Difference between revisions of "Progressions"
Jump to navigation
Jump to search
(120 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
+ | |||
+ | <div style="width:150px;border:none; border-radius:10px;box-shadow: 5px 5px 5px #888888; background:#ffffff; vertical-align:top; text-align:center; padding:5px;"> | ||
+ | ''[http://karnatakaeducation.org.in/KOER/index.php/೧೦ನೇ_ತರಗತಿಯ_ಶ್ರೇಢಿಗಳು ಕನ್ನಡದಲ್ಲಿ ನೋಡಿ]''</div> | ||
+ | |||
<!-- This portal was created using subst:box portal skeleton --> | <!-- This portal was created using subst:box portal skeleton --> | ||
<!-- BANNER ACROSS TOP OF PAGE --> | <!-- BANNER ACROSS TOP OF PAGE --> | ||
{| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;" | {| id="mp-topbanner" style="width:100%;font-size:100%;border-collapse:separate;border-spacing:20px;" | ||
|- | |- | ||
− | |style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style="width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics] | [http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_History The Story of Mathematics] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "|[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics] | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " |[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Philosophy Philosophy of Mathematics] |
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics] | [http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Pedagogy Teaching of Mathematics] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus] | [http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Curriculum_and_Syllabus Curriculum and Syllabus] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics] | [http://www.karnatakaeducation.org.in/KOER/en/index.php/Mathematics:_Topics Topics in School Mathematics] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks] | [http://www.karnatakaeducation.org.in/KOER/en/index.php/Text_Books#Mathematics_-_Textbooks Textbooks] | ||
− | |style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; "| | + | | style=" width:10%; border:none; border-radius:5px;box-shadow: 10px 10px 10px #888888; background:#f9f9ff; vertical-align:middle; text-align:center; " | |
[http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank] | [http://www.karnatakaeducation.org.in/KOER/en/index.php/Maths:_Question_Papers Question Bank] | ||
|} | |} | ||
Line 21: | Line 25: | ||
= Concept Map = | = Concept Map = | ||
__FORCETOC__ | __FORCETOC__ | ||
− | + | ||
+ | [[File:PROGRESSIONS.mm|Flash]] | ||
= Textbook = | = Textbook = | ||
To add textbook links, please follow these instructions to: | To add textbook links, please follow these instructions to: | ||
− | ([{{fullurl:{{FULLPAGENAME}}/textbook|action=edit}} Click to create the subpage]) | + | ([{{fullurl:{{FULLPAGENAME}}/textbook|action=edit}} Click to create the subpage])<br> |
+ | #[http://ktbs.kar.nic.in/New/Textbooks/class-x/english/maths/class-x-english-maths-chapter03.pdf Karnataka textbook for class 10 Chapter 3 -Progressions] | ||
+ | #[http://www.textbooksonline.tn.nic.in/Books/Std10/Std10-Maths-KM-1.pdf Tamilnadu textbook for class 10 chapter 4 pages : 34 to 67]<br> | ||
+ | #[http://gujarat-education.gov.in/textbook/Images/maths10-eng/chap5.pdf Gujarat textbook for class 10 : Chapter 5 Arithmetic progression]<br> | ||
+ | #[http://www.scert.kerala.gov.in/images/text_books/chapter_01m.pdf Kerala state textbook for class 10 : Chapter 01 Arithmetic Sequences] | ||
=Additional Information= | =Additional Information= | ||
− | ==Useful websites== | + | ==Useful websites== |
+ | #[http://www.mathsisfun.com/numberpatterns.html Common Number patterns] | ||
+ | #[http://www.davidparker.com/janine/mathpage/patterns.html Recognising Number Patterns] | ||
+ | #[http://www.bgfl.org/bgfl/custom/resources_ftp/client_ftp/ks3/maths/matchsticks_patterns/ Match Sticks Activity] | ||
+ | #[http://telia.hubpages.com/hub/CONTINUATION-OF-FINDING-THE-Nth-TERM-USING-POWER-AND-FRACTIONS FIND THE Nth TERM USING "POWER" AND "FRACTIONS"] | ||
+ | #[http://telia.hubpages.com/hub/teliamathshelp- FINDING THE nth TERM IN A SEQUENCE] | ||
+ | #[http://www.mathsisfun.com/algebra/sequences-sums-arithmetic.html Maths is fun for Arithmetic progressions] | ||
+ | #[http://www.mathsisfun.com/algebra/sequences-sums-geometric.html Maths is fun for Geometric progressions] | ||
+ | #[http://www.slideshare.net/Aditya-Kumar-Pathak/arithmatic-progression this PPT will give basic information of progressions] | ||
+ | #[http://www.nios.ac.in/media/documents/SecMathcour/Eng/Chapter-7.pdf -this pdf file deals with the fundamentals of A.P] | ||
+ | #[http://mykhmsmathclass.blogspot.com/2011/09/arithmetic-progression-introduction.html Number pattern and number sequence] | ||
+ | #[http://mykhmsmathclass.blogspot.com/2011/09/introduction-ap.html Introduction to A.P] | ||
+ | #[http://mykhmsmathclass.blogspot.com/2008/05/arithmetic-progression.html Understanding A.P] | ||
