C18IVfFUXKdzseDvypRrK3OudfVqNFqv18NW+7CsZ6PZLBluVOYhOHmhzr3m4hWI29u0Diy7jzEZ/ff9Oyd+IAuleZEKDxmrlvL1Dy8ma1lk5RqtZabn4IMgDD00F3I2BzsjH4waGa4KjK1EquVKKNjbu7VG60XlWTZemOcv3BXKO3s8lMmVzER97uEhiWNCMWNhEMbjEFPQWNZSFLphJo3SUStuspJi7eSaK6sSENBlmSfciERfvyIf+xidGUIc8YGEoXuE3RoOHPEdoY4wx0PddupYqeOhjocGALhUMsnFuTfluQIfymJaA37dvdLbXNjzNAs788kZ2KTkF2AOMPjUOR3WMT4znxA+FDfO7hlJelp1vTyp1D3v6Ww1Aqb07ir9RxkatEp9Fh3r9NntOuMelsRg9RURA5IlATLwEAuTIbS5Dd1tZAnBjpDmYWz+jM0NREAY24vHIdh5k/XwA3vsP/s5Ru+USgfXE2sMTqF3qPHbAXN3hSay/lgTKR5HT24kDYIzEtBvKo3wrdXGUdLQP8T3k1FbCyfNgZCaG96mPGixUOaIwRgxG/8EMUioMIIyxhAZA4lMYvmIMEQZ3JIYhYZGKDC5RFGAYmT4SIBs9WMx/KGRFRYiBsLMauQyDgUUsQARWzQpAj8gW3jBK34AHIwhBpuMeuIbEUGIaAh3QYwonNHU3MgkfAAb4R7U+yggKDCbSYR8SF8jj9A2k5EPIn0UYhRaz0PZhpLtyjXwxygw1kDqVaWSnXfnIq9aJ1k/yqJa6j3fpYusvdRl1WFoubMyvbnsfN08EVzpPhs0rF1fdA1sr22+mOQ8ETlMF9cmEBBa8dyUTKthWhYatUHgu7VZzau5TNW10Bp2KfQbX/F3XIvNz8CtWt1WtW3nE7FMc5lJXvwHosSIMAJRr7vTXXdnjDk1aVnW2fVWQeygzf9EXUL5joc0CsMxGUeUBFE49tDWPaGMDf3Yj8OARRGLQ0hGlfLclvyhzxilfhAzzCLzZHv7o4jGTrNYdabxjVCt+2e1zPrXb9VlmWedq6tSFvqKV3pZ20kNmk5tTLooZrmwrrWQw8yT3iTl5rrpgk7Wx20Fd9jpT2ZXZV7WqDZHZMDQ0MRRy2MO1nFhy4MtB25Bkln3nIx9y2Fp4qjlAtTd0RpDSWslwa0aqWytAeH9qLQhYwaoZSH1u/ZGy/RmZ6nh/2W5SCDauggGhjfSjXtutN3XQn4/LZPRQRRObkRdiNyFWgFwL8ulcsHfBfCLyVKJD1zPL4rsX2IGafuBm9KpQZtjtRpdMopULmCjW28czA34/4bTu9VMzGrR8PPcDtDO/fYp7gf+0bIV9XNdLt4Wq48QWQdHnYxaeyYqrWVl4hclUMtvxC5GM6k4dIKsvw+MV2BFaooSuE4bv74vV8DNl3pe1nZMhuwGaifzsr5RcyH0R7HRiCfA6fiRngukcjNOK4gykRscrQaRiwXM0UjbIC+WC1HLtEPX6rLjNM+XjclBGxkGXVQmv0G1OgiKnePh8TcyAfG8mnM73Dfxzrei3vOqlfa+zPZ97cxAC+nK9IJvbD43BYuab1Ubk0bDEIZwFtIogHIUmeFyawasIYXWjUk89scMvlp5aCo3PRTAqfILhNx+/OxyUUN1vYHvGMrOvbopDfbinzLLhD1UExMQchY4KJOVZYfKLlwmdRsrMNuWpFYZ5IKDxICzqWpQZWQ0njU9ZAPCXr6EnvZ3ZPD5saWuo5wG9AhNHwotvidWp4+YdUck4fghZ8wOz0iYT574kNPmkOpzrV9maIDudrTpUTKEjzpYWi4WvMhQYUe+t4WpXZBO3m7c4Pjc21xADQYx5Nzb2kuncKlbhgsnt5F2ZIXtfp0NF95DkteMATNHEkc6q/D98teWUGVy1L4BgaQc2IsvvaZjT2y68N7A41YPiu9pnC/bYJyeoZddxvzo7XvmGPh9l10+yGXEd/OBpc188AResyFnaxn73dx21XMbvq+3rv6S3nqqGNtP2WsxM+sHCXvhkvXyKFH56URVjbTWU/xBnvxW9Tntw1+nUyW0cdkgCFxa+uxWH/uHPh64SNy23v7S1/aAzik+F26LcpOkXFS5TKXu3JmbltlVS4jb49nwRojKDO6/Fh9rXijzHnZ/KDydAG+epG68+UtmwpPVjbukwpVLhTdHqZDcLxWS77iyB/3jc+FOsd4WFEafV7Dfo4BdHaGW3g+19M9B7Sj2B/h5F6h9zD6U+XZWFgeYXTrMDHT+bdBVsIs4nvQTcVyJvQig03wi35shnc4WOSftoQ68d0QQFtiYYORxXx/3qv7p0P1EHha8J456z/jly43MJa+3R8Gzi+yuHA260B48r9j+Tt1/HjA89wLznTn0mYDw7Hvz8SCqxUaTZhj92+dlqf9x8D4P6RJB0a543azCokLlFCG9LpGupX03qZBpH7VIwVdoWy5rgFGJemVfUCkn+Jb3gUa7t3+UP7Oh21884NhyuvsBFqbW9wCkAbz7KaTFq+02mtf6g5lmkR2Eh3FIaBSO/RBjwqIgbr7uDJnvj3FEYBlHfuTH/Sm5D9Oo/17W/pTS/I+L1/8HUEsHCJPwqXEwCAAAISIAAFBLAQIUABQACAgIAB2FTkQ7NJqM5Q8AAOAPAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAICAgAHYVOREXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAKRAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAAdhU5Ek/CpcTAIAAAhIgAADAAAAAAAAAAAAAAAAACHEAAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAAPEYAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" /> | |
| | | |
| = Project Ideas = | | = Project Ideas = |
Revision as of 12:35, 23 February 2014
While creating a resource page, please click here for a resource creation checklist.
Concept Map
