Quadratic Equations
Philosophy of Mathematics |
While creating a resource page, please click here for a resource creation checklist.
Concept Map
Error: Mind Map file Quadratic_Equations.mm
not found
Textbook
Please click here for Karnataka and other text books.
Additional Information
Useful websites
click here
Reference Books
Teaching Outlines
Concept #1 - Introduction to quadratic equations
An equation of the form where a ≠ 0 and a, b, c belongs to R.
Learning objectives
converting verbal statement into equations.
Notes for teachers
- Basic knowledge of equations, linear equations,general form of linear equation, finding the rooots of equation, graphical representation of linear equations.
- More importance to be given for signs while transforming the equations.
Activities
- Activity No 1 Introduction to quadratic equation
- Activity No 2 Making a rectangular garden
- Activity No 3 Understanding ax^2+bx+c=0 geometrically
Concept #2 - Types of equations
Pure Quadratic Equation & Adfected Quadratic Equation
Learning objectives
- To distinguish between pure & adfected equations among the given equations.
- Standard forms of pure & adfected quadratic equations.
Notes for teachers
- Knowledge of general form of quadratic equations
- roots of equation
- proper use of signs.
Activities
- Activity No #2 [[3]]
Concept #3 What is the solution of a quadratic equation
The roots of the Quadratic Equation which satisfy the equation
Learning objectives
- x=k is a solution of the quadratic equation if k satisfies the quadratic equation
- Any quadratic equation has at most two roots.
- The roots form the solution set of quadratic equation.
Notes for teachers
- different methods of solving quadratic equation
- knowledge of suitable formula to be used to solve specific problem.
- identify the type of quadratic equation.
Activities
- Activity No #1 Concept Name - Activity No.solution to Q.E
- Activity No #2 Concept Name - Activity No.PROBLEM SOLVING ABILITY
==Estimated Time==20 Minutes
==Materials/ Resources needed== paper and pen
==Prerequisites/Instructions, if any==knowledge of formulas related to the topic.
==ie,general form of quadratic equation Failed to parse (syntax error): {\displaystyle ax^2+bx+c=0<math><br> roots of the equation ax^2+bx+c=0 is x=+} ==Concept #4Methods of solution== Different methods of finding the solution to a quadratic equation #Factorisation method #Completing the square method #Formula method #Graphical method. ===Learning objectives=== #Solving quadratic equation by factorisation method #Solving quadratic equation by completing the square method #Deriving formula to find the roots of quadratic equation. #Solving quadratic equation by using formula.