+ | #[http://mykhmsmathclass.blogspot.com/2011/09/deriving-nth-term-of-ap.html Formula deriving nth term of an A.P.] | ||
+ | #[http://mykhmsmathclass.blogspot.com/2011/09/using-formula-for-nth-term-of-ap.html Using formula nth term of anA.P.] | ||
+ | #[http://mykhmsmathclass.blogspot.com/2011/09/formula-sum-of-first-n-terms-of-ap.html Formuladerivation ofsum of n termsof an AP] | ||
+ | #[http://mykhmsmathclass.blogspot.com/2011/09/sum-of-n-terms-of-ap-when-first-and.html Formula derivationsum of n termsof an AP whenfirst term andlast term is given] | ||
+ | #[http://mykhmsmathclass.blogspot.com/2011/09/sum-of-first-n-terms-of-ap-problems.html Sum of first nterms of an A.P.Problems] | ||
+ | #[http://mykhmsmathclass.blogspot.com/search/label/Resources-%20Geometric%20 Understanding GP] | ||
+ | #[http://nimsdxb.com/wp-content/uploads/Unit-5_A.P._and_G.P._Core.pdf CBSE-i Arthimetic progression and geometric progression] | ||
+ | #[http://www.freeganita.com/en/topics.htm Progression Points] | ||
+ | |||
+ | =video on progressions from youtube= | ||
+ | #[http://www.onlinemathlearning.com/arithmetic-series.html Arithmetic progressions videos] | ||
+ | {{#widget:YouTube|id=TFWGV_84uEk}} | ||
+ | {{#widget:YouTube|id=1SDLmYdZkho}} | ||
+ | {{#widget:YouTube|id=uDpwYSL70oY}} | ||
+ | {{#widget:YouTube|id=F4HiKiQ30dM}} | ||
==Reference Books== | ==Reference Books== | ||
= Teaching Outlines = | = Teaching Outlines = | ||
+ | #In different number pattern relating terms of the pattern | ||
+ | #Defining different number pattern | ||
+ | #Recognition of each terms | ||
+ | #Differnce between finite and infinite sequence | ||
+ | #Difference between sequence and series | ||
− | ==Concept #== | + | ==Concept #1 Introduction to progression== |
===Learning objectives=== | ===Learning objectives=== | ||
+ | #Identifying the pattern present in different number pattern | ||
+ | #Meaning of the sequence | ||
+ | #Defining the terms of the sequence | ||
+ | #Writing the next terms and n'th term of the given sequences | ||
+ | #Defining the finite and infinite sequence and examples. | ||
+ | |||
===Notes for teachers=== | ===Notes for teachers=== | ||
− | + | #An orderly arrangement of numbers according to a certain rule is called a sequence. | |
− | + | #A sequence containing finite number of terms is called a finite sequence. | |
− | + | #A sequence containing infinite number of terms is called an finite sequence. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ===Activity | + | ===Activity=== |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | #Activity No #1 - Introduction to progression [[Progressions_Introduction_to_progression_activity1|click here]] | ||
+ | #Activity No #2 - Introduction to progression [[Progressions_Introduction_to_progression_activity2|click here]] | ||
+ | #To get the videos on progression in Kannada [http://karnatakaeducation.org.in/KOER/index.php/೧೦ನೇ_ತರಗತಿಯ_ಶ್ರೇಢಿಗಳು click here] shared by yakub koyyur GHS Nada. | ||
− | ==Concept #== | + | ==Concept #2 types of progression== |
===Learning objectives=== | ===Learning objectives=== | ||
+ | #Classification progression depending upon relation between consecutive terms | ||
+ | #Identify the types of progression for given sequence | ||
+ | #Giving example for three types of progression. | ||
+ | |||
===Notes for teachers=== | ===Notes for teachers=== | ||
− | + | #The difference between any term and its preceding term is a constant ------- Arithmetic progression | |
+ | #The reciprocals of the arithmetic progression --------Harmonic progression | ||
+ | #The ratio between any term and its preceding term is constant -------Geometric progression. | ||
+ | [http://www.freeganita.com/en/nt.htm for a notes of progression clicik here] | ||
− | ===Activity | + | ===Activity === |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | #Activity No #1 activity to types of progressions [[Progressions_Types_of_progression_activity1|click here]] | |
− | + | #Activity No #2 activity to types of progressions [[Progressions_Types_of_progression_activity2|click here]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
= Hints for difficult problems = | = Hints for difficult problems = | ||
− | #A company employed 400 persons in the year 2001 and each year increased by 35 persons. In which year the number of employees in the company will be 785? | + | #A company employed 400 persons in the year 2001 and each year increased by 35 persons. In which year the number of employees in the company will be 785? |
− | |||
#In an A.P. sum of first 6 terms is 345.If difference between first term and last term is 55 then find that terms. | #In an A.P. sum of first 6 terms is 345.If difference between first term and last term is 55 then find that terms. | ||
