Changes

Jump to navigation Jump to search
37,025 bytes removed ,  15:27, 2 December 2013
no edit summary
Line 336: Line 336:  
# What are the  applications of this theorem.
 
# What are the  applications of this theorem.
   −
===Activity No # 2. Angle in a semicircle is a right angle.===
+
===Activity No # 2. Angles in a circle.===
 
{| style="height:10px; float:right; align:center;"
 
{| style="height:10px; float:right; align:center;"
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
 
|}
 
|}
*Estimated Time
+
*Estimated Time: 40 minutes
*Materials/ Resources needed
+
*Materials/ Resources needed:Laptop, projector, geogebra file and a pointer.
 
*Prerequisites/Instructions, if any
 
*Prerequisites/Instructions, if any
*Multimedia resources
+
#The students should have prior knowledge of a circle, angles, arcs and segments.
 +
#The students should have a thorough knowledge about the types of angles.
 +
#They should have the skill of drawing a circle , angles and measuring them.
 +
*Multimedia resources : Laptop, Projector.
 
*Website interactives/ links/ / Geogebra Applets
 
*Website interactives/ links/ / Geogebra Applets
<ggb_applet width="1280" height="572" version="4.0" ggbBase64="UEsDBBQACAAIABt3dUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ5WVaTTbiRrG/9NJCLUkHYaa4t9KZlCqqCq1xTISymRM1AgVVfs6vbYJYklpGyaktKqWKh1KERVNrZHRThPTBq21lkmm4sQyDSWOLZZrzsz9dM+559wP7+93zvPh+fSc81Jxnq7KilqKAAAoYzHOXgfuO7gomNwBzd70CwBALhfrjMb/OCmp+CZczecYj2XcxIamrASa1JQUXyc0LPSC4QpP1dyq6EWo2TdB2Ti125FrD+D4X6/hoDQEzfknrf1MhKNS7EsnQ0rqaZSjylCu+gocKR/ltBrV41TJjw0tqqiYmPhNLM0KmWmXJiWJyetsoczSXQlQZGa7A5kgADuUCeLu//Qku/HAOCUOOFhpP/cchKlVV1Vl5cFvgMPmzRZ3TVKnrOxnf6XiZNc2F7nKy7v99/g7REOT359U6oq7c7f454ZOapRZxj1zLdC57GgFOZq+zu+6NdlZtr3XES8QJt49xe75bTLd/lw4MYBjd/KzzYKVVmab5ZxQnukrm51xkc0sjpY/TdhhMk7JPu5slSdktCe+Lt62E7JXNzSsm73J5Kx7Z/a7dyLmMsI22NP78jWfrZeqv2ZFjUcvC9jSnsjIyEYGI3ZgQ98YYpBFXBKwSocfsWPSv/6xtdV8LpRjXkQVlkz46MdvbaXV4gladCtXHk/SVPRV/JCi2wus+fqMy0DqXkVpKYvzhrRrbRYkVFHipwacuhQj5bTK/HjdpaRvcNaXm32nu9O2hmrT5uRMFb1S31OS9Vj9nInlxOSprkeebIEwQRoaaIHE0NVtbbOWyalf51fGCgewDXQQjbrZJ7QfJ40SO7xGSB0xe8lJ++PvhJVFb3cXstmhOBS6MzbaHbHi6H2Jf1NIMg0wJ7QAcAiA/gv/8d94jOiv1NTSYpqHDfC15sffvn0vGQw2O2tq2vvSkf6y98WNjKlbeq42Ciq6dtHJS9MKx87aWVktSO46FIbI1iVjw8PXjGBeZP3W5s0/rviNPxno7Oz8sCLioWqK+kNtW1R0bMJFIpH/9xDfTRvy9sgih9FWYOcXp+zxZ5M0OMwoYmmilddAwdo50KHUx84SieSZuMtiPXiHGrL/arL207JGydzZL7S1aeU9breb/NpSngMUI3288uLyclutbtmHD3Fhtug1AivujqS9/UWefb6OrVYHBHfhBJbL5bbPwwrT/a+TP/6RpayqOsUdoyXtD8qaoRNJl8toNkdbFhYimtUioqKkbpQ60/zH/ts2DnS8vIjxSrR3fzPseRJxIoZnxov+WIA+f+aH8LGrvALdDUqcxxUaBXn5OBSCNY7MT2zJITTgc8+ZqZo/qwnL8/CE+tSPMGtqpy9k38sqZLJYFszwTDBEoU9+j9iI1s40RLhVtbWNn1Rwi+HeCbfWgSMt9B0u4paaF50XHtEDzycvrVF2vOh1NTqHYUfOv+IzCA8dfGuwx/SLGia9XxXez80A0Ib5RJhGCY9KeOn/KFBT7bWROGcKjkTNawhu6ZbwjKtnDw+7uRhQQHWXXY0lH2u3wACjx9ychcCRjreWB6lTf2dsQszILzaNJYba4i8Y1fFSSx2AgsyN8qSZnzb5/A6odbb5SAhjKPtLIqQeFjmZ+DDipO+4z4XqgV5HbwNvnib/JkjVs0JirT6Vnq6DfKd0275qUcBOXaOCmFV98y8RJTfQqBzCqFxaARE32ImUg2D96ayoDBO/QMH0tP9qC5lMtqLJpVM3JHrSE5hDjQFsQWdX1xWP70Yf7so2eIXFszhVTnBE9A43gB0kPk5B9jFDKievK9NcbBmN73zIZPbo2Bi3NNTdPc+Y2DOUJFkEx09gmN5GA+pwCPpg0pbD9SF5F40g2HL9P/1Q1IxuTRBTfdRk4T2q5sHW0mF0MKTeccfp92HFKy3wn4M2XaW1iIqyAQQ8O/IiwJdH03Mf3uqOuKR792gOzOvqmUJLWn+doW11YwsUdiQKLK/lIfAp+YogRiVWu+HpA6zXt+MyKISqDn1RukeIwDcpdjnDQcyJcHEAyo91Zrc4XRWCtVB8x+qJHapr848fJs2oUX7W8SCNmpC87nmrHvJYlQLooPqleQ32tOgBPiiiWx3sozhx5gntHk4iUUCKa2976b+8Uw6WHz7iOuNM3TZCKxw31XyeD3ob5JYGqptgiquqqkjnNUd5MxcNrg4qHR9zoLt8u+tlgX1943PCD2i9qwtrTnAA8okDHHD4x/+F/y/+H03vjwBqYvuEVvx8fEba4sFzArAuns4Mx0DKvwFQSwcIGo41Hp0GAADDBgAAUEsDBBQACAAIABt3dUMAAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s3VhLU9swED63v0KjexQ/4hAYTKcwvGZK6RQOvSqycNTakmsphPDru5JssAmUvmiT+mDLq/Xu+vtWu7J339yUBbrmtRZKpjgkAUZcMpUJmad4bq4GE/xm7/VuzlXOpzVFV6ouqUnxyGqiGy12pHpPS64ryvgFm/GSvlOMGmduZky1MxwuFgvSGiCqzod5bsiNzjAC51KnuBnsgLneQ4vYqUdBEA4/nb3z5gdCakMl4xhBYCVltUKszGwQKWZcmloJMG2UKh6TnfCish4FU/JIFNyO9UwtTuUlzO7TOsWmnoNxpqrlAa3sm+hG1vo7ldXcIBqk+C1GNEzxPlyiFB/gYatyPjetzrGTgjsNRpi1h4ww3jOdm5mq7SijxkpAkxe8hJCRWVYgqZSQBqOCTnlh/e29frVr40Vq+pkz00bbzLubodWB6QNVqBqBdaAqd+epO9OimlEYAYVOtaBLXqNrWtjZRgLWzlTGe1IqRemYRdpwADEE5CrOMzfy0cKgAnMue65ooZtgmFJ1ptFNimOSjDFapjgh4xFGtz7nnJJ70wtx2ziNu1KzLLqx7A4bkJ6Ba3/T4RoEZMvBFZMwenG4DjYdrqhBKyKTP5NcTJUllRmSrpJ8UMUyV9KhJL5XAwCg+/VfwVOh12Feh8IlTvHUe2t8PMKN99ai7+04AIXkPmozE+yL5BoqVNSiFPjBicgybmu6D6jHqgevNdyB8o/z+nTqaZ7bu7so2Gry/b0w+0mUhNvdwxeswYhEY59UCQmSJGqs/QIX/Kv0j2h7TrEoq0IwYe5Sp7A5fioN9GXuOob2sXYg+MJ5dQmmz+VlTaW2fdnrtIv0x5Gn64J8QKJJ0D2ipCl+o5448It7EAZkFP4/PEzXhYcB1E8HfEAmSW8pbDvgExKGW92JZIM46Jf0M5H5Htiv6dOVKn74XLHuNtLD55h80U7a3W2FsSMSatdLNMQn0KMr6B39DHpHa4Ke+xpyu4ntyQuA95EuH+B25HcJb1fgy74PXw2WWmyyNSoi437xaPdmiW+j0FC3x5NOwQ83toqsUnnYbgofUsl/nEq+LlSG7uPD7oFiMon9UoCtdhyPN5axO8MPeMs8b3yFt+OfqWDH//JDqsOb/dreSsLwwQqckDgYx/ebXMfoFomjoLtgf6vUDbv/O+y9+ytiB+2foL1vUEsHCHPmVY51AwAAfBIAAFBLAwQUAAgACAAbd3VDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgACAAbd3VDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1Z3XLbNha+Tp8Cw4u9iiT8g0zldGRnOpuZpO2sszs77fQCIiEZNUWyJCXLnr5UX2SfaQ8AUqIsO43s2TTdTBQQwAEOzvnOH5DpN9tVjjambmxZnEVkjCNkirTMbLE8i9btYhRH37z+aro05dLMa40WZb3S7VnEHaXNzqI0E5QbKkc4lXzEqUhHc6nJiLB0sVBYKiPnEULbxr4qyu/0yjSVTs1lemVW+l2Z6tYzvmrb6tVkcnNzM+5Zjct6OVku5+Ntk0UIjlk0Z1H38Qq2O1h0wzw5xZhM/v3+Xdh+ZIum1UVqIuREWNvXX72Y3tgiK2/Qjc3aKxCYxiDHlbHLKxBKUR6hiaOqQCOVSVu7MQ2sHXS90O2qijyZLtz8i/CF8p08EcrsxmamPovwmEgqIlTW1hRtN086PpN+h+nGmpuwlfvyXOAwbVnmc+12Qb/9hiimGL10DQkNhUbKMIXDGGahoaHhoRGBhoflPJDyQMMDDWcR2tjGznNzFi103oDabLGoAbJdv2lvc+PP0w3sJSYvQabG3gExw6DToGcYx/il+0n4cTcxORSSDLi29fpEpj1LguUJPOlzeLKeJ8XxMUsqHhFTfkS74QyfJKcYiAms/F//O+LI6AkcQ/95DCX/LCJOJ72rTDvvQM2Vo+2QbM2qcf7CEiQSZ/YECfANqcDKBSIJNIoi8AZEBOICuiRG0rUKMQUTHDEUI0dHGPLOIWL4hyu/mUQCNnOjCnwSEWDEkWCIeJ/iCDwJeb8EH6UMKIRAAhY59oS6LZhEXEKPxYjDGZ1LKgKEDBZCH9hTxAhibjFRiEok3X6EO1eXsTs6bEmRxEgStyF4NXh08GagjxFz0shOXbao1u2BitJV1n+2ZbXDAqghHu0jXYhPB4HwxTTXc5NDcrh0SCK00bnzCM9oURYt6kGkYWxZ6+rKps2laVtY1aBf9Ea/063ZfgvUTc/b06Zl0fxQl+1Fma9XRYNQWuZ4d+YyJ4Nvujs1dNhggg8nxGBCDr7Vg3xLmEHrxgD/sm56cp1lbx3FPjSAJr8v8tvz2ujrqrSHYkwnPs9MzTrNbWZ18S8wVsfF6QXt0o4PV33aEQr3Jynr7PK2ARNG2x9NXQIlT8YqIZInRMlESAg5t2GGYzqWkiZSCslUDHA3qXaux+IxSZRgOJbcfUAcuH14SnbImc0OH701e1GXtfPrQedtc17m+yEv/YWu2nXt6wUIjbUTaVYsc+MtxPs1JOP0el5uL4NpsLDXh9sKep3k86XXOoLIQAUky2XXzkPradzRdlTY02BPgXtbs9luniTUU/h2HlpPBcYbjtaJSnoxCe7Z2MbHMxx1XtPHKmf6LrWvC9u+6zutTa/3oroF361Xc7M3IEfwxoZCJFRYh2zI/5DNdHLPDqfXpi5M3pk9QL4u103w4oFHZCa1K+iGiU5x2oH6TzhTGM3MsjYdvc59xRbU6mcPDPpo2G/1bV2u3habD2Ax9w4wnfSnnDZpbStnmWgOqeLa7G0vs42GTJMN1zk/BW2kLqOAQlqnLfDgdXtV1r4mg8ADrXPP3KygGkOtN8JivTK1TXe6L3xxB4dad+eWPWpO8aic/wIRcZc0wxrf8TQw/YiZIp1XV9qXhJ0x6ltTH6jG7/a+zDrGHV2Tu1oSrWxIlCu99faK9LyBYNlCOQ1YFPtyOpxsF2ywK9ZhiaTKfd1C8PD1+8JuzS4VgI7sHdiEPhBm7y4txPFrKFYbXz+1nff6j7/bLDPF7rS6AOvxGEAkq4LBVsYEW98trEB4HzUGuHewHAHkA81O1bPouVD42LIDA38iGPiTxSMPide5Q+OQEGMsYsIUURzgYUIFVMaCS855TKFyVcxFyrtByPBacEH0IO2G0Xs+NlRlWq5WushQ4QuxH7wq94WBhhR7Yes0Nz/NXqLi505x67afPA/7dbv8ATTnT4KG0BDyffslwEPIPXzkZ8Pn0izd+D2EZqAP0mFxgI7+ODpNt1uvf/0H+Ay08Slh7ERo9grGXRwS4+Twj9foCOIUhZJGxlDxwMU0Vurp0cj8WoQlTUifdlXlNrXtTpW5M4S3RQvJ1PjUcZwQr42pXL3yffGh1kXjHkECTW/Pj+P53mbVAy6nj5C8OMXPLp7kZ+6GtgzNPDTPRzL+0zwlRK37oSw4SoEmiB6pOP24iqF8GBQB6Z/qKk+ydLs0xQZOCtcXhLa4e8+7xZ2/3fUjW9DQKLgg6YbuyAAeiJ+13aJZTz/rqWZw71JyLDFTTFBFAWQFVjRjHYcZXL9GD1jEDG5io2ObeNA/3XXTLmx6ehpLjwB/c4pPvfn/yF1yrDBLKCFEYUIVEd4hIaBSxjGJOU1iOCv93KnrzRE489NS1/wLSV0juHa7qzhoVyaKJSwOGiZjyYWKWQIaJpQJdyO/81cHoRKeJDjBYPsyFn/ZVPYwvueP4Zudhm/2heML8YsJTokEPHGsJMfCA8yTMUtiJnEiZcIo++uWKv7Z5jHvRZo+VH/+5/ePo+yv+jsMgfrezZqMQZsqkYxK8JI4kf2N90m3O4KfftU+eh864cJbp4PY2cfyPC9v/mEWudl6xT6OgtlWNbBxYb+X0WxbCPQwcRb97dd12X4dtrAF0ujSrMAoXO2DbAN9/+SGvKIDrd//EAa3YXS4+zO8jQgWHtVc+1SP88/FjantYv+0Gh4IZdQ7QP/q0uq69RkfeQ8l4xjjhPOEYqpELETsPTQZY8oIuKyCCYX5QY4bKnwyfCjyb7bd/zm+/i9QSwcIJG4K4hQIAAAQHQAAUEsBAhQAFAAIAAgAG3d1QxqONR6dBgAAwwYAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACAAbd3VDc+ZVjnUDAAB8EgAAEgAAAAAAAAAAAAAAAADhBgAAZ2VvZ2VicmFfbWFjcm8ueG1sUEsBAhQAFAAIAAgAG3d1Q9Y3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAlgoAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAbd3VDJG4K4hQIAAAQHQAADAAAAAAAAAAAAAAAAADzCgAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQAAgEAAEETAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
+
*Process:
*Process/ Developmental Questions
+
# The teacher can recall the concept of circle, arc segment.
*Evaluation
+
# She can then project the geogebra file , change slider and make clear the theorems about angles in a circle.
*Question Corner
+
Developmental Questions:
 
