Changes
From Karnataka Open Educational Resources
1,082 bytes removed
, 11:33, 14 August 2014
Line 165: |
Line 165: |
| <math>p^3+q^3</math> | | <math>p^3+q^3</math> |
| [[solution]] | | [[solution]] |
− | '''Pre requisites''':
| |
− | #Standard form of quadratic equation
| |
− | #Formula to find the sum & product of quadratic equation
| |
− | #Knowledge of using appropriate identity
| |
− | '''Interpretation of the Problem''':
| |
− | #Compare the equation with standard form and identify the values of a,b,c
| |
− | #To find the sum formformof the roots of the quadratic equation using the formula
| |
− | #To find the product of the roots of the equation
| |
− | # Using the identity & rewriting <math>p^3+q^3</math> as <math>(p+q)^3-3pq(p+q)</math>
| |
− | #Substitute the values of m+n & mn in <math>(p+q)^3-3pq(p+q)</math>
| |
− | #Simplification
| |
− | '''Concepts''':
| |
− | #Formula to find the sum and product of the roots of the quadratic equation
| |
− | #Identity <math>(a+b)^3=a^3+b^3+3ab(a+b)</math>
| |
− | '''Algorithm''': <br>
| |
− | Consider the equation <math>2a^2-4a+1=0</math><br>
| |
− | Here a=2,b=-4 & c=1<br>
| |
− | If p & q are the roots of the quadratic equation then<br>
| |
− | <math>p+q={\frac{-b}{a}}={\frac{-(-4)}{2}=2}</math><br>
| |
− | <math>pq={\frac{c}{a}}={\frac{1}{2}}</math><br>
| |
− | Therefore,<br>
| |
− | <math>p^3+q^3=(p+q)^3-3pq(p+q)</math><br> =<math>(2)^3-3[{\frac{1}{2}}](2)</math><br>
| |
− | =8-3<br>=5
| |
| | | |
| =Ex.no.9.11 /problem no.9= | | =Ex.no.9.11 /problem no.9= |