೧ ನೇ ಸಾಲು: |
೧ ನೇ ಸಾಲು: |
− | <ggb_applet width="400" height="300" version="4.0" ggbBase64="UEsDBBQACAAIAFZFKD8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ4VVaTQbiBYOk1RQEVFNp9ImammJZWqJQYso0iTKxL6MdTpeNRImtmrEmIxaWlQp06GpyqNoKfWEiv291FKDsaaCRj1bVFFrbM3k9MyPeeed896P7/vO/c49555zv3PPTf/GGaekcFIBAAAo4S/bu0q1W4pI8BEp+3XYpAAAR0R4e6z7DcEH1nuih8+J1J8/5e7BplbhaC4uEUbkohzCAtnLtx3gTrwzsFyoicjSn2cMU5EvCEOUPjxBac78rjxXUw2yNah8RXUb0gYi9utq3n10vWh4o73Xgl7NiP1dcJfcRm+hr54/Al04Nlrn5+B216NhS9C+v7NNDQr66oB2GCg5ujtx/mAH2+y25vZsTvImJIbFiH184EXcfwfvfX49ekg8N7kkVAG2urw+ya2SCCWVJSsu6INdZfRhVa9eoSQ2R/w9RwNsm5yg1V18KVVfQ6MjC2lDjRC2cmRYz1roC4LNqWpFykbvacbA69e1nZ2dNRjJoYBDRn4gC1sZwZLjtijQYAc3asG5t7u75iJ925tGq9XW0eHWz8yEFFrFPSdHhIW9MPCrf4lpC0BYxf5mbGJC+Tjzanvm1Z2a+uXlcCv6dmVpWZnyimY0S4i0nQbp6unV1tYaE/H4Fw8fIvj1jP1YIoFAo9jJVvRVw33zURUVFcFtHyllziyasZiR/Hxj/wtwJQqQhAKAZf+DhE0oPXnSCJ+vnMjX+s7NbTho93JMDGd/BHMpr/RaizDFWDUNjXU/40oiBTc2Nnp6ey8SCO567PG4vpxnsyWPH7evr69PYuQgiJq6OtOGqtD+W2P7lAQr22/Brj4+Ii1dXd0f2AgLGi/vweXsO3AjLhtX5XVNPZ3k67uUz8lca/MQxya9HMCetklcBp40sPSf4JB/Qd8EovASgJpR1imrMY/9sZERe21LS8vFGPE6U1zi++McI2clNxJJaFXzqg7gSHGLAi+oSdVZK07nOmYJBL6O0LSL2Psmi6aE3eTWogvxtMjxhWOEkby0927m9rtajK6sU8HyTUJ4uiUvE0XgSaO8eC450HPGQCNhvar3pTl1EkwcsnF6cxiBH/kJAQRgAdA/CfrX4v/aWMBnRWUzo2NixtNVz4b3FZhhouadCjEUQZDTowvj+UaB1FRlZKyLzwLFdc0fPMTnL7zV5wR1yPo1UFksi6jOpaWlyoYGfkBrwpfHb0Z056G99M3MRiltYcM670WiYjjqEzD+cI9j1Q438L260M9Sd00beNVXaE55989b+Tk5M9tyUDjT3cNjXPzx31NuE5p5IeUvoxayMtXN+6lTXIe7tuGKtXGrAX6NtFIOh+PgAEGyWCzDuMEmJZkQ12wldcybsSo/XLSl2WR20s0OiK2TPPsLL1qC7nm7S6s6IxNPACF20DkE2rNSzNbsSi0eNqDBwM0oLrck+YLAoiuSBtNe4WYchXpjMdTJa/zqQMlTmvickVEDh8wfIkKdsJt8v41jQjsIUl5enppyGhXJDH/bPN5fZCO5AhpcLCUdlTrliFmyznzR7fiNeVITqANmX2bW09Mj/BZyyxGq9rUs0BHqMTc/Nweyy1aEG77p+FlOZADOQj3zqq4XCAS2YLbetDYx/3c/KAIb+tsDlbSDf3Xx0lU/97g9cZLPQChMRYKgXszFzgriL4aNLkAZ4Jd22Tk5MOBPYtWre5siUg+WnbdI9E5qB9deH31ajpjkyqplMvT96jPeMqfBtM1FEtrQEMID03bXv59ooZu3gDpUSlpbrfVMRIMnsJuRaWddHn2e775vSt9eJiEnd1aFyC1rd1VHg+NAAvTe/ftXd1am7oiTPGmSg92onZaKijB32oUba+0XcYrSDdTV1wuGSoma1uVRUVFVjY0WeppphIDoOA3baaAKbHbw7ziVUyMFiE0hzoRpisFwcUdlgJ7ZKSkppCk4W846Y55qh5eVhsCrp0zoo9Fke7l4HK4rLbFs2HRqEAy9gY0G4U3GNXvOOhozF+87l2pHvG0uTkWJmWD/vCGsepizigjM7lKsqDsUDZdtQnhZKLvcGK6LfTxWS/lJlpYun+7gPgmGRjHTVlaohWbkfHroaCRk728Dj5TITU1xq9z0nu3t2JugEC9oUW65wNzA4MM/ZBOowMHRF5ub0ebGWzs7w5rQfeYNBQWF8E8Hu/n37r3T2TjTg61jhIY+6fvVpMu5yPqKrjyvCJVoeu+cqo5TpEvwyNy09HYg/YXJWagCt56BgbhVvYeWMU/nZme/um6boAi7/WP6wt7W+yndBzCq/+kxjwp8ro5PSAj7g7BNOOoFEiXGMcXuayevJVWbMQEoMIAJAPyp/03/y87IlsjEZWsXAtg2r6S/D4B3cLZ/bhfE/ANQSwcIw1buKusGAAAiBwAAUEsDBBQACAAIAFdFKD8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAFdFKD8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7R3LbtzWdZ18xcUUMKRGD16+GUsJZDm2lcqWEbtpWsMIOJw7I1occkxypJGRRdAWQdtNV1l01WXRXVqgQBZd5QOSfwiaNp/Rcx/kkEMOh5zhSHISQxIvyfs873vOufTeu5Ohh85JGLmBv9/BO1IHEd8Jeq4/2O+M4/622Xn3nTf3BiQYkG5oo34QDu14v6PSmm5vv+P0VWzpmrmt9FVzWyU9e9syVbzd7ZvY7ml9WdO6HYQmkfu2HzyyhyQa2Q554pySoX0cOHbMBj6N49Hbu7sXFxc7yVA7QTjYHQy6O5Oo10EwTT/a74jC29BdrtGFwqrLkoR3P3p4zLvfdv0otn2HdBBdwth958039i5cvxdcoAu3F5/udyzT6qBT4g5OYU2GpHfQLq00AoCMiBO75ySCpplbtuZ4OOqwarZP37/BS8hLl9NBPffc7ZFwvyPtAARMrFiaopqmYsi4g4LQJX4s6mIx5m7S2965Sy54t7TERlQ7KA4Cr2vTHtEnnyBZkiW0RS+YX2S46Dp/JfFnksIvMr+o/KLxOipvrvKqKq+j8jqq0kHnbuR2PbLf6dteBBB0/X4I2Evvo/jSI2w+4sF09XgL1hS5r6AyjNdBHOQw8S1pS5XYL19zZoE4M2IcjhsOmAxnmbjecPJKC1TmLk+etzy9YkC+3jrrw1pmPE3aYj/stzCiUrXE2RH5/WoD6uqVLHFvN2GPPcERKDqldQXVxGQYUR5RLKRZlNQx0oAfNIQtpBvIkBFQP8IaUuGRCeRuIMWAZypSkIkseIAVxPhAo29Vg/WhIw0jXUWGhHRgIIRhABVpCsKMf1QEXIMYDwI/ygrU0DSkQSuDdijTPhQdqTrcKSZSYW6U/QwMFRVoCPcwvowUjBTaGBtI1pFO+8MqZWvdpNOGLmWkwxQw7RA4GLiXcy7UN5GiURkgwOT6o3GcA40z7CXFOBilOIDaIHumEo7LopwAfGPPs7vEA53whGIQoXPbo1zABuoHfowS5Jn82SC0R6euEz0hcQytIvTCPreP7ZhM7kHtKBmb1XUCP3ocBvFh4I2HfoSQE3hSOufAw5mynM4abpTMCzX7Qsu80DNlo3TcAN6gcURg/CCMkup2r3dEa0zFAUDyxPcu74TEPhsFbn4Ze7tMveyRseO5Pdf2PwQipaNQuKCptsFTbaMBoYuJBGHvyWUElIsmvyFhAHCUqdqAvyaoDc0AsKJL/kaV5R1FkRTD0BVFVVRQX5FjU5YzrR2saPSVCcoG2kGbOa8wH5icp/ixJ2S61EFI+TlzcxTdCbzpI7b6Q3sUj0NmJsCiQrqmA3/gEUYh7BnoYOesG0yecNJQeF9PL0dwJ5beHTCoI5AIoCWhgrh2+ZXVoVNLa0msjsRqSAmtub3FvQDx8qmJpeJkmVhKhnEjJsekjuCaREZR0qcqfey78XFyE7vO2XSptMGj8bBLUgLK94nb65POGqyLKP5ImGu0/GtqZ2i8/PSUxDa7lxXNMg1Dg7+yZZqcTmcodO+MhD7xBEMAMYyDccT5O8MrPeK4Q7jlL2SxOoruX8IC+NMeGYQkWbjHTDgOcPY2R+uFx6yre2EwPPLPnwItzUxgbzeZ5V7khO6I0izqgvI4I1OqhLXboHt62XaUgwF0DtUxAN6YghZ4exyfBkAs//38L9//9p/f/eNT9P3fP//Pv7/47s9/+v7T30EZHv3vX7+HLkFiQQPK1x4ZgsmGYka9/nhIQtdJ8egzaxDmPBbL0nfEwigSUdB9AaI01bK8TV4S9Vw2RSZkRG1YTwQFXgW6KNB4wgXI9kanDOOCrz37koQ5+LIxHwY9MT1RL/KoiYqGLjdphvaEsgPtsBuBMI7BSgeM+lMrnS9ACDOoSckP2qgG2w1cUn2t0VLfnZBU1wCo3VdAWnTgKRlP+TEGRXEGlm/ErLJYiAdWeOD2esRP52v7QIQcTjEZcSYZEcL5K204guUzsZQhH4E+isjJKISxaCcCEV9/CVueCXSngGb9OfrqC7SLNmQo+ZtcOeZxz0i1k2k8g/pyvqMs4QUXH5C+RyZMTvLaCUCqp+iJGdJZRa6/8fWXMEe5dHqzpOmVzA+D7jAlC3YQGtj/WpHCpCr6yk01NzbTC+nI73UKDJCXfhkOmDc4I/V0eKlA3riUvKVycqHzr0cwQk5FlLhlQdrbTMC+4kKXbxLpcqlyy0lF/nQq4Qowc4Lh0PZ7yGeG8RMyoM87U5PNlijskA12z8Zk471N9BaSt9AllDYFsMZxUs/mnYsuCwiJROcJxO0iSlqSSfMopiHKpmCXBNgZ+LNQX0ZwkJc+bxJx7eoOR57ruHEKT48SwJEfg64lTFkUVeAZISNqu5z4T0Pbj6gfZD4L53H8mPFFHsN2AZf3qnGZZ657a8ZkYj+tgMsrZj+lnP2katQ8dP0ZxEw27m2ibUQ5jzMhLmDqrBpTsyL4rCiCpVVkbkE9fPOZ0A8bGGZ+tglagmuIxfoLmhYmJ+vYsCwFNJhlYdVSm+qvxcR/eQCGcQGsJ00Y4GQl7XJjyDsRc9KsmJuhbrUmdVdT4nAuJdaSJLXJdTkTVEpM0MYGKLZMAUfrKu1PGH4ZE3TWAHg5JtRHnWeRo/6zM3TLi28jvIXADjihdoAn7D8Xrt98RvncCaL0bpe9gxK1FubUz96l9TfzI7i8/eZzLv9cuMgcyQo3Qf0C63qw75Sr2ZdWmVqlrP4CDp4iq97up8jAchUDl1KAWk0BS3JlLYwnKEhQ9PWXU0RSuZ6gGp5vNsMMbogZvBxmuEjA+PXFzEN7Mt8agAvmcJcKUD67ZY+C6HZDu0A0atU6yC/ogyC243mEJk3JSxDU9lnGdKCkdVJY6UETJX2wHCHRSMKAX7r80t5+ArekaGvA+aQ2UE/qkM+M/ZMhnhsF4LYsmRoAfo9XfsZk1hbCz2sD/E4TUN/5sQD5CawtCGeAzCH/7NANHY88K5MdW+jk+RbKQJ0+4KgQjU/KXsvp6wIei9VnEehUIxD2vK4zssMpEp2WNszo2z/+FTW1TIpGcSW+S/WfssDF4Q6If84QGCE0kYSku5QSYkmeTDDbTNN3OBGHOENJYOGG7gQdJPUPkloHsujqQEkKalLQoM+0h1lvCw0kun3XuSJvS/s677CJtDi8edLiJuu8jxcYp6Va7+MlLdTXTyS3rPfuNgH23R8LkA9Cp02lNyVShoW7BSz0miqv3pLOriZ75eYayfhJI9XTSIfj8JwcAkJJ5Nqz/uYY9pV0yx8n7max1Wf3sMCY7+4p8lQaWJZNBVsFkuouICk6AyedQUI23RZCdG1TlVZFVXVjj/fbtPbmAKGRnKv0dzB3ZZ6YllHjcyIgC1wEXMbNmksg6vDc+MdpDfmVgvr0ClBR3xndnB7xzZRy2w3F3HzO6QaBRzJCIYkMzrilMqCfj8ws+ZbhcsiwiNG3f/gbcoDwxsM+CZkvtCUZc9LvRyRmSSmYMY2qqZUmhshRy4UMGoErv4w1Aq19EOkWh5FiKavCaMZqtS9LBIokBMoGZuVZqeJWS5UQ+kwg5taXKVl4YZoTORDXrrhWQK08crWc0J72/zrkLxRjzDGZxIoIM996OQ7i209PCbJDYqOgj2zGzR7hb1hveezR5p18X0uhsCXLoxR5LJE5IqHbnyb9stRVtZMAPgkEloYnEctXECyl1wOpmgNpoupiAC0HKAJdHiD+j24JovoQVm96sk8zJMgpEqSFSMCmxtMR8QLjpyw5QWRkPeM20BbaEDY3vSs6Ih802VE/uBFZO5W2aLtpDYtMVq2myVrOPEaOeT4gdgiSbUAY+whIAYExttlBRz7QiR0BR8UR8lle9c6tn2Hp9q9ObXpOwh5Bo4BErHXfHYxD6IgApcTBu/WZzlgVwzlzgtlJa2fDNjhOpen9VO5p1QxXnu74IE13fLBZahu8qOay2TzHFzdA9FVy2ZRT8Ixnq9pOSIMA+IYYCrPZdL1RiUR9UcDnUROpebSkl2K9jsjqbMQ5gq2Yr1Uq2PScYAvrix/9phN+FIM0ZlqXr/CodGOyjQ2e9FlTEVh5eCWKoD7crBsAt3XaShmwcyo2FEOXLUk3TAtbsEVOUmwV1ZQk3VJVU1ZVRcnSeGO2L6Y4v9+E7d9fG06a7gNrygZlxVTlRh7OX6ySoyXVOlxxBXYiN61NTZEMbFiaqdeK8qwmXHFOWOTtrX1UX2YsjEGuvIVt7jSusNB0U+YOseKeqBxOcg5O+0ime9AGuqgkv3NVU7gFT1irMDUVQ8C0Bu0dJ0n6NNpDkzWVHaxizZJ1TdFMy7AUeMYy+IebNDlXFLd4gYaEFjXKtNrs5KVGEV95cXJ8BbHemhZx3VhvXSlQI9xxnITeUvgVVNeoWnXlYx6j6xUNzeNqVxXH2MZVgYx0oXUDGTUjWdLmYvy+bILflz/h9xrwm25bZ1A84th9yePlxXDlwyZW58OVct8lmRuU9Lq6JHxkP2KSkF1f8Wt7krAeOOUCOB81Aeej1Q55JABtxdWyXnAuEUd3FiW/5aWOU5b21syk4gZUg/MFbUimG5ontEoEvY5TMxfyLGx0St2cpJmbk7RDDldsTxctvZJd4EJP6CKiul5HaDlF3E/d3PfZ0a777ExRkQzCZmQQLiCDRfkFKyTYVNND1qHHTfp6gvo194mXb6fN3HY6ikObfjKJ+CzexAJRuf1u/X22ue5IertuCL5jTr9GtMhZI+XA9s2nDfwz0g/EATHXzSulbl55IdxNvYGrgoJPywGe/0VvVX0Zp4ABbW0e3NYOAa8vB0ExlHk5CNUJZQFeKovseiLL5eJeEb5GowL2DQAiXzFAWDlojcuLcLGsmnApl4l5DzbLX7DDJO0BmkZMhwV9qiUjntrQIIUBr7zLuCrArjeVwZJrokMuosPlaSRJetw0n6sJHtbgQM/jgV/km44ObjtiXNdkUGbSgoD5GkB9pcTE1AG0IKLYXCfNBs4fl9vZBg/lFmFV6xMU/ADwM3H6iZm63sJzUDOn0dznz7fQh7yjwqt8bZnVpseomFXhst0QFLKHqor1t1BhfiXjXPMMKGzWPIv851kwPyZU/gEQpXpDWfgAyCIeaLKjXP2sdHOP04Kz0uv8ikuehW46J2FT+uoLWo8fWZx+B8iHh544mSa+Nsl7EdOl4cjM880pT1w/c17Hoq6A39tcWF52+HT2iz4ipDaUIYvSz1eXIfNzWV4XGcKlQfH4MQsb5IL57Fwxx9ZxAT1RjShC7jxxdK0uox9akGD9DsXKz0j1633Ur2l2WLVOLvfktvpRP91IEuo0gxbE6TOxjgZf9VsQGV8+k616L/I4yfeZbBwGoU/CZ8pzYOc+c/3nnzTN1nl8FRnRNaOq1o6uG6YhW4qmaio2RJbZjqFaiiSZlqTqlka3JS2k8uxmv+dO75P/K+id/wNQSwcIsAvni+APAADIaAAAUEsBAhQAFAAIAAgAVkUoP8NW7irrBgAAIgcAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACABXRSg/1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAvBwAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAFdFKD+wC+eL4A8AAMhoAAAMAAAAAAAAAAAAAAAAAIwHAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAAphcAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="false" /> | + | <math> |
| + | \operatorname{erfc}(x) = |
| + | \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = |
| + | \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} |
| + | </math> |
| + | |
| + | |
| + | <math>{\pi}=\frac{3}{4}{\sqrt{3}}+24{\int_0^{1/4}}{\sqrt{x-x^2}dx}</math> |
| + | |
| + | <math>\sqrt{3x-1}+(1+x)^2</math> |