+
# Name the minor and major segments.
===Activity No # 3.The angle subtended by a chord at the centre is twice the angle subtended by the same chord at the circumference. ===
+
# Name the angles formed by them.
{| style="height:10px; float:right; align:center;"
+
# Where are the two angles subtended ?
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
+
# What is the relation between the two angles.
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
+
# Name the major and minor arcs.
|}
+
# What is an acute angle?
*Estimated Time
+
# What is an obtuse angle?
*Materials/ Resources needed
+
# What type of angles are formed by minor arc ?
*Prerequisites/Instructions, if any
+
# What type of angles are formed by major arc ?
*Multimedia resources
+
# What are your conclusions ?
*Website interactives/ links/ / Geogebra Applets
+
*Evaluation:
*Process/ Developmental Questions
+
# How many angles can a segment subtend on the circumference ?
*Evaluation
+
# What can you say about these angles ?
*Question Corner
+
*Question Corner:
 
+
# Recall the theorems related to angles in a circle.
===Activity No # 4.Equal chords subtend equal angles at the centre. ===
  −
{| style="height:10px; float:right; align:center;"
  −
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
  −
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
  −
|}
  −
*Estimated Time
  −
*Materials/ Resources needed
  −
*Prerequisites/Instructions, if any
  −
*Multimedia resources
  −
*Website interactives/ links/ / Geogebra Applets
  −
<ggb_applet width="1278" height="571" version="4.0" ggbBase64="UEsDBBQACAAIADOBdUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1VWV1ATChZNQoihGpCmIgREaSE0CU0gBIGEbigBQuiaByhdQBESohSpAYTHU2mCdGlSpYmCRkEsgEgTpBOqKC0Ul327O7v7ce+ZuefO3I87c865Z2VhzMN5ihMAAPDgsJfwR8g4Kn8o5KgTO/ViAAAuJdwlfZuwkZVs4jUBW9HXfyY4mYXBWzEv78Aenz8feJMuU5QJzY8ARNmx8UHN4QIl+cez6hhqdBrHtlVJDTQLol8jXCJU+I4NInbq6UuDTnyCnaFszCUQlLIL6bsVotUyvtI3u9y3fS7dt7iFTC6aV/89qhkkibls42QYxiETT7USAObLgDCXwXcfY8DYK1Lu10tb9TIOStulP5FbWcnBurmre4Nri2KNxOswOlh4M30+N2U3dpFSflK74c1exwN1S7m9zYRVPRXv+5usgcSTX4oaCxojlqOFb+2rbkawQss/MPc6HqmZMgMDb92uOjxjwgq31tHbiyxeqxFP6W8eHq0xqEINtn/L6a9PDj28RdyaloQj7ekHbBCNkLxpxXYRNhp+kC6xEUokpmyLi1xgjAwcHtte7a47eFVJ+pyVKx4kytLVhh+D8N7eZ31SvtgUTiiDHM88ONiTvni4oOy9Zr65v7w3TZI+0H7Up1CULT0Pazu0jBwaHRoNev7lR5+LH9fQWOkZUBoEbpwbjmSx1hmpyVUnHGCbjen9xcSHh5Ft1/f3g6e6xN7kbw13WDrQWWNOS+LfLpCTPYyHOgxwFL+yefJElbO4qDJGV0TrwvOJyItbQf2jl+fzCv/3jLyzNvhuZMX8fCyqD2n/QuYvB0S8JFzAEP2fJ/wNOBcSifT582fJpKQkPImk4DNUmTSM8h37Y0UvglVX19DwLum0etgnKHaLOdWdYFesKC//DPC10S/3kUYApi9XT3FlZUXnG+X3YYTP7+ag+ZmvNR614du+S0E7+5kKxJmN2Z7WErBUUDRvcoue1iZzsFxBxHeifcVkdHx8PHBn3a2chD4WJwNK42MuLyc6cgBAVq0D2dqhhe3tuqxsaqwk/DXHmROVx1HBI3nJQPq1iXadao88KDZFW2OKbayTL+xhXkMDqucAQ1+rZy+AYp1KNfJW3vr79t9FOOBw9zJkC6BxVXYFdXU2ObeY+kaiivxg6Jz5s/Pv37/HOzjI8mzWg6WIFyiHnCdRCIKcnJxo/7MiTi83+xONKl6+QNBQXUmJTAObl8HeWQeNJAkfoL6Cx+7GLN5qvaHC4ZlRWVlZBUUJ5Zlmxrxtganho2dN8YcEB2Pd3KIEFIlC4+q+Y00yAjvDAwOeBzangco2ampqdiFYnG2zRBNSZqcUM9lwfRSRZSaQLPgmbGvZAcIG7jpTWtZIgn7MViFgGx+znlZwuaqce/UEvBTrUQjFjmSyraanT+I7rywq7ET/TrGpLrv9aiPLqhggVScFLvxAGy1ssbWg6aVY5FYAIFpPThGit+6IEqI9lNTMzdHcQk6ShYHpfE6C0sKI4TV9HcNmj2r7SF7hqE15JBKl24lGc/NrcWmZy/nCELTTXi4C20pOhkkj3ehLVUvCci3dZdpAnEm1aClkkGmxfPUa0OoyO+EL+1tQlbei/098gGApHUR7UV8l65g4YwhfzQDE/lkv3HRPNBOD5v9W078yybCSKFo/G7L+eAtDSKB2Cd6OVGcKLlRknV8qHitrg0NekmVB/GeDzwOmMml93E+swzvJGrl3qV3QUJJ6f7mcqicN/7QtD/mZeBDLyQdfgDWNPlfoAjvXLcXULz/demw5MV5zJ1trgAp/umTrGj+AoHmlz9qEN4esPDB7iLrTprlMhVv4q27FHXMtujjEOVSQn6//OvGm3evkiIx/ki8G17WmC+V+FhVbXibro49vc65KMBGRF/F/jD+/UUv+ILY7t3QV5O7uvxoLkPjcUcTxseyX0pi+zs+YyW8pTNbc+4dPTzMI5Afu2vjMPkRvlqr+sRfjnxUlRFBP8NcbhX7MzDIATxQt1Bidd8RNtt//Hrcq/iuaeaNIWEUVAgu268g1idNWiynMuqrA35x3u9cLC/wxvbrgWZ+JcJhaIik5+HyX2kRflLtL3RGkaNywryK1tNtz9VeeAHJY+QcpqaCw27zK93BfJHP2E/uhcRJ4r154dPJyDGWtqN6f34jNPyKNDgRp0CIvHNdCvfaxVSeY4szv3RdTyLA1JryNTyEw8v2Ovx2nrLF8FR6Bd/bFss3QIKGx8rxa3PNMMXu5Z0J9aS7PKfeGLSIpeCFbxTR5itOPQUcNjr90N7mV5KSoWVOE0HFm2u7DOdPuvngZ0dTu1IWtX7XF4h3IOEbr1E0Vtzlws/932hqOvY9PAh6F2Rh5OVS4akZKFGxm7dnKOhKlNP3m7L9IhppWjlEmKancdgk/Bzmwk/TEXGVnR4p3xqJq1bv7jUUM+egqhnG9uOFE0FIusdUZLNX6ex2n2IFkg1hm0jLYN0ZzO37c4oMdvsofsa5XkfVLE8gUMjlcHla52TeDdpIFYdCJrFiPU8sDzdbnOi64OFY1GnmknM0VTx1jbzbSx6CPRMM17zC1Uc6S2V6+lDrV3bA96fyWmEkGS/W6R8NgntH7zmnoqPyc6fDFIdPapV7km1+r6xmvzqnMfloqTaFQjpTNdYjTOmYX3UwH0izim7/qU/PLF9+cl/1d4TTiV2esv7hTbhCS8012TYxCaGjvGNyW2NV3lge5x+03yZ8HGRDm31sMWzXqo9SupdWeuFLbHtJWtz/GP80L0ZQ+C/UxRdd+rbIQSvR88voa+yDuZF4sDMZYucnreyffVGdHIq5YLVAXiwUG+Bjl/+m68JIe1JGbDIJr9koVUl1trml1Fru4fiUZ6Il7xQep3uh2BrkvjCtDlYKB3h1TNPjcygk6d5IBDfIqEuGsty1cKcr2i85Gu2fd9nTDm18kRPhTT32fMi7+xBMMLxQ0EZbCUhfkJlVLOgvyu+k0jdgwgFHLPTpkkEiI+qcVjGTORPcvJLDmLoInPgYwnR36rUdEKVjiYOmqBN/xBFW3Pl2g8qUCY8v7P6alHf3D6gdqh4CbR15DcjjXszK7UIIAeK6Osdu9E/5yycX7ZKRGBRe+vGhvGkucrilarFRc2AoMthECPKbhi5OjEMIIrsNknnogeIuxnvUl1X/bkixLrsosKKgFwDzr0hREQdxdCIChw6lr2JatTNSWI/TrnmPHJGcjWCq/mmHuoq2xOuKdHcDOE/nyyp2lOfIbA6a6rSn1g2szWzxVannGN+WBIQqKPFWRHn8dIDlXELbbS7R/5ilO5xnqzVktOjIggvwZPd1hquP47A2f6a0gf+Xh0kbvplMmlkPx1MKZN3vZTDCdyhYawc4dCZLspS6X21oPN18KOEbm5qffj5Z+EV4TY1yGme+uKanvBfI4e7jUnjkN0+i2w6r4a2gDF599jPLfRplXn1/4Wo2U20zM9XbwaQlfuHBdOODyTU1tBBBn7X/Z7K5Ujk+chtGTbLcAgOZU9tJQFZEOQNqLd0kLAAPep2VN+m6qLVITT6qQGTY6P3tN8fb2XTkm6LEUnKu5yg2oRq0NYCZJfQ68sX5Mrgd4GZkYaK2Ci9MZE/thykdvQnJpET8amKQJ0m7a8zrygKYeTl7tLI7tucJkEOy5PBtpTqsPOGXhz9X0G6D6rbIZfwAStDhQR4vudyd9v/uemVEBVnt7L3B6HE3qOo4nTBESaS/hFezt6tZTkiD+wM5NvOoJvuKmttsATkoZLI6pSZIFpdVg5g1vnEYeJZ4xJYFVgLlfJSzm3Su5fEgB1UB756LxBD+9QkCMMypfXoQr+ruYt31cP0QGcAz+3doICjXkg/0dfv4N6P8Pov/iH/937T98idknShlDcuOXq/L8UYQG4AwtLlViXGn/AFBLBwixA7cVagsAAGkLAABQSwMEFAAIAAgAM4F1QwAAAAAAAAAAAAAAABIAAABnZW9nZWJyYV9tYWNyby54bWzdWEtT2zAQPre/QqN7FD/iEBhMpzC8ZkrpFA69KrJw1NqSaymE8Ou7kmywCZS+aJP6YMur9e76+1a7snff3JQFuua1FkqmOCQBRlwylQmZp3hurgYT/Gbv9W7OVc6nNUVXqi6pSfHIaqIbLXakek9LrivK+AWb8ZK+U4waZ25mTLUzHC4WC9IaIKrOh3luyI3OMALnUqe4GeyAud5Di9ipR0EQDj+dvfPmB0JqQyXjGEFgJWW1QqzMbBApZlyaWgkwbZQqHpOd8KKyHgVT8kgU3I71TC1O5SXM7tM6xaaeg3GmquUBreyb6EbW+juV1dwgGqT4LUY0TPE+XKIUH+Bhq3I+N63OsZOCOw1GmLWHjDDeM52bmartKKPGSkCTF7yEkJFZViCplJAGo4JOeWH97b1+tWvjRWr6mTPTRtvMu5uh1YHpA1WoGoF1oCp356k706KaURgBhU61oEteo2ta2NlGAtbOVMZ7UipF6ZhF2nAAMQTkKs4zN/LRwqACcy57rmihm2CYUnWm0U2KY5KMMVqmOCHjEUa3PuecknvTC3HbOI27UrMsurHsDhuQnoFrf9PhGgRky8EVkzB6cbgONh2uqEErIpM/k1xMlSWVGZKuknxQxTJX0qEkvlcDAKD79V/BU6HXYV6HwiVO8dR7a3w8wo331qLv7TgAheQ+ajMT7IvkGipU1KIU+MGJyDJua7oPqMeqB6813IHyj/P6dOppntu7uyjYavL9vTD7SZSE293DF6zBiERjn1QJCZIkaqz9Ahf8q/SPaHtOsSirQjBh7lKnsDl+Kg30Ze46hvaxdiD4wnl1CabP5WVNpbZ92eu0i/THkafrgnxAoknQPaKkKX6jnjjwi3sQBmQU/j88TNeFhwHUTwd8QCZJbylsO+ATEoZb3Ylkgzjol/Qzkfke2K/p05Uqfvhcse420sPnmHzRTtrdbYWxIxJq10s0xCfQoyvoHf0Mekdrgp77GnK7ie3JC4D3kS4f4HbkdwlvV+DLvg9fDZZabLI1KiLjfvFo92aJb6PQULfHk07BDze2iqxSedhuCh9SyX+cSr4uVIbu48PugWIyif1SgK12HI83lrE7ww94yzxvfIW345+pYMf/8kOqw5v92t5KwvDBCpyQOBjH95tcx+gWiaOgu2B/q9QNu/877L37K2IH7Z+gvW9QSwcIc+ZVjnUDAAB8EgAAUEsDBBQACAAIADOBdUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIADOBdUMAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5Vrdcts2Fr5OnwLDi72KKfyDzMrpOLY7m5m06dTZnZ29g0hIQk2RCknJsqcvtX2QPlMPAFK/sRvFmyb1euKABA5wcM53/gB6+O1qVqClqRtblacRiXGETJlVuS0np9GiHZ8k0bcvvxlOTDUxo1qjcVXPdHsacUdpc5ii1JirkTkxAicnXGNzkiQqO0lzwgnOs5RQGSG0auyLsvpBz0wz15m5yqZmpt9UmW4942nbzl8MBjc3N3HPKq7qyWAyGcWrJo8QbLNsTqPu4QUstzPphnlyijEZ/Pv7N2H5E1s2rS4zEyEnwsK+/ObZ8MaWeXWDbmzeTmH3VCURmho7mYJQirIIDRzVHDQyN1lrl6aBuVuvXuh2No88mS7d+LPwhIq1PBHK7dLmpj6NcEwkVYIzzESaMsUjVNXWlG1HSjqWg36x4dKam7Cqe/IMYVJbVcVIuwXRL78giilGz11DQkOhkTIM4dCHWWhoaHhoRKDhYToPpDzQ8EDDQQ1L29hRYU6jsS4a0KAtxzWgt35v2tvC+P10HRvhyXOQqbF3QMwwmElQOfRj/Nz9SvjlbmCwKyTZ4trWiyOZ9iwJlkfwpI/hyXqeFCeHLKm4R0z5gHbDHj5KTrElJrDy//zvAUdGj+AY3h/HUPI/RcThoHeVYecdqJk62g7J1swa5y8sRSJ1Zk+QAN+QCqxcIJJCoygCb0BEIC7glSRIulYhpmCAI4YS5OgIQ945RAL/ceUXk0jAYq5XgU8iAow4EgwR71McgSch75fgo5QBhRBIwCTHnlC3BJOIS3hjCeKwR+eSigAhg4nwDuwpYgQxN5koRCWSbj3CnavLxG0dlqRIYiSJWxC8Gjw6eDPQJ4g5aWSnLlvOF+2OirJZ3j+21XyNBVBDPNoEvRCfdmLis2GhR6aAPHHlkERoqQvnEZ7RuCpb1INIQ9+k1vOpzZor07Ywq0E/66V+o1uz+g6om563p82qsvmxrtrzqljMygahrCrwes9VQbae6XrX8MK2Bvj2gNgakFvP6oN8KxhBi8YA/6puenKd568dxSY0gCbflsXtq9ro63lld8UYDnzKGZpFVtjc6vJfYKyOi9MLWmcgH676DCTSpN9JVedXtw2YMFr9x9QVUHISJzxlkrCEcpISEaHbMMRkGiuSplxxrFLJUthbpp3zSRZLzDazEjfpw2OUB9ZmuYZIr8xG2kntXHvr5XXzqio2XV4B53reLmpfPUB0rJ1UZ+WkMN5IvGtDas6uR9XqKlgHC2u9u53DGw47GE284hEEBypgw5OuHYXW07itramwp8GeAvfmZvP1OEmpp/DtKLSeCuw3bK0TlfRiEtyzsY0PaTjqHKcPV876XaJflLZ907+0NrveiOom/LCYjczGhhzBhQ1lSai3dtmQz8hmONgzxeG1qUtTdJYPkC+qRRMcecspcpPZGbyGgU5x2oH6T9hT6M3NpDYdvS58/RbU6kfxtk0fdPulvqur2ety+Q4sZm8Dw0G/y2GT1XbuLBONIFtcm43t5bbRkGzy7XnOVUEbmUsqoJDWaQuceNFOq9pXaBB7oHUeWpgZFGSo9Ubo7Xit+TNf6DkVo2r0M4S/dYYM4/7FywHDHzRIb7q6mE+1KwY7oQt9a+odNfj1vq/yfeWA7r0EEArmvpoEwOfGBFsJO4aHOSzovW4nmoG+G7Ry1TqDAuXWWQKBh7sty/PSOl/cCeChdw8qsJ+gqD9Q2aunoDIac+lVBkHyf6OyrJrNdJmj0ldB57bOChNt0rLGztiQJk6BQTuLth/IwmLdEgf6B1O32Vq/2R/of0ve+wDAn67+sV2ZPPRsgN7E2RZqgGs46DS+9m67sO8f/mHz3Pj6L+QhOzHlErYPKRgOkLg7nt7isCl01/esQGUnvuuWdF13ZAsvsIbartBZT3/WU51RF+hjyTFL1z8A9hnrWJxBDXESnOcMKogT7z5hc+/LIE8TwrCrjOzYZg+D/qP3k13MswOwzx8Ge9fZzj/J2QgNadW3X4fDqZimMpGJoMIVIyoELBozJQgWCRygGVYJ5p/BFz8OlotjYLl4KrCQWCipEoppmtIEzrXE4wL+RiWRgqcCakiZKiW/HDKXxyBz+VSQkbHA4BVC8lS5uyUagIEYxVUiEpxSwajA/HNkryszcf17yLwK6ev8ACD9MEBNt1oPgf74BAaZL7dBle4w1lFP/9zstu0tDBSecsKFlCklaYhiPE7YXmwDSE4ogIJTRYRSjMG5jYpHZMu9hGRn88Jmtl1jUThTel22cEowviY+rPSvjZm7g9jb8l2ty8bd9e6KeqxBXASDuDwwiNFxBjF6rEHYL2UQOE4SSTEjDNxUCKpoZxAQTKWAkzdETgiiNBgEBAKsFAfH5TRJwHykepoWcXZgEflxFpF/0Rp3gy+EW85382BXtySYUaIgNGNFEl9W3rnDBMZSCiIwVUKRg1uIvzi6l/eha45D13wt6EL5SfeT6a3vh0JgN/e6HEtjheEwQQUhKacSp08M31f34Ts+Dt/xV4IvjUV3LdJHYMJiSsCV1z9PzUXP74NwchyEk68EQih30/0DYvDQlOyUXLwDOFYplSJRCeGpJOC9f1mA/cX6ffAiTT90kfTbfx+G2V/GrkEEajcf9rPo9E98JSsSUDfGoNiuYv20yz6CDw2BfKQhPMIvdZ1tnX/6M1lRVDc/mXFhVl6vjwHhYgeEw+r3t1+PAuHXD4EAp3LMBYcjoFzXEf9PKJjVvAY2rtDvb8KmEBMiBAOn0d/eL6r275fvF7pA2dTHimYxag3AZnynV3GDNKh8alAGa9YmTPKMdvFozWrrws2z+aQ7BME+45nDf3NtTG3Hm++T4RObjPoA1c1vWl23/moF+SoHx5QxLhXUqhAtWSplf0jhCRECs0QJdze3fZFw/8eAUVUVRpdrZUz3zXez58d8I/h4/b0djxvT+jtGFm6v3N8kPZRd9NyfIH2fxxuR42S2X5HMHIcTCX04ox7KTPdlHmx/UvMfuLu/1Xr5O1BLBwjf51oZ1AgAAEgmAABQSwECFAAUAAgACAAzgXVDsQO3FWoLAABpCwAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIADOBdUNz5lWOdQMAAHwSAAASAAAAAAAAAAAAAAAAAK4LAABnZW9nZWJyYV9tYWNyby54bWxQSwECFAAUAAgACAAzgXVD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAABjDwAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIADOBdUPf51oZ1AgAAEgmAAAMAAAAAAAAAAAAAAAAAMAPAABnZW9nZWJyYS54bWxQSwUGAAAAAAQABAACAQAAzhgAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
  −
*Process/ Developmental Questions
  −
*Evaluation
  −
*Question Corner
  −
 