<br> [http://en.wikipedia.org/wiki/Quadratic_equation] #Solving quadratic equation graphically. [http://tube.geogebra.org/student/m22236]<br>To find the sum and product of the roots of the quadratic equations. [https://www.geogebratube.org/student/m8358] ===Notes for teachers=== ''These are short notes that the teacher wants to share about the concept, any locally relevant information, specific instructions on what kind of methodology used and common misconceptions/mistakes.'' ===Activities=== #Activity No 1 [https://www.geogebratube.org/material/iframe/id/8357/width/968/height/487/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5| geogebra] #Activity No 2 [http://www.projectmaths.ie/students/strand4JC/student-activity-quadratic-formula.pdf| quadratic formula]<br> #Activity 3 [http://www.learnnc.org/lp/pages/2981| learn quadratics] ==Concept #5'''Nature of roots'''== The roots of a quadratic equation can be real & equal, real & distinct or imaginary. Nature of roots depends on the values of b^-4ac. ===Learning objectives=== #To find the discriminant & interpret the nature of the roots of the given quadratic equation. ===Notes for teachers=== ''These are short notes that the teacher wants to share about the concept, any locally relevant information, specific instructions on what kind of methodology used and common misconceptions/mistakes.'' ===Activities=== #Activity No #1 '''Concept Name - Activity No.'''[http://interpret the nature of roots/ interpret the nature of the roots] <ggb_applet width="968" height="487" version="4.2" ggbBase64="UEsDBBQACAgIALSuTkIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwF4DofxiVBORw0KGgoAAAANSUhEUgAAAMgAAAB5CAYAAAB8zm5OAAAOP0lEQVR42u1dW1MTyxr1p/kX9sv2xfdT7lerLMsnn7TUsnzQKvUcN1rq8VjeOBaiIB5QFFBAUBHRLRKUixcURG4Jin1Yzf5iM5lLJ5lJepLVVVPJTNb09Ex6TX+rv+7+tnz9+lXZpJWVFadxvb29amxsrCbuhTh3cFsWFxetMsvlck7jXr58qWyT6/dCnDu4LbXSgrx48cKaIHxTEmfdgnz58sUqs6WlJadxz58/tyaI6/dCnDs4EoQ44kgQVgTiSiQINQhxxJEgrAjEkSAkCHGxE+Tdu3cKvhAQBXpENuzLhv3p6en8ccF//PixACs48zjw2Bc89j98+BCYh1wTvwEXVD45/vbtW9XT0+Nbvv7+fv0dTkS/ewkqH47j2lHlw/eZmZnI5yfXjXp+LJ9b5aspkb5z5079vbm5Wa2trak3b96ohoYG7RA6cuQIxShx9d2L1d7erubm5vgHE1ffvViZTEZ1dHRs2s6cOaO2bdumDhw4UPCbbCMjI7S1iStOg6R9LBbsSCRzLNbr1683fablXohzD5f6Xqy9e/fqzxMnThTojsOHD/NNSVx5LQiUuk1aWFhwGjc0NGTdzev6vRDnDi6VIt1Pg+zYsUNt3