Changes

Jump to navigation Jump to search
Line 16: Line 16:  
In quadrillateral APOQ ,<br>
 
In quadrillateral APOQ ,<br>
 
∠APO=∠AQO=<math>90^{0}</math> [radius drawn at the point of contact is perpendicular to the tangent]<br>
 
∠APO=∠AQO=<math>90^{0}</math> [radius drawn at the point of contact is perpendicular to the tangent]<br>
∠PAQ+∠POQ=<br>  
+
∠PAQ+∠POQ=<math>180^{0}</math><br>  
Or, ∠PAQ+∠POQ=<br>
+
Or, ∠PAQ+∠POQ=<math>180^{0}</math><br>
∠PAQ = -∠POQ ----------1<br>
+
∠PAQ = <math>180^{0}</math>-∠POQ ----------1<br>
 
Triangle POQ is isoscles. Therefore ∠OPQ=∠OQP<br>
 
Triangle POQ is isoscles. Therefore ∠OPQ=∠OQP<br>
∠POQ+∠OPQ+∠OQP=<br>
+
∠POQ+∠OPQ+∠OQP=<math>180^{0}</math><br>
Or  ∠POQ+2∠OPQ=<br>
+
Or  ∠POQ+2∠OPQ=<math>180^{0}</math><br>
2∠OPQ=- ∠POQ  ------2<br>
+
2∠OPQ=<math>180^{0}</math>- ∠POQ  ------2<br>
 
From 1 and 2 <br>
 
From 1 and 2 <br>
 
∠PAQ=2∠OPQ
 
∠PAQ=2∠OPQ
29

edits

Navigation menu