  −
===Activity No # 5. Angles in the same segment are equal.===
  −
{| style="height:10px; float:right; align:center;"
  −
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
  −
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
  −
|}
  −
*Estimated Time
  −
*Materials/ Resources needed
  −
*Prerequisites/Instructions, if any
  −
*Multimedia resources
  −
*Website interactives/ links/ / Geogebra Applets
  −
<ggb_applet width="1000" height="400" version="4.0" ggbBase64="UEsDBBQACAAIALODdUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ3VWZ1ATiBJGiJEgNUeICgicQSOdAEKOCBKKkCC9nRxFinAiEDochBKikZ4oihAQDQceJ1Wkg1SpMXCidIEIhpMYEKIgxJCHM++9mffevB+7O9+3uzM7O7uzm+Fgd1FC7ISYkJCQhI21hdOBHTqQEFHggUaMv1wQEgJp2ViYucTPckpCbV13FAc35rNCn+tg770mN2oXvQrjeBQp998KQOiRwp5eWxVZcztCq8aFvL8nfDzfUVhGzid1wixpqK4+x+Xqr8BcwCmLV0XBJy4ndbvoNRfuSRfcZ0ADbn9VXIzidj1IbJG6Pp+I3Nniw87sMIu5XavzPF6xYHnXR4oofWXzb3VpNEGUEkBA/Qb4do0i0AVnVUTcYjbpbmhjnrIv0HLjKDV565CAz8WCI+/KduuTt/MFuzezl5aS2YFLje/3p6jexXt9W434lFXedsz2M3GG/pTJTrxAdREw+bupNzQ0hffbaoIFZjQ5m3WfM503vFtCxIztzjAZ9i0uZLzrhYVmfh5DSZfHzu3eG1hJ5H6rbd8XyocSoT12k1OpJAHIO8h+1Nc+CluR0oX7YDW3+Hwh4STl1dNavcFQ3MmJ/r7xQRlOg3m56i9qQ6OLXMGFpOj9W6NdIitJ7E2eKzs95aNPkL09ucR080g2vuS8Jm//9EtXeyvJtWDe3JTx2Cmny9sxrBYJhr9YnML2zqRgaTOKt//oFdjGzWZVyl1AXRHEBvFQsNTL9USyMtpaWgV2SxpsIQr6kRDPC8UfAVsANpd6RJ41Na1lkZV7RSPW55GfP39+uFaihvpie9qbviezxmaLYIOCzuzxeBHM3sO2trZ/Y+8oV466+xwyDJvv3ufzHD09swYGrNS/Gt4N672dg/1U0GPy+/k7N7e2I7NNFZq3mdv5fzQ3T82SXikYx4rvbCy619sSfgcaGORMN4eXQpZIUkoDL6mG/B5BnvyQ992conSDr1v7BWmBU+FxKovUvH0sX2VCXl7e3Nxf5KlbILPdPkVJUzPxiyqWvJJuSWsybWJmPFuluH/yRz2VeBGkVRfP9xP3PiF+u09jI6aL1Dg3SSuvVYW//KHzDNn9Pinwxuj4zFwG/UWC9Ri+R40AAt3Wd0h9ZYihbE6IJ/3GcY5ndw79UpLhniJQy4yT9cfhpAvCvay4PlQRp3gMKu39R2gQc0ZnF9WXfvjG0bqgsZMr+wiocVHs0t5bthkC4gq90seWd3B0vAIZJgIiYl60t7WdUCrZE53RDlxu6MLLia7kmsb47o68H9pLkItVnA4MNcUlCD3XUjLp2k3wbS8rVbCclf/VaDxCyKRUSt2tqru7W0iy5DzRuewxmmWEDInSQf10HbJsV2pSbZ2vvL482xgy3ZloaFWbDRzW3d7RjU82KpRf4UWRcjjyzJ9Z9QuedQmHaubbhDd43q+TPNI1N673sBSp1WKoCb3o6GgP7PBf4OxvUQGYXO7m9OCnjqUUE0HjbnB4uLs+RnqnexLepFMfc5YLLTzWph9weLPda6O3fS7EBhEbIm6cx7EY2EAIx8ieW5aDQsuqqugjCT968UkkEvPJp0cruOH8Yli7rny1V7VHK768UTMLR7/0Wl/D7Koi0IAadmlzjdG1/rDyMQjJjqyr8JNQa1ffZB0Jp9U8lowT4KdmVxc6E91yuzl5Cki/80GKfgEBsHdBb5/j5csDy4ORfxG2aiJd+K1ijUqTlz80iMZ+GjfDwiZmLW2IgEIDLe+OYAgpWyFp5Q3VUhOzdP2NXwqwea49biNfrHHYkZbRyzn2ld6I7uG/DOJ6wEvJyiCSe1Sm74qvg5McsFURaCxSlNXadtGvjaZgmjwP1nQxT5tiS3RcvfxnC5ZMbHbTFT17+L1RFCv7y2y08BZerr0lNw1lYrJvmjIQbcHk5b+eaWDscJbb4I+LUlWte33tIr6subq4udEqK4fVBhwI6+vrF2RGhhDOtAw0En4mKzF2OiQ8UqOih38DkGEs/u3mTaAsBHJlrinUKGErwBd3BZX4rCwDfXbG7HiNSS/+zbKW2TvJLP3W1lY4HF4XKZ07wE/JdNiUfqFvSGV5BeGJg1ow6/n7huHC3FVTUjm24LL7dbdkf9f8zLvwir7bOaKMPdHDTje8CP051Z6Lveq1Lp5jx1M1lhuqxp40Hc9l3IBEA8s6DVEUms7qUojk3bjJix4XwWAYq05jcX4exQk9Xlz1w/QLZu8TJM98mgIdpf0Md6RLQxLxxFXptWSwitlVQPp5OaRw+p27gecETw3oWlJZoVUTOt2FR/vRsiwFNylBibEbnuj3kzoXTaAfA+I6HsmKXzsHdZZrR3VsOauNGJQodGuJsRXzy2prx0Z6wBFafpKg3u6SsE017zqjgeeScmO25DkoS0xj8saJd2hHo+hk3jYHrq1dWoUNfXPBCgQ29mA+YOhQZgg9jHdKeXckALER9Orn5ubmwSEhfWtvnlAePAh76/8jzNp2CWJUSLpWd7bohYbbNHttrQ7HRKN4HzPJ/q0HaxzIP0UpNk05ubur/bPl4LCtpbU0CAFl2BDoFF819TvKYAuCbc/qk4G2mC9nz3aSlfVYe1/m4BpV9757/i6G3SIMl9fNFOBPoQn9AF5xW6UQqQFHLyAr66b1GTt9CENtt1AfffrehdxwTLlps64zBAQC6zl9sDp1CX7GzE/yyKGfLo6cDjlcsvq9WGbwjEvwLhMZnKsBovndy3QHw/7CTSc+A1W8fXD0z3hVs3fAcFsMq7X8vsjpSElt3UGAykdzUcOGNiqT08bIaDyYsKN0y9ucB2F2Cw9546rWaN/zsMKRrY5Sb2e+NZnYy3LaN8uZY4qTiy45Euhi1xGX+j/T9EJdxuvAIETIoSHQzPyJVIWKjatpqkMKqQ0K9/LzW+zAemlNZOUaMhGZ4VkzqVD9pAt5ANXD6u0QVEhcrPDNPeNzKma/iHg2e3TYRJeKXPzgJMkdRKIJLXLcjYaMP0R0ppb6Z9tAGAJMUZZI6w9JPWUsmB6kYHZGsWSkhyHzGByIyPLR6/yQKXGIrvsxpf40zBrje5PqLLewzMhQpnnxE6J+IGU6iHFNlStxQWUAGZkr5KgmWe6Zh0w5lonGn5XJKmb/vIREgMzB7/Bv+K/D+J3+L/ifUf8v6Tv9GfK/PgsE1+cqFJHaisqJPHighGws7Sxq0L6EfwBQSwcI69toLlIJAABnCQAAUEsDBBQACAAIALODdUMAAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s3VhLU9swED63v0KjexQ/4hAYTKcwvGZK6RQOvSqycNTakmsphPDru5JssAmUvmiT+mDLq/Xu+vtWu7J339yUBbrmtRZKpjgkAUZcMpUJmad4bq4GE/xm7/VuzlXOpzVFV6ouqUnxyGqiGy12pHpPS64ryvgFm/GSvlOMGmduZky1MxwuFgvSGiCqzod5bsiNzjAC51KnuBnsgLneQ4vYqUdBEA4/nb3z5gdCakMl4xhBYCVltUKszGwQKWZcmloJMG2UKh6TnfCish4FU/JIFNyO9UwtTuUlzO7TOsWmnoNxpqrlAa3sm+hG1vo7ldXcIBqk+C1GNEzxPlyiFB/gYatyPjetzrGTgjsNRpi1h4ww3jOdm5mq7SijxkpAkxe8hJCRWVYgqZSQBqOCTnlh/e29frVr40Vq+pkz00bbzLubodWB6QNVqBqBdaAqd+epO9OimlEYAYVOtaBLXqNrWtjZRgLWzlTGe1IqRemYRdpwADEE5CrOMzfy0cKgAnMue65ooZtgmFJ1ptFNimOSjDFapjgh4xFGtz7nnJJ70wtx2ziNu1KzLLqx7A4bkJ6Ba3/T4RoEZMvBFZMwenG4DjYdrqhBKyKTP5NcTJUllRmSrpJ8UMUyV9KhJL5XAwCg+/VfwVOh12Feh8IlTvHUe2t8PMKN99ai7+04AIXkPmozE+yL5BoqVNSiFPjBicgybmu6D6jHqgevNdyB8o/z+nTqaZ7bu7so2Gry/b0w+0mUhNvdwxeswYhEY59UCQmSJGqs/QIX/Kv0j2h7TrEoq0IwYe5Sp7A5fioN9GXuOob2sXYg+MJ5dQmmz+VlTaW2fdnrtIv0x5Gn64J8QKJJ0D2ipCl+o5448It7EAZkFP4/PEzXhYcB1E8HfEAmSW8pbDvgExKGW92JZIM46Jf0M5H5Htiv6dOVKn74XLHuNtLD55h80U7a3W2FsSMSatdLNMQn0KMr6B39DHpHa4Ke+xpyu4ntyQuA95EuH+B25HcJb1fgy74PXw2WWmyyNSoi437xaPdmiW+j0FC3x5NOwQ83toqsUnnYbgofUsl/nEq+LlSG7uPD7oFiMon9UoCtdhyPN5axO8MPeMs8b3yFt+OfqWDH//JDqsOb/dreSsLwwQqckDgYx/ebXMfoFomjoLtgf6vUDbv/O+y9+ytiB+2foL1vUEsHCHPmVY51AwAAfBIAAFBLAwQUAAgACACzg3VDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgACACzg3VDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVa23LbRhJ9dr5iCg/7ZIJzv3gpp2TZqnWVE6dW3q2tfQOBIYkIBGgAlChXfmqT/8g3pWcG4EWUZFOOtbJTFQXATGN6pk+fvsAcfb+aF+jC1k1elUcRiXGEbJlWWV5Oj6JlOxno6Pvn342mtpracZ2gSVXPk/Yo4k4yz44ioXmCRZoMeMbZgFM9HmhD2CAZU0wwN5hMdITQqsmfldWPydw2iyS1Z+nMzpM3VZq0XvGsbRfPhsPLy8u4VxVX9XQ4nY7jVZNFCLZZNkdRd/MMltt56ZJ5cYoxGf7nhzdh+UFeNm1SpjZC7gjL/Pl3T0aXeZlVl+gyz9oZHJhqOMfM5tMZHEpRHqGhk1qARRY2bfML28C7W4/+0O18EXmxpHTzT8IdKtbniVCWX+SZrY8iHBNJRYSqOrdl282TTs+wX2F0kdvLsJS781pgM21VFePErYJ++QVRTDF66i4kXChcpAxTOIxhFi40XHi4iCDDw+s8iPIgw4MMZxG6yJt8XNijaJIUDZgtLyc1QLZ+btqrwvr9dAObE5OncKYm/wDCDINNg51hHOOn7k/CH3cTw91Dki2tbb08UGmvkmB5gE76OTpZr5Niva+SiluOKe+wbtjDJ51TbB0TVPn//N+eRkYP0BieP0+h5A9yxNGwp8qoYwdqZk62Q7K188bxhRkkjHN7ggRwQyrwcoGIgYuiCNiAiEBcwCPRSLqrQkzBBEcMaeTkCEOeHELD/7jyi0kkYDE3qoCTiIAijgRDxHOKI2AS8rwEjlIGEkIgAS859YS6JZhEXMIT04jDHh0lFQFBBi/CM6iniBHE3MtEISqRdOsR7qgutds6LEmRxEgStyCwGhgd2AzyGjF3GtmZKy8Xy3bHROk862/barHGAqQhHm0iXYhPO4HwyahIxraA5HDmkEToIikcI7yiSVW2qAeRhrFpnSxmedqc2baFtxr0c3KRvElauzoF6abX7WXTqmx+qqv2pCqW87JBKK0KvN5zVZCte7reNTywrQm+PSG2JuTWvbpRbwUzaNlY0F/VTS+eZNlrJ7EJDWDJt2Vx9aK2yfmiynePMRr6PDOyy7TIszwp/w3O6rQ4u6B12vHhqk87QuF+J1WdnV014MJo9V9bVyDJTawMkdwQJY2QEHKuwgzHNJaSGimFZEoD3E2aOOoxHROjBMNacncDceDq5inZIWcv1vgkK7s56rR2vN56eN28qIrNkD/9SbJol7WvFyA01u5Ix+W0sN5DPK8hGafn42p1FlyDhbXeXS3gqTv5eOqtjiAyUAHJctpdx+HqZdzW1lLYy2AvgXtfy7P1PDHUS/jrOFy9FDhv2Fp3VNIfk+BeTd74eIajjjV9rHKu71L7sszbN/1Dm6fnm6O6F35czsd240BO4GUeCpFQYe2qIV9QzWh4zQ9H57YubdG5PUC+rJZNYPEWIzKb5nN4DBOd4RIH6r9gT2E0s9PadvJJ4Su2YFY/u+PQe8N+qdO6mr8uL96Bx1zbwGjY73LUpHW+cJ6JxpAqzu3G97K8SSDTZNvvOZ6CNVKXUcAgrbMWMHjZzqra12QQeODq6FnYOVRjqPVO6P14bfljX9o5E6Nq/DPEvnV6DPP+wZ8Dpm90SO+6SbGYJa786w5dJFe23jGDX++HKrtuHLC9PwHEgYWvHwHwhbXBV8KO4WYBC3rW7YQysHeDVlDKxkwSI6AkUYwK4zZ05ap2RY3CVHEuhGHcROjDlk96OziW7sT1MHoNRPCsYMKPGPPFgxrz7WTS2Nadf0C0P7H88qaGVohgA52O1FhrRXGwtYwp14QKbjRVkroC8E+wdVrN50mZodJXVSd5nRY22qT5BDv/RQlxlg9mXbb9RBoW65bYAw7Yk6drYNKPALdlituQw/cnwSZKt1A+nEOP1Piyve2Shr/5R55l1peOIYvlU1tewE4he0PDibt29goH/ehDP7IC6wz80BXphj6QLWjAJ+p8hY57+eNe6hjKDslizJjQBjPMNMMKhlmn4Riqj8ENzDuGQmSwz72w6/dlOGgTorurtvJJnt4N/E+eZLu4p3uAn9wN+C5TT+7FVEJDtvbXe7OVeMYQ8uXJSnBsDGeaE6GxpFJ6zSJmhGHCiIJyiTP5Jbh6Zqdu/BpoLwJZT/awS+7GrulW69FJ/q903dgXzMsEIZRRrATR0Hl1wdBoxpnA2hjFDDPCW3jAgS2aYykVpwpDFP0M+l8jUj5fFHmat2vLFs4tXpctFE3Wlwj7hc+5tQtXl74t39VJ2biPXUGmd/7PZeTLQxj58sEZ+YVIJ2LFNdeUU4MNgRTpfUJDIBXGYE24IoRw/dCke7kHz/gw0o0fCekGJFYaWkDBoFGEzMJoKEFgmEG3xyAhYcyIIMHEAxZLLag2SkFZIgVVXy3rbsb35W1BNTsM3+yR4EuhdIDaAfp1RbRUUE92WYtyYTBRDkqsdIeuULHGBsoPSgh2Hw6+WnT9d4TbuIsSehPEv//vbox977lGEKT9x/ekWHbGJ7GWUAxAsmKCYWlol5Lu18IQvO8G5BPdYO+DxafjltTpVuTsY3lRVJf/tJPCrrxh/9zM9uqQzPbqW8lsOoYCH8pIBQW9NIKuMxvU+Eq6P8kFpg+d2V7twWMPi3z2kUQ+l9mM4tBNQcukNdWy+45hOJcK8pdg0HS7ItNFPuoTGxQakAAJpDbzrSW2k9vgnRwG7+SxwAuZDbCSDFAkHBqwAC8MQ2+thGLAHgPRWDMPMMexVlwZSTVhCqKz+Grx/bSgenpIUD39VoKqiolyoZNAKwmtgeqqWR1zzNx3NgXZmWD+4FH1dA+f6WG0mz4e2hEhIEwKJaBC1JC/vIVZDP2DpMp9tRSai2DhASExoRJr7SgJTbz4eml3M76nt/ULs8PwnT0SfFkM9b9xHymFhgZP9ehqojWG8An5FLKk6r7BCB5TRSHKSs0h3EKE/WrhvaNhOL21Yfj1oIbh1482DPSv3jDcgcKrW1H47SAUfvsoCvKvh4JdLWpQ49Jvf0a7aiHdwsRR9Lf3y6r9u1+iQXkJ2wKWAl6oi2IoqS2y75dJEST96rsguOWi3bXvFfD6f+IX5HNjnv/NSWPrfLL5fUb4lYGM+hjUiTZtUre+7ELhQzWFIkJBRJTQSmhGCfdR0sQCOgupMaOUUC12vkpuW3u4/a/N/ocf3Q8Xn/8BUEsHCOAFf+5QCQAAVSkAAFBLAQIUABQACAAIALODdUPr22guUgkAAGcJAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAs4N1Q3PmVY51AwAAfBIAABIAAAAAAAAAAAAAAAAAlgkAAGdlb2dlYnJhX21hY3JvLnhtbFBLAQIUABQACAAIALODdUPWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAEsNAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAs4N1Q+AFf+5QCQAAVSkAAAwAAAAAAAAAAAAAAAAAqA0AAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEAAIBAAAyFwAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
  −
 