bo1Un9QjBJX8yLdL/k5Cj9//qw/TXLQlCCuKBOrlggC7YEkfhD4PqBFTp48yYpAXGkE+fTpk65EAKPJkQ37smF/dnY2f1zwsOG8WMGZx4HHvuCxD2IG5SHXxG/ABZUPx4GBl3xgYMCqfN57CSofjuPaUeXD92/fvkU+P7kuy5eu8tWMBjl9+nTBMdMvQg1CXEkapJbngwR51lkRiCNB+AcTx16s8F4sikzi2ItFghCXJEG4LhZxxFGD0NYmrjQNwrFYxBHHFsSZe3k1qNRAJ9/QqWlBQBAbTzrEvI2nWnBRnkzxnkZ5MoELKx9+wxD3J0+eWHvSzXvxlm/gwfp587m8h9fGEwwdJ8e6Wlb0hv32xpwaepTLlxnXvX56VX2YLCxfz+2c3rB/t2kxn4dZvumJxfzzQ94DDxbzefTdzan7zbnI8oV5qmV0QznPz/RUl/L8XCsfe7E86eb5X98nM9lfJtzD9Wv0//3mWW+Zv35Wan52Y39xYUWtruu9H9+VbiHeDG8cbzqjVF/73+VbP/dJ9y9RCKycg2Sed/Pfq+p/VzfOkWsCh7xWc7/y7mrZLDLvXWevE7t5EybIg2Z/gjxqU2q4N5ogLReUar2o1PS4UpmRX4TraVXqcWcwQczzbl9a1efhHBDTjyDIG60REs5pPqvU025W6NgJQpFuh5OKGoVbW9vY5Lvtdc3z5ucXCs7Vx2c34ymqKdLZzZsAbnBwUHV2dvK5cKhJcXmKQKvmvWAeS7H5rfk1NyHXPX/+vMI0ByQMDc+blw8eFJxr/k4NUucEOXr0qHr69Kl+u7569Uq1tLTo4wjvhp4ypO7ubv0bPnEMn2i9ZB8jiAU/Pj6ePwcrrExMTOiKKb/jON7m5jmY3AUcfjPPFzzyQR7YUKHlHOxj4Ypr165pHO5jeHg4P4cC5929e1evNIkN6fv37/ra4lHGlIHW1tY8xvs7viMfEqROCYKZiPKGRUUBEZAOHTqk2tra8r+h8uzZs0dXGFRi4Mx9wUsFxzkgQlNTk/6U3y9evKgrsnnOpUuXdH44R0gpeUs+KBs+9+/fnz8HeezevVuTHN9BDsyBEYIcP35c7du3T5/78OFDX4IcO3ZMnTp1Ko/x/n7hwgVdXttnTYLUYC9WFE7e2sXmhzd8HPcsppEfTip+MfmZJpQfzs/EstWtDMFGkU5crYv0yclJK086VuC28VQLLsqTCWLaeNKjPP2rq6vaZofZY+tJN+8lqHzQH2gt+vr6tMnjLR+OiScYb1nY5n7lQ9nkGK4r10PeOB+r0t+5c6egfNhwT2GeYDwbG0+1mFlRnmqzfOU+v1opH02sgNTY2Khx+ISAhp1/48YNTQQcg5C/deuW1hHQLsBgH5oAmIMHD+rv0A1yPfxxWIoIFUJ0jvQowd7HH4dP4PEbtISIaxHI9dqbVDUTK23zQeBRHu5TquuWUv0dSj3rWcesxD8fBD1DqPh40+MT4nXXrl1apGIfG4iC7fLly5v2IYi3b9+uv0PYyvrBeGMJQZA/8pRkEkSPtVonBMgn4loEsov/SS3jUtWCgBAY8vHNWIcBwz5Akst/vs0P2+AbkLi6E+kdjUrNzQTjentGVOt/lBVJ6Pkmzlqkp4EgMKe+zUX3YsHUetSWjj8E5pJ3LBC0BjZoGXyavheze1fyQgeCNx/JAwlmH8gF7STXvHLlij6GBIciriHXIUFSSJDejpVIcpjdvDC5YIq5eC8YGCoa5Pr16wXaAxUXDr5z586pq1evapx4vb1YiHg4Ar35AI88kBBUCFpmampKHwdWjknCMbkOCZIyDTKVUWrsZbboXiyc9+61ezav2YsFAe+t9BDi8GajxwytRhhBUMlBJG8+OAZxjx4wEAj5vH//XucDrBzD72fPntWtiFyHGiRlBEFvVandvDg3SI+48IegtfCaWBh0iA1vNnyK6ROWnzcfyUO+i6kl15yfny/IR65DgqSIIDCTUMHL8YOAJK7+IWhJ4GyUTyS83WEeAYfw3KyoDhAEza+NJx1axcZTLbgoT6Z4T/3ygFn1tGfjN+CiPOmoZI8fPy4o32DXkhp9sRx6L2GeVlzbxhMsc6WjPMGo9NAD8IvA3IKOgC4RTzrMHQh0kB1kqXT5ZHRDlKe6Ws+vGuVzUqTfuVx8fkFjscy8XBLpGOIDHSGf0AQgiAxtB3koltmLVViJJja2uAiCvLz+E1f/EFODsKKyF8v3eEdjafmFjcWCp522NnElaRCXxmKha/bVYGn5hY3FGh3a6Pqt5L0Qx7FYseO8rUdcLYg3b74pibNuQVxZ9gc6wa9bNq5lf2BmiRbh8jbE2eKcEekYb1VOfjYzCoWAFKPEpU6kBxEkzglTuEYxzkfiiHOCIHizm127SREEJhZMLVYE4qwJ4kKc9LYr2ZLipIsnHaMBbOOkt1zMMg45y5eeOOmYw+H1UySlQUSsf5xepq1NXDo86YP3N0hSKYJobN8KKwJx6SBI1AzAJAjSeSPLikCc+71YUeZV3CJd