Error: Mind Map file Ratio .mm
not found
Textbook
To add textbook links, please follow these instructions to:
(Click to create the subpage)
Additional Information
Useful websites
Reference Books
1. Cabinet of mathematical curiosities - Ian Stewart
2. Cabinet of mathematical curiosities - Ian Stewart
Teaching Outlines
Concept #
Learning objectives
Notes for teachers
For Solved Problems Click [1]
[here]
Maths is Fun
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ Geogebra Applets
- Process (How to do the activity)
- Developmental Questions (What discussion questions)
- Evaluation (Questions for assessment of the child)
- Question Corner
- How to make text bold
- How to make text italic
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ Geogebra Applets
- Process (How to do the activity)
- Developmental Questions (What discussion questions)
- Evaluation (Questions for assessment of the child)
- Question Corner
Concept #
Learning objectives
Notes for teachers
These are short notes that the teacher wants to share about the concept, any locally relevant information, specific instructions on what kind of methodology used and common misconceptions/mistakes.
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ Geogebra Applets
- Process (How to do the activity)
- Developmental Questions (What discussion questions)
- Evaluation (Questions for assessment of the child)
- Question Corner
Activity No #
- Estimated Time
- Materials/ Resources needed
- Prerequisites/Instructions, if any
- Multimedia resources
- Website interactives/ links/ Geogebra Applets
- Process (How to do the activity)
- Developmental Questions (What discussion questions)
- Evaluation (Questions for assessment of the child)
- Question Corner
Hints for difficult problems
=Ratio and Proportionality
Exercise 2.4.2
In the adjacent figure, two triangles are similar. Find the length of the missing side
This problem can be solved with the following steps.
- Prerequisites: students should know the concept of similarity and proportionality
*Proportionality : two ratios are equal then four quantities are in proportional
*Similar Triangles : If two triangles are said to be similar 1. if they are equiangular 2. the corresponding side are proportional
- Understanding/ analysing the given problem
- Identifying/ Naming the triangles
- Identifying the sides whose length is not given
- comparing two sides of triangles (visualising that 1st triangle is smaller than 2 nd triagle and viceversa
- should identify the corresponding sides (sides having same allignment)
- Procedure
- find the ratio between the corresponding sides whose length is known
![{\displaystyle 13/39=13*1/13*3=1/3}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/342756dc58bab6658dca53006b0f44b3142fe37a)
- express proportional corresponding sides (using the property of similarity)
AC/DF = AB/DE
13/39 = 5/x
13 : 39 = 5 : x (use the property of proportionality i.e Product of extremes is equal to product of means)
13 * x = 39 * 5
x = 39* 5 /13
Use the following Geogebra applet to understand proportion
Project Ideas
Math Fun
Usage
Create a new page and type {{subst:Math-Content}} to use this template