  −
===Activity No # 6.Angles in minor segment are obtuse whereas angles in major segment are acute angles===
  −
{| style="height:10px; float:right; align:center;"
  −
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
  −
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
  −
|}
  −
*Estimated Time
  −
*Materials/ Resources needed
  −
*Prerequisites/Instructions, if any
  −
*Multimedia resources
  −
*Website interactives/ links/ / Geogebra Applets
  −
<ggb_applet width="1280" height="572" version="4.0" ggbBase64="UEsDBBQACAAIABGHdUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ3VXCTQUbte3ZJuUwRRlmzSylyUqS8wYjH3sCg0mkpkQDTPGHjJ/S5aSfZtBsi8ZMvYwGBGRshaF/tnJzus9//N95zvfed97zvM8597z3Ofcc+/zu+d3SUhT/TOAiwAmJqYzBgi4xclJP1kYTvaTXWmwf4qJiZtoAIda4b8uZYV4g35c6CafD4kNseoefSiC60oMWwyNUizQdQG+TJFRkumdGXQq1iMBEQBmU1JWdCJ7RkJyBCiDkzmfS8UJos3Kb7Jk7nKK5h4tLawaFpqoV/9xmCupnbpN6xElZkz2OUL8BXaC3aYa5vxWJpsmt2tW9mkrjURFcIQdX4eONifbpYhwIAzKmQeOQAJhUpyXQBFAAIyuK4ewtxe6a2+flpr6pEcy+kCHs+o1FJ5Q8yCsvt5sBNPK0/l7SR0dg6vdftpD1hoXqWTFidbJEyLSzUKo6shuf/AHDGTgMWp8g59Sviy0xUwYuR04bJLzukU/HruuzmlZKNzetC2KPO7uUt36mmAjWDsgNP352vB8AWqlV1arfTAvLoVgmj5n0VO6urhtkNOyRhSk5qFsW+Rr2jWxY8Etrm7THVjNGlcS6bhN4tXvpbf3pAgZWSXI0bhPBJVle6ss2yZwjIBYp8rnmyMlax2vHOsGvDjK613ErjbV7h8fHMymanxxJbRuIi7tLDfWBPdtEtj2aGtNfdemi5Lqfm8u+lrnBOds7gq1PHsstIfb6qs9HK2fjTc7BNRix38TBT8Pexm1GJu+7sP1+jTmzZUdx+eVChVveExQ3dUqgsO5xZpRTdIVXbHljeXMto5biSuHxZZaG+N5H8kZT9US+K8IW6m/QRUOyIKgyy3TBUl3rIunJYOOulacJ6LWiA9DMPtlj2fjcjY9bFKDeGYD9n7sue5dhB83100i10UV86UXcORvNI/9P50CRYr36c2v1SqgHIvV64w0+adaC++0m7sj8RpzMjmZgTffNHMQq/5d3UAz6Fmx24ywS1eulITBYIjQixH/1D3xZ6QAnluKs82cOr69TeIXnfv5lYCUonfG7ZdUVIpfq9jPYTWdEXvZWjiCd/8dVK95lfkDTaIVkzZZXC3ojWWLr7cbRibEhHpp7ri2D6x1JOpUufdw4/2wcH0dEaVeQ/Nq4g21xnfI5gc8Q6qe8KUw1tY11dyHPJVNICkGcigT76+e4lo2U0UBCwCnLrY+MuvYnJd0ho0KC2scXbhXfC/GPtvoT6HVQUPAaY0i090gSnUe8+K5c7+syWWzLYIh015AIf8baqM/WKZx62MWCW3y7OuPxpyORZaDXc9WH98LQy+j8bNPt9c291R2XpXwxukLKWI6NvBOP/gk4IscYjs91eXlZ2d9fFZX31jb7U4R3dUJFvJmKPvYdC35Bc+ow4qY7vRwbqWp2pLN33uEVKtK7pWj8eIIoKJLkudmoeBLF2X0CMaXWBNQtoen+mdtCTYGNiTlj30L3R/3+qbhA+eyomEE1MxybDKAadWqpVBbz4uDQwy0KZRdP5NZunKKKdAMI5sdhBbhi3ng/EdIF1/lwX82x93ybTSFmuV1maCj5HG7zNqkmPFGZkzVS2/r6NCQJVEcM67akl7Q0ORYZom0Lxl9LKK13I/WvAtogh4ue4iGAPg6hT1OpRQxoRpHXt5Lh/MFjqtaO/WMX3P+Zn+6asbrtJUhQXkyw8Yl0f+OH05F+Kpta2lcdeDEaGFE0oAfXuPXynq+hhOaeYCVjQSjkCxT88rXfSJRP5rajbxegLBnGr6OYzwSzO+QMrPUR44PoddisPPPV2jkU9L7qzpjR9V8ohX4iHA4D6qO9c+T62Kaf1FwfytQS41xnwFDjKR2OQtEmbjt/gbpSgzW9645r0WTxQf8IttNasoGDZmwQLoVrDDHvYxq4LszTkUT0eRr2Qlj7WOR6shouTT7uplmmkYsIutpJObol/2fXyVypSAIo35SVO5g5DJ+LPuZek2NYgXNYQSkRP+M+2kMvPCEqfvuQTI393LZltmKDZO1xNFDnQ8NvP7yW9xXDN8MvP0W9Y28Sh77KFcAgihBNA+kog52TCFfLQ6LohcAHq3bFNkxu1XXXyRzYFqSC2gRQ8WZfH8irqkp0uHZcGbxuQlaugDMq80+TzMpUUR3gVVUVGT8en74tLnV5FEop/6mVQ0OFRh9czggxtdbJnCCbYkrLzUlJNiutRwonYh4ney6w31ecm4uU1ZW1hv2qvGlyX0IedfLJ0WBjct/ydnMls1369fIG7Ca8Flr7Q4DIlFdSVk5cSkuBB67XE+Pq629vkVFkBN+ihSRkQmV5ihykkOxbBO0ATQYH3/WysoqlxY402iry/KlEEId1zqfeLF/dk2KQDn/ceVaHvgblAW7cq7hrl5rk8qz2sOYmJgRccLkO9zfoVgbDy7pTQtMNJOej4/P4NjYocYd3rcNDbsOcZL7xlKIsVNr4m3eRkYxIb5dMSAX3vnAjyMjBele1Wdedb4AJVqjiCR4MMitstYiQWHmyRP/zoCe3l6LSNsEFrl+uSDmLce2lmeC4nlPvrxjYYzwGcTBFiKt6Sa2+g5yVaD7oYlTJejJt1HN84YsfqiMliJvIw3wyjYH6RFkLOVmUYXbK6w+vzW/nhrPQQIzotsmxQ7Al/3z5R3lLvzIKEQxRqD0dXGxucun0VH2t80IjxdIj6x7KvETzfZ3GHxGUHHJ6E/grnYZTcMh+PqmooH5CZ5hXKtGRkYvkXoBnWJX9k2l6KGnXYSFXwi+x8rBPYBoZbrA0Kbx6cSrLnG3fMM5IwPYWcs8zgFg0PxydsUz8bjHYYj8vJzz+SRl//Izw0XbjtFbT8P0KGjtdQoYBMkPRyQbsP+Kpd+Mtn6eDJra3ZjfNzn90XcBqe72oXar4fRXp9wLfJkYxwHQCW6MgdIRbrYeD93SSGST0wampnrZf2bqg3PFuK93KB3lnryXGY5APhoZpjxnZhRGIgTKVddFAV1trQmnEhtFb5S5kQrArLEgJS9nI4ek6BfW0u57tOLPMkONnwYHgd53o0vJPIz9dqzCoJw3FYQgMqTzwKx/Ge/5qimsLZJee5V3ry/1JdpkRyVPZ1rFSMx86O/vrH88yxIfjFmDKVhaMNhZ+4GX5Lsd5srfs5qeZF6pld6vH3khOufiCrHZemO+H++xZFm/VWUfNAybUxGk3DovVTg4yuUGvz2jKZ0Zowttv/BsQmXpqkT32+LP7UfvRBQvo1fvf0gWzFK5+GAg29okq7mQ5B5tbLNRV8rOqnN2UJqTjUtIvZdXiwBaN9oYMQM6HO9sjQ1XF9nW0Etv9HE/VCNBun6a57ZpX8bhcDI71Fgtv1VFbRDEmJHRxNQRdcxS86o/av7FFoivBKqjfN9BR6uZ111hkLsmoyjwxX1/rexoZIK392879fPGNMmZZN1TDfnPfFDRoFUKBTIN0Tfj5EmridWCuPVSqygn3/nyQG2ApuyMzBADsOV8dohhiEAgJ9+3icN6mqQL6TUBBDFONhLn+mpdNlFn79zNDPDTMFmbUs5FXwujnnk74kmPgwFyNb39yze12Yhez4IVkICgSmjzJ9HCfkXCBA+GB8Bnfn+m8g3EaUMy1WkSq4CcA/w0hxXuGg2cy3mmC81nSQuupqo6MS9jQBMeCkiWQ21LC+PG5IIN8I24+chwOK8S8AHvcwS/7KATCvU0zCKGvl6u7Ci194AXm4HFe2742m2OijP6s8YbuSS1vnd4OgL4rOk1RRSnuwjxKt35RdNPITbPq/eUrFYq9PpeyUN52A0zFSV8AX4NfruF9QjD1BTv5Wa+Lxy8W8jLAxxsJAsDSmj6dWqX1m3RRddFuxai5pTWzm0/1aX3QyZGiasI2OCXgb0OOcbV1KXkjseDYQbKV4pd1/q6nvgLrnZrSNNzow24w/Y19jVK7zb2rvwSU1c8X06++v5BN8fLsveKPEd/oHO2P0oGUJp/e0D6zSyGHdXupUV+TCN/0lA4QaDY4mSSbIBZcknHcBixcHI2GY04AII8r1ppHcr11RrEB13qL65HdTuPTz3Cf++UVFgnZax9Hboce0uKDoZ3GdxXMNebaPFDB37H1wZ//Cv2gFsjeTf23fo2x7at54TfZ84Jpc2ihe86xSdx6hcW0FJI+brPv9fVOwuq47DH6Mzs9MWqNX7vjcFxAlaazhZBvbCZLBQc1ZkstnD2549bLag/a590H+b3lFV/HagjgQ/KeAA+5tdbKJVG2l4HS7CgJKfpxZm1/P+h4P+Jkf8vUf9/6v+99d+dTsz/qHO01RArTBHS7232hZNphMlA1xReDnMK/xdQSwcIhJ6tVqAMAAC0DAAAUEsDBBQACAAIABGHdUMAAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s3VhLU9swED63v0KjexQ/4hAYTKcwvGZK6RQOvSqycNTakmsphPDru5JssAmUvmiT+mDLq/Xu+vtWu7J339yUBbrmtRZKpjgkAUZcMpUJmad4bq4GE/xm7/VuzlXOpzVFV6ouqUnxyGqiGy12pHpPS64ryvgFm/GSvlOMGmduZky1MxwuFgvSGiCqzod5bsiNzjAC51KnuBnsgLneQ4vYqUdBEA4/nb3z5gdCakMl4xhBYCVltUKszGwQKWZcmloJMG2UKh6TnfCish4FU/JIFNyO9UwtTuUlzO7TOsWmnoNxpqrlAa3sm+hG1vo7ldXcIBqk+C1GNEzxPlyiFB/gYatyPjetzrGTgjsNRpi1h4ww3jOdm5mq7SijxkpAkxe8hJCRWVYgqZSQBqOCTnlh/e29frVr40Vq+pkz00bbzLubodWB6QNVqBqBdaAqd+epO9OimlEYAYVOtaBLXqNrWtjZRgLWzlTGe1IqRemYRdpwADEE5CrOMzfy0cKgAnMue65ooZtgmFJ1ptFNimOSjDFapjgh4xFGtz7nnJJ70wtx2ziNu1KzLLqx7A4bkJ6Ba3/T4RoEZMvBFZMwenG4DjYdrqhBKyKTP5NcTJUllRmSrpJ8UMUyV9KhJL5XAwCg+/VfwVOh12Feh8IlTvHUe2t8PMKN99ai7+04AIXkPmozE+yL5BoqVNSiFPjBicgybmu6D6jHqgevNdyB8o/z+nTqaZ7bu7so2Gry/b0w+0mUhNvdwxeswYhEY59UCQmSJGqs/QIX/Kv0j2h7TrEoq0IwYe5Sp7A5fioN9GXuOob2sXYg+MJ5dQmmz+VlTaW2fdnrtIv0x5Gn64J8QKJJ0D2ipCl+o5448It7EAZkFP4/PEzXhYcB1E8HfEAmSW8pbDvgExKGW92JZIM46Jf0M5H5Htiv6dOVKn74XLHuNtLD55h80U7a3W2FsSMSatdLNMQn0KMr6B39DHpHa4Ke+xpyu4ntyQuA95EuH+B25HcJb1fgy74PXw2WWmyyNSoi437xaPdmiW+j0FC3x5NOwQ83toqsUnnYbgofUsl/nEq+LlSG7uPD7oFiMon9UoCtdhyPN5axO8MPeMs8b3yFt+OfqWDH//JDqsOb/dreSsLwwQqckDgYx/ebXMfoFomjoLtgf6vUDbv/O+y9+ytiB+2foL1vUEsHCHPmVY51AwAAfBIAAFBLAwQUAAgACAARh3VDAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgACAARh3VDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1b2XLbRhZ9Tr6iiw/zFEK9LxkpKXl3lbPUODM1NW8gCFGwQIABQC2u/NQk+Y5805zuBihStBTTchxJk0pkAI2LXu65597TILn/9fm8JKd50xZ1dTBiCR2RvMrqaVHNDkbL7mhsR19/9fn+LK9n+aRJyVHdzNPuYCS9ZTE9GFEhpGByMp4YRcdyYo7GE+fcWKppmk7Toyxn+YiQ87b4sqq/Ted5u0iz/HV2nM/TV3WWdmHg465bfLm3d3Z2lgxDJXUz25vNJsl5Ox0RTLNqD0b9yZfobuOhMxHMOaVs79/fvIrdj4uq7dIqw/h+Ccviq88/2z8rqml9Rs6KaXeMBXOLdRznxewYizJcjsiet1rAI4s864rTvMWza5dh0d18MQpmaeXvfxbPSLlaz4hMi9NimjdwUMKUE0aNSN0UedX1FqwfaW/oY/+0yM9iZ/4sjIPpdHVdTlLfD/npJ8Ipp+QLf2DxwHHQOt6isY2KeODxIONBRRsZH5fRVEYbGW2kGJHToi0mZX4wOkrLFo4rqqMGoK2u2+6izMN8+obLNbMvsKa2eAtjQeHV6Gm0U/qF/9P4k/7G3uYi2dqoXbPccdBhSEa1fP8x+W3GFMOYcNn2kFxds0x9g3fjHN5rnWrNtRgq/B/+tkYUfIcR4/XtBvQIfIIl7u8NVNnv2UHaY2/bI9nl89bzRTiinA97RhS4oQ2iXBHmcDCcgA2EKSIVLpkl2h8NEQY3JBHEEm/HBAnkUBb/SBM600ShM99qwEnCMJAkShAWOCUJmEQCL8FRLmChFFF4yA/PuO9CaCI1roQlEnP0lDQMhgIP4hrDcyIYEf5hZgjXRPv+mPRU19ZPHV1yoinRzHcIVoPRkc2wt0T41ejeXUW1WHYbLsrm0+G0qxcrLGCNfHSZ62J+2kiFn+2X6SQvUR5eeyQJOU1Lz4gw0FFddWQAkce2WZMujousfZ13HZ5qyZv0NH2Vdvn5M1i3w9jBNqur9vum7h7X5XJetYRkdUlXc65LtnbOV7PGhVi7IddvqLUbeu3cvHPcGnfIss0xft20g3k6nb70FpepAZ78riovHjV5erKoi81l7O+FSrOfL7OymBZp9S8Eqx/F+4WsCk9IV0PhUYYOM6mb6euLFiFMzv+TNzWSjDAJCgg3ijHJtJGoJBfxljA8sZI7MMMqaZ1nUJZ68nGbaGeFodxpprXP7BfvvqUGoPLTFUTpeX652lnjqb128bJ9VJeXTcEBj9NFt2yCaMBQjV/VYTUr8xAkgdqoyNnJpD5/HaNDxL5+uFjgql/8ZBYcT5AcuMIqZ/1xEo/Bxk9tZUWDDVMi2Cg2RFwxXZkwx6ORP07iMVghhOPs+tWyYaWMDiMVbVQ4o547Q8byBPAlflkV3avhoiuyk8vV+ge+Xc4n+WUYeYMnRRQkUWltDsP+wGH2965E4/5J3lR52Qc/UF/WyzZyeY0X0zwr5riMN3rHpR7Xf2JOsXWaz5q8t0/LoNyiW8PdjbDeag5dPWvq+cvq9AcEzZUJ7O8Ns9xvs6ZY+OAkExSMk/wy/KZFm6LeTNef82yFNzJfV+CQznsLPF52x3UTtBnSD46epGU+hyYjXYjDEMorzx8GieddTOrJG2TAVZGM98NFWAduX4lJuopakpaL49TLwH7RZXqRNxtuCP19U0+vOge+DytANlgEHQnAF3keYyXOGCcLdBiIt5HQ4O+WnEPSJkIoY5igUhuFTOCzB0iaOGaZYE5zaBUBmxF5uxaVwROeqhv5PbZegRGxFZ34O+589BDcKRItpRSCC+qs1NIGb+oEglda6Sh8rY2zH8WZWT2fp9WUVEE+PS6arMxHl/U8pT5EScq8a6Pflt1wI4ud9V1sIQOCFNnK89nvILPmiXVohhyNvOvRoR+OzWUu7iAVTrAfaoNE7/rqEE5eFNNpHmRiLFfFLK9OMVlUamwvab95vaBxfPJ2aDmHg8ah6YL1TW/ZGjqIiqY4J4eD/eFgdQiJIV1itTBMC2e14c7z5FD0QxxCaozfRbBDyI7xOygWJ/5jFdfaxjTuxVVxVGQ3w/994NIm+tkW7I9vhn2TkI8/iJCMR9TD8W6QkgEuasBJCZCc0FYMrBTUas01Exy4yD+Ala/zmW+/AsyjSMvHW/ikN+PT9r0NCKR/NjEvfewZJKhAQCPYpdNKWRe8jPjX3DrKtTHUJ8BYScZSJ9w4qjSTVlNLh/D/IK5foUwxX5RFVnQr/5Y+Ol5WHXRQHqr+tpY5yfOFV5vfVT80adX691jRZgjz23LvyS7ce3KLYshoL2X98c9lngbxIL8p9h9S498oLmzCKPKloRT5EnuWT827J1vYTHbj3eTDePcR4VkjHks8eShn1DNPM86Ck3kCJlIH1hlpFM4j7SxYZxnalRbM8K3Nzr0h3bsRfnwdwtPdEJ7eLYSNEYxTIy3l0inNA8JjBXYp41DWKBdCmygrFUs4tYIju0oOMXp/IX6/vPp0l7z69KFoGpFwLya5ZziiAAKyZz232oeJcUgI3IhPnVufbuGT78a8/DbMox9P0MiEMuhyCXUutFY8li7IHGGNcYwJya1ksifdmPGEWSWdVz5Uw/nu3tLu3fg+vU6zHu2G79EdwXcMgLFTt8pZzphmthcnJjEA0AJ75pxgVvRyNfG4aq4Ek4DesXsL7/tl1We7ZNVnDyWrqgS7cQqIKedQqEysWM/Bba6xf1TUYm+jP3VefbaF0Gw33s3uCO80iKQkY9gSwpNBl0a1ygyoyAyiQTHdb8bHwibwO/QrRzP27vdXzNyoV7fRPd4N3eO7g671kpSjMGJTwsRKqUrFnVcrUqGA9jmV+qRqreEoskqZh55Tn++SU58/lJzqEtRLxpy1zoDXce+CuSAWtFdKRkpnhKbuU6fU51sAFbuRrrgzpOOOWg4vY9/HbC9VVaLhcAvtao2lpt8KjJVNYKqNUbB1Rup7S7obM+o2uG92A/fNnQFXcOz9Uf2sgiodZOqYJX5XQkEc67hFBu3fqyqXUGHwH5fYpRjx0JPqi12S6ouHklRNwri1zL/3EdiKCt2/WBXYozBsTrlEEPBP/onGiy14TnZj3cldeu/GUaQ0A7Xgamj/AHv4bFxaKYyh8D5HbjW9nGEy8S9kDNMUhU45ae4t9W5Mrdsgl7uBXN4lkFnijIIGsYahSALmSKWxSACt8p8MQrBS6NlIJuk/y+eU+XfnRih+f8vn+6XXl7uk15cPJb2ihjLsNi2zRnLhJOtfDTmDKJFGa8GpdB/nOzE7pNeXW/DMd2Pe/G4xT8OT2Bho7AEEiKd73YrKpbx7tRSOu163cpMY4agC7yB4FGrbfSXejcl1G+JqN4irOwax1FxYD6eTVFIziFfnKJoFQ3l1nmMBZEETwxn2iDAGxfT9fdsTvtx63afPJOXvepH+239vRjp8G3KFI6z985jPsnc/T8L2gIIcsWT1GehDv0WwvYlh7xkIt8AtbbK1FDok9bKsz/6RH5X5eXDsbVBYvXELKGx/M+63n3dC4eerKFCEtkAIS8qoYkY7+RcK16Lw/FoUftkJhV/+QuEWKDy9FoVfd0Lh199FQf//oZCfLxoM4xXpsMb8vIOgxI2D0d9+XNbd30MXLSkqTCsn86LCsvu6TtImx3JLkmbLDmfAM920Tt9csa4n3bLNY89hNpug+eFHm3O59Zuu8EO3D9UL4VdBbd4UR5e/oIk/AtGjoXz3pm2XNl3YuJCgL0yifVxZqAhpWf9u2SHqFHVKSkohM/wPOy5l+jo0e+u/Awg/zOl/WvrV/wBQSwcIvmnDpRcLAAD3OgAAUEsBAhQAFAAIAAgAEYd1Q4SerVagDAAAtAwAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACAARh3VDc+ZVjnUDAAB8EgAAEgAAAAAAAAAAAAAAAADkDAAAZ2VvZ2VicmFfbWFjcm8ueG1sUEsBAhQAFAAIAAgAEYd1Q9Y3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAmRAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAARh3VDvmnDpRcLAAD3OgAADAAAAAAAAAAAAAAAAAD2EAAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQAAgEAAEccAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
  −
*Process/ Developmental Questions
  −
*Evaluation
  −
*Question Corner
  −
 
  −
===Activity No  .===
  −
{| style="height:10px; float:right; align:center;"
  −
|<div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#f5f5f5; vertical-align:top; text-align:center; padding:5px;">
  −
''[http://www.karnatakaeducation.org.in/?q=node/305 Click to Comment]''</div>
  −
|}
  −
*Estimated Time
  −
*Materials/ Resources needed
  −
*Prerequisites/Instructions, if any
  −
*Multimedia resources
  −
*Website interactives/ links/ / Geogebra Applets
  −
*Process/ Developmental Questions
  −
*Evaluation
  −
*Question Corner
  −
 
   
==Concept #  4. Finding the Circumference of a circle==
 
==Concept #  4. Finding the Circumference of a circle==
 
===Learning objectives===
 
===Learning objectives===
1,040

edits

Navigation menu