0mBXTs88pBglzmmCyJyPShNErs2KQFwkQao5FstmgYWk4qTbEIRjk4irmgaZ+7IUOOMvaQ2CPDGAMWwZIdrkxGmCVGssVt+9JTU1MauiTLwkQ7ChFcEMP7952kncM3Hpw1WlBcEKHMcO3tbr2fotr19sfpiVV8rq7mdP9OnldTC9lW9U4rwJdXMLpnfCfofIRSWTDfuyYR9xyOW44PHW9mIFZx4HHvuCb2hoUNt++yMwD7kmfnv27JlV+bA4mk35zHv5/bd/qH/988+C8sn5uHZU+eQ6UeWT6xZTvqDnx/JVpnzYrHuxMKTDZqUN4GSx5qCESVGfplcDTRtvfpjHbduLhdYkKk1PT2+8QRZUqA7yrmYYlGyeC9Lo6KhVz4pEporCRT1nwdlaCeiwicoT+WUyGav8YL7b/B8yV98GZ1NngLN5NsBF/XfWBPn582dsOPRexZlfsd282ezm+Ofl9oaY+cXRuxIVlLNYXNzPup5wVRHpEMeuxEkPGmZP0UpcVUQ6vOcwa1wJweZdRYWilbiSTKy4vJMyONGlCFNTmWTvmbj04ipOEDFpXCKIy0uUEldnBOlsco8gMhWXFYa4qhIE616JOeMSQaBBRodYYYirskiX1iMJwVVunHSzbBStxOUJUsk46XeuLccWJx2+B/gBMGwFjr9y46S3/zfLOOQsX/XipKPnCj1YSTWX5cZJ95v6S5ODuIrNB0EFNGMNxj22v9w46RJOOs57Jo5r81rjvEM6XGtB/HQI36jEVUykewnimkj3IwhFK3EVIYjfqFkXCYJRxqYZyApDXEUIAtveK4BdJAichWZHAisMcRXRIH4LJLioQbxlpU1OHAlCghBHgtjnCRNLxmWxwhCXeJz018+zanJstag46aYnMyhOuulJh+fUL056KXG0J8aW1V/PVhmHnOWrzOruQQu0uSjSvWWmaCWOBCFBiKumBgkiiKsaxCwzbXLiEh2L9fm9UpmR+PILS+WOxTIT5qxg49gk4hJtQcweoTS1INKK8I1KXKLL/oStoO7Ksj9hBOEyOMQlKtLDCOKySEfC4EqKVuISNbHCCOK6iQWC0OQgLjGCYCGEIIGeBoJApI+9zLLC1DtBkoqT3tWSVYsLdnHSwzyZQXHSTU/6xMSEdZz0YuJo37uxyDjkjJOejAaJK3pttTQIEkhOm7zONQgJEpwYLpq4RAjinXiUVoL0dqwUTPRixWIvVtnCB1NXowJkui7Skb7MrFgFGqW4ZS9W0fHPK32zSRCE8dSJS2QsVjVikMc5FsvExRnLnbj04RLRIDYESYMGqda9EOeQBkliLJZNpXJ9LJbgwgZcJnUvxLmDi70FGX2xHBixKY0tCEYEIGwD36h12oIErZ7u9SpCzNt4quF9Dlrd3fRkivc0ypMJXJAn/cePHzpMNGK9Iza2rSfdvJcwTyuujWNwGIZ5gqHjbDzBMnog7vJFeapZvtLLF3svVndrLtb8qt2LhRRlMrL3p4Z7sUgQEoS4Cor0+zeXqyK4khLpSFFCneKWIt1K0EDMjv+1HFt+Loh0JIwKGB2iaK1LkR6niVXNedxJmlhRZhZNE2oQEoQEIUHKzQzxxmuVIGFDTlixSBC2IGxB6pMgcYl0mQNSLcGVpEhH8gsCRHFbByI9rjjpw/1ZNTWeDY2Tbnoyy4mTvry8nPeiwwubyWTKjpMeFUd75kNWDXblGIeccdJLa46qvZ5t0iZWmJlF06R2cf8HKGKmfBs3JswAAAAASUVORK5CYIJQSwcInBFXTX0OAAB4DgAAUEsDBBQACAgIALSuTkIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAC0rk5CAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1b62/bOBL/3P0rCH84tNfY4VOPnL0Lt0VxBdq9xaV3t7jDFaAl2uZGllxJTpyif/wNSUmWH0nsJE3S3QuaUBSHM5zfPDiU1P5Py1mCzlVe6CwddEgPd5BKoyzW6WTQWZTjbtD56ccf+hOVTdQol2ic5TNZDjq8RzuredDrkdBM1vGgM8bUCwXzuoz5uMsV9rtShuNuxP1g7DGJKfY7CC0LfZJmP8uZKuYyUqfRVM3k+yySpeU5Lcv5yfHxxcVFr5bey/LJ8WQy6i2LuINg5Wkx6FQXJ8BubdIFs+QUY3L864f3jn1Xp0Up00h1kNFqoX/84Vn/QqdxdoEudFxOAYOQeR00VXoyBT0JFtA7NmRz0HauolKfqwImt7pW63I271gymZrxZ+4KJY1CHRTrcx2rfNDBvZBwKjwSBoz7BPuig7Jcq7SsaImTucUDrzEhnHs0wGFIfCYE83cz6R/XS+qfa3Xh1mau7LI5DmHeuS70KFFgO5kUAI5OxzkYBrTKF9AtystEjWRe91cLYkfkCOQU+gsQUxp0kEMTpINyR0TwI4HxkUdFrVEjmbTEOraN1GoVK7HVjTW5tVTCA9ESC9LMrwe/HOMtqbyDyixLLFeMvn5FFNwRHZmGuIZC43luCLt7mLmGuoa7Rjga7qZzR8odDXc0nF2D7c1atrBlRpd9laR3g5Y1Bg12CKVit9CghSwxyH1FxEBmG4YMWMSCZhpedT3X9W1DsGtINRiYP6HpeHdRqOUpLUcBLew/+7vtnN4dgmIlUOB9BTL6wAI9/sACfbwz9FxLqvZBUOgf14mwXy0IFVNDW7lWqWaFWSILkbDuR5AAf/Z8iGmBSAiNb/yaIiIQF9AlAfJM6yNmXJkjhgJk6AhDNhWIAP5w3zLzkABm5q7vHB4xjgRDxGYQjgAHZLMQoEIZUAiBBEwy4gk1LJiHuAc9FiAOazQJyDfxxmAi9EE8RYwgZiYTH1EPeYYf4SaxeYFZOrCkyMPIs8hDDoP85XIX0AeIGW0gBuZZoRt0pyqZ1yBZHHU6X5Rr2EWzuL4ss3ljQ0sdZ9HZqwbrakTJomyTwW612lh3bLNRlufQPWCrJTQkXusnuNU2+UfYNu60I6+izxPkobaqZqPiwf4b1UG5/Ro9fy/J/fYq/j+R3lMiNaghuVRFY41Jbo9SrfT57ZPts7W+NWsiRyqBw+Cp8RaEzmVios5KGGdpiWpHoe7eJJfzqY6KU1WWMKtAv8lz+V6WavkWqBvtrGh7+uqrRZToWMv0n+BJFgpgiJrDmK3t68NYEIZOTJRleXx6WYB/oeW/VZ7BovygJzAcplgAZ6rQN6eaSzckCO+FMO75JPQC34dgLCJpIoP5PUZgIGRwW/gihDm7hzzuOdHqvNHN2cvh78y1un5XvMqSlQHnmU7L13JeLnJ7sobElRudhukkURZb6xdwRo3ORtny1IHKHK+Pl3Nljn5W/mjyOkuyHEHcUgHYTKp25FpLYxbWUGFLgy0Frq2k42achNRS2HbkWksFZndLqxQltZYE12J0YbMNMG+7pfUZswkvUl2+rzuljs5Wmhr6nxezEbhbNW2dJbknlv3jDQfrn6k8VYnzohQMucgWhfPrxjef9ReF+kWW02Ea/11NIGp/kSZ1lsDaka5WHKtIz2Ciu19BJ41Z/wFLdXdjNclVrWFiH2U4YO0obvv01m3L6m2ezd6l5x/BZzaW2j+u9ekXUa7nxjPRCFL5mVp5X6wLCTtB3J4HyhegRWRyEgBZGhDfpUZD5e5lYySR8QGIxXIK158XMs5hh4hQtMjPga1clNMMPOhfSi8BX5ADgT7oDOe5TiBVmkIG8oKJ8UTNoN5CpXXkdDFTuY4ao0pby4Fai0rzLu5VjmzTYjb6DZa04QkrA8DwFb6OZDKfSlsCVh4tL1W+hq7l9rfxuFAlWkKmgPhfH/uQxdWqKh5FYupKNNOQybtAP5NunhwVWbIo1WkEpk5Xj7Hcqut0hrF5SAYzGLOPy0BaSM3FWC9Vk0AAVf0FnHPd01bxWEKKPYNatbDlU1mlB3vxVx3HKm1WK1NwTmtOyJVzAwU2kTJXysVYM3cO2NjM1PKsymw3GnC0w4DB4xiwS4gFlT6ICYPKhISy792G0aYNRY8+kgkpOzAKYT9yNjQXtzeiEN+7EWdbgUh6bIcV64L//s34rWKNMFany+8+1NSmlcxbl9+XkQh9tE3NKL+3nZbzHAQaThXMYzgjLYHlJRpAxfNntPz0nL5AL9HIXEMb1byhfDImPd6ydjXQ8Ls+hbZKzrZdzQOUxrC2vG9Mi/c0Lb4GX349vnDaUuk5LDaDchctsd3QjWGxzShw9QVX7wqXpL51Sdzq0BfS8miwU66XaIjNIKgxrKmG1LiaeYk4ZPUtbi5gbUPhqN1iPqdu/YUr9ME8iY50uWnLKJvNZBqj1D7ieC8/ql87q1OzxNa2ktT4S7oWU4uypoKjajl2zCuWWyY2JKvAtPSPbGUbaJsnE11YFDZv22N7ARlpvHrCBsfND7CEHlv/EatHep0a//pYsjM1IFtEY8/VYNi7OeAmrYCbVUGmavc0zrsrxtz9hsMNqfMK9OvTs4OfYHp7+O3RrbApsOeKFxclVWzcPhDvzfcne/v+5EDffwLwP5qji8A5ekBudvTpFTvL8xHqotmLen+Bjjpwj5ne0gJXFQ/3scPcsIM/2A7Dt3YYEGS+RfhGe8x07zibHhhnt7VyHWdEsLta+mntMlXwMRzeHHxDUkVfFW029rqIQ9SZWHxuw+7FrlDbLN6B00b1HvQ8cXBlLhdLnWiZX67jdr0Wxg1qRf70eZGVf3mjzUM/qNslLDgbo+kJcgOQSqbw6zru7y7ttryMPFEv++buxAV37rRPLjdI0TVDDFa4D8ltgKd/VOB97I6M3L1VuDrdNg+nd5f1E5dv6VayHV6faO2bmVV432SG3edw87p14pqRa+5eSrIeB0yCgDIW+ljw0MLUhds+44T7mBOP+ITbOrPZDq065vXR2qs6d3fj3cJdoSZbUL86BOpXTwfqLt3AOnDJgPfIGtbsXrDenU/YWj6ZnNgD0fIlqXLIHimEPX4l/iQrBOrvUSHEuqgMMNooDnZW4JtlgZm++VQP/ITj1g/Zhv7aKuFmn+FXFwMDNPpEu1xG+/sPv91TjHs6RtyX6+DO6pOEA3yFVu+NAn8/6L317b/Z/Z/bBf8H/OG/L25TB3jfpRGqL4ruZgPPfJhhSjCxp/v7azZ4C0hIBOdKlcuk9bJawaWRcbJ/JPhPzwj37/I8FFV63OMxnUElWIP7ciCXn+jL0fJldLQ/ssHTQ/bBckwgKsC52A9wsZ5jnm8mmVErxbww2X6LQrYptkaj9ugBOUrcYMTD3lV9Vzb0fLdPMHq3Eno5XELFsFk/v3aDbw4po1/fyhjmI+iJa0auuYcqGsplSj3IK1wQSOYMV5/TVM/C71w3X4PCmyeDAu2JNgi0yrLd+0LhuP3hlv2MsvrPcT/+D1BLBwhb+onnRAoAAMw3AABQSwECFAAUAAgICAC0rk5CnBFXTX0OAAB4DgAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAgIALSuTkJFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAMEOAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAtK5OQlv6iedECgAAzDcAAAwAAAAAAAAAAAAAAAAAHw8AAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAMIAAACdGQAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="true" showToolBar="true" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />| interpret the nature of roots] #Activity No #2 '''Concept Name - Activity No.'''[https://www.youtube.com/watch?v=7GHsJNBwt9E] ==Concept #6'''applications'''== Solving problems based on quadratic equations. ===Learning objectives=== By applying the methods of solving quadratic equations, finding the solutions to real life situations. ===Notes for teachers=== ''These are short notes that the teacher wants to share about the concept, any locally relevant information, specific instructions on what kind of methodology used and common misconceptions/mistakes.'' ===Activities=== #Activity No #1 '''applications - .''' [https://www.youtube.com/watch?v=IGGnn9oa4QYz| more word problems] #Activity 2:[http://www.ehow.com/info_8502727_applications-quadratic-equations.html| quadratics in real life] '''to link back to content page''' =Activity - Name of Activity= ==Multimedia resources== ==Website interactives/ links/ simulations/ Geogebra Applets== ==Process (How to do the activity)==students are given some gradation problems , and asked to solve using appropriate method. ==Developmental Questions (What discussion questions)== ==Evaluation (Questions for assessment of the child)== ==Question Corner== ==Activity Keywords== '''To link back to the concept page''' [[Topic Page Link]] #Activity No #2 '''Concept Name - Activity No.''' =Assessment activities for CCE= =Hints for difficult problems = 1.If P & q are the roots of the equation <math>2a^2-4a+1=0}
find the value of
solution
2.The altitude of a triangle is 6cm greter than its base. If its area is 108cmsq .Find its base.
solution
3.Solve By completing the square.
solution