Line 165:
Line 165:
<math>p^3+q^3</math>
<math>p^3+q^3</math>
[[solution]]
[[solution]]
−
'''Pre requisites''':
−
#Standard form of quadratic equation
−
#Formula to find the sum & product of quadratic equation
−
#Knowledge of using appropriate identity
−
'''Interpretation of the Problem''':
−
#Compare the equation with standard form and identify the values of a,b,c
−
#To find the sum formformof the roots of the quadratic equation using the formula
−
#To find the product of the roots of the equation
−
# Using the identity & rewriting <math>p^3+q^3</math> as <math>(p+q)^3-3pq(p+q)</math>
−
#Substitute the values of m+n & mn in <math>(p+q)^3-3pq(p+q)</math>
−
#Simplification
−
'''Concepts''':
−
#Formula to find the sum and product of the roots of the quadratic equation
−
#Identity <math>(a+b)^3=a^3+b^3+3ab(a+b)</math>
−
'''Algorithm''': <br>
−
Consider the equation <math>2a^2-4a+1=0</math><br>
−
Here a=2,b=-4 & c=1<br>
−
If p & q are the roots of the quadratic equation then<br>
−
<math>p+q={\frac{-b}{a}}={\frac{-(-4)}{2}=2}</math><br>
−
<math>pq={\frac{c}{a}}={\frac{1}{2}}</math><br>
−
Therefore,<br>
−
<math>p^3+q^3=(p+q)^3-3pq(p+q)</math><br> =<math>(2)^3-3[{\frac{1}{2}}](2)</math><br>
−
=8-3<br>=5
=Ex.no.9.11 /problem no.9=
=Ex.no.9.11 /problem no.9=