Changes

Jump to navigation Jump to search
1,331 bytes added ,  12:08, 15 February 2014
Line 164: Line 164:     
= Hints for difficult problems =
 
= Hints for difficult problems =
 +
== Ex 4.4.2==
 +
#Suppose two chords of a circle are equidistant from the centre of the circle, prove that the chords have equal length.
 +
'''DATA''' :-  Let AB & CD are the two chords which are equidistant from the centre 'O'  of the circle.  [ Here OP is the perpendicular distance from  the centre O to the chord AB and OQ is the perpendicular distance from  the centre O to the chord CD] OP = OQ.
 +
 +
'''TO PROVE :-''' AB = CD,
 +
 +
'''CONSTRUCTION :-''' Join OA & OD.
 +
 +
'''PROOF :-'''
 +
    {[Consider  In ∆AOP & ∆DOQ
 +
                              OA = OD
 +
                              OP = OQ
 +
                  Angle APO = Angle DQO
 +
                        ∆AOP ≡ ∆DOQ
 +
                            AP = DQ
 +
    Let  AB = AP + BP
 +
                  = AP + AP
 +
                  = 2AP
 +
            AB = 2DQ ---------- 1.
 +
    and  CD = CQ + DQ
 +
                  = DQ + DQ
 +
            CD = 2DQ --------- 2.
 +
  From equtn 1 & equtn 2
 +
            AB = CD
 +
 +
Radii of the circle
 +
Equi distances from circle
 +
 +
SAS Axiom
 +
Acording to properties of  SAS axiom.
 +
 +
Perpendicular drawn from centre to chord which 
 +
bisect the chord, i.e. AP = BP.
 +
 +
 +
Perpendicular drawn from centre to chord which 
 +
bisect the chord, i.e. CQ = DQ
 +
Acording to AXIOM-1]}
 +
 +
 +
{|class="wikitable"
 +
|-
 +
|Steps
 +
|Explanation
 +
|-
 +
|Write the step
 +
|Explanation for thestep
 +
|}
    
= Project Ideas =
 
= Project Ideas =
31

edits

Navigation menu