− | Please click[http://karnatakaeducation.org.in/KOER/en/index.php/Class10_progressions_problems here | + | Please click[http://karnatakaeducation.org.in/KOER/en/index.php/Class10_progressions_problems here] here for the solution.<br>#[https://www.slideshare.net/AkshayFegade/10th-arithmetic-progression-solves-questions 10th arithmetic progression solves questions] |
+ | # Answer to progression problem 1 - [http://karnatakaeducation.org.in/KOER/en/images/2/27/Answer_to_GP_problem-1_%28Progression%29.odt T3=T4+9 or T3-T4=9] | ||
= Project Ideas = | = Project Ideas = | ||
+ | [http://www.slideshare.net/abheeshek07/maths-project-work projects on progression click here] | ||
= Math Fun = | = Math Fun = | ||
+ | |||
+ | [https://www.mathsisfun.com/puzzles/index.html To see puzzles under Arithmetic Progressions Please click here] | ||
'''Usage''' | '''Usage''' | ||
Create a new page and type <nowiki>{{subst:Math-Content}}</nowiki> to use this template | Create a new page and type <nowiki>{{subst:Math-Content}}</nowiki> to use this template | ||
+ | [http://www.slideshare.net/abheeshek07/maths-project-work projects on progression click here] | ||
+ | |||
+ | [[Category:Class 10]] | ||
+ | [[Category:Progressions]] |
Latest revision as of 09:26, 30 October 2019
Philosophy of Mathematics |
While creating a resource page, please click here for a resource creation checklist.
Concept Map
Textbook
To add textbook links, please follow these instructions to:
(Click to create the subpage)
- Karnataka textbook for class 10 Chapter 3 -Progressions
- Tamilnadu textbook for class 10 chapter 4 pages : 34 to 67
- Gujarat textbook for class 10 : Chapter 5 Arithmetic progression
- Kerala state textbook for class 10 : Chapter 01 Arithmetic Sequences
Additional Information
Useful websites
- Common Number patterns
- Recognising Number Patterns
- Match Sticks Activity
- FIND THE Nth TERM USING "POWER" AND "FRACTIONS"
- FINDING THE nth TERM IN A SEQUENCE
- Maths is fun for Arithmetic progressions
- Maths is fun for Geometric progressions
- this PPT will give basic information of progressions
- -this pdf file deals with the fundamentals of A.P
- Number pattern and number sequence
- Introduction to A.P
- Understanding A.P
- Formula deriving nth term of an A.P.
- Using formula nth term of anA.P.
- Formuladerivation ofsum of n termsof an AP
- Formula derivationsum of n termsof an AP whenfirst term andlast term is given
- Sum of first nterms of an A.P.Problems
- Understanding GP
- CBSE-i Arthimetic progression and geometric progression
- Progression Points
video on progressions from youtube
Reference Books
Teaching Outlines
- In different number pattern relating terms of the pattern
- Defining different number pattern
- Recognition of each terms
- Differnce between finite and infinite sequence
- Difference between sequence and series
Concept #1 Introduction to progression
Learning objectives
- Identifying the pattern present in different number pattern
- Meaning of the sequence
- Defining the terms of the sequence
- Writing the next terms and n'th term of the given sequences
- Defining the finite and infinite sequence and examples.
Notes for teachers
- An orderly arrangement of numbers according to a certain rule is called a sequence.
- A sequence containing finite number of terms is called a finite sequence.
- A sequence containing infinite number of terms is called an finite sequence.
Activity
- Activity No #1 - Introduction to progression click here
- Activity No #2 - Introduction to progression click here
- To get the videos on progression in Kannada click here shared by yakub koyyur GHS Nada.
Concept #2 types of progression
Learning objectives
- Classification progression depending upon relation between consecutive terms
- Identify the types of progression for given sequence
- Giving example for three types of progression.
Notes for teachers
- The difference between any term and its preceding term is a constant ------- Arithmetic progression
- The reciprocals of the arithmetic progression --------Harmonic progression
- The ratio between any term and its preceding term is constant -------Geometric progression.
for a notes of progression clicik here
Activity
- Activity No #1 activity to types of progressions click here
- Activity No #2 activity to types of progressions click here
Hints for difficult problems
- A company employed 400 persons in the year 2001 and each year increased by 35 persons. In which year the number of employees in the company will be 785?
- In an A.P. sum of first 6 terms is 345.If difference between first term and last term is 55 then find that terms.
Please clickhere here for the solution.
#10th arithmetic progression solves questions
- Answer to progression problem 1 - T3=T4+9 or T3-T4=9
Project Ideas
projects on progression click here
Math Fun
To see puzzles under Arithmetic Progressions Please click here
Usage
Create a new page and type {{subst:Math-Content}} to use this template